
Citation: Liu, H.-D.; Farooqui, S.-A.;

Lu, S.-D.; Lee, Y.-L.; Lin, C.-H. A

Novel SLOPDM Solar Maximum

Power Point Tracking Control

Strategy for the Solar Photovoltaic

Power System. Processes 2022, 10,

1452. https://doi.org/10.3390/

pr10081452

Academic Editor: Alfredo Iranzo

Received: 30 June 2022

Accepted: 23 July 2022

Published: 25 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

A Novel SLOPDM Solar Maximum Power Point Tracking
Control Strategy for the Solar Photovoltaic Power System
Hwa-Dong Liu 1, Shoeb-Azam Farooqui 2 , Shiue-Der Lu 3 , Yu-Lin Lee 2 and Chang-Hua Lin 2,*

1 Undergraduate Program of Vehicle and Energy Engineering, National Taiwan Normal University,
Taipei 106, Taiwan; hdliu@ntnu.edu.tw

2 Department of Electrical Engineering, National Taiwan University of Science and Technology,
Taipei 106, Taiwan; m10907817@mail.ntust.edu.tw (S.-A.F.); d10807005@mail.ntust.edu.tw (Y.-L.L.)

3 Department of Electrical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan;
sdl@ncut.edu.tw

* Correspondence: link@mail.ntust.edu.tw; Tel.: +886-2-2730-3289

Abstract: This study proposes a novel maximum power point tracking (MPPT) control strategy for the
solar photovoltaic power system (SPPS). The proposed system adopts two solar photovoltaic modules
of 430 W, which are connected to a boost converter and an MPPT controller, since the traditional
MPPT algorithm (such as perturbation and observation [P&O] algorithm) can hardly reach maximum
power point (MPP) under low irradiance level and partial shading conditions (PSC), which leads to
the low efficiency of the SPPS. The speed of light optical path difference measurement (SLOPDM)
MPPT control strategy has been developed in this study to overcome this problem. The estimation of
the optical path angle difference is used as the basis for the proposed control strategy. This is done
by determining the relationship between the optical path angle difference, solar photovoltaic power
impedance Rspv and load Ro, and then calculating the duty cycle corresponding to the MPP, which
then drives the boost converter to capture the MPP. The experimental results verify the proposed
system, which shows the efficiency comparison between the SLOPDM MPPT algorithm, solar angle
and horizon (SAH) algorithm, and P&O algorithm under PSC and uniform irradiance conditions
(UIC) at irradiance levels of 700 W/m2 and 65 W/m2. It is evident from the comparison that the
efficiency of the SLOPDM MPPT algorithm is 99% under both conditions, which is higher than the
SAH and P&O algorithms. The SLOPDM MPPT algorithm can precisely, rapidly, and stably be
operated at MPP. The contribution of this study is that the proposed MPPT control strategy can help
achieve the high−performance of SPPS without changing the hardware circuit design and requiring
any additional solar power meter. This reduces the cost and the complexity of the system significantly.

Keywords: maximum power point tracking; partial shading condition; perturbation and observation;
speed of light optical path difference measurement; solar angle and horizon; solar photovoltaic
module; solar photovoltaic power system; boost converter

1. Introduction

Due to the global climate change issue [1], every country is concerned with reducing
carbon emissions and improving the greenhouse effect. First, the consumption of coal,
natural gas, and other fossil fuels can be reduced significantly for power generation [2] to
achieve this goal. Second, people should reduce the use of fossil fuels in transportation [3],
and walking or riding bicycles can be preferred for shorter distances instead of driving.
Furthermore, the government has already been promoting the utilization of renewable
energy, such as wind power [4], solar power [5], hydroelectric power [6], tidal power [7],
geothermal power [8], and biomass power [9], etc. Renewable energy is connected in
parallel with the mains through power conversion technology and provides power to the
demand side, as shown in Figure 1. Electricity is supplied to the demand side, which
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includes residential buildings, industries, campuses, commercial applications, rail vehi-
cles [10], electric vehicles [11], etc. It is obvious from the aforesaid uses that renewable
energy has been integrated into people’s lives and has a wide range of applications.
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Amongst the various renewable energy, the solar photovoltaic power system (SPPS)
has drawn major attention of the researchers because SPPS does not generate noise during
power generation and has a long service life [12]. The small solar photovoltaic module
(SPVM) can be carried around conveniently and used in watches, computers, backpacks,
blankets, etc. [13], which are more flexible in real life. Medium-sized solar photovoltaic
arrays can be installed on rooftops to provide electricity for homes or farms [14]. A large-
scale solar photovoltaic array parallel grid can improve users’ stable power quality [15].

The SPPS is a diverse field and could have different research areas, including SPPS
fault diagnosis [16], solar cell material upgrade [17], SPPS microgrid technology [18], and
power electronics technology combined with the solar maximum power point tracking
(MPPT) [19], etc. This study focuses on improving the efficiency of SPPS by developing a
new MPPT technique that can help achieve higher efficiency under both uniform irradiance
conditions (UIC) and partial shading conditions (PSC). Numerous studies focusing on
MPPT have been presented. Kumar et al. discussed that the perturbation and observation
(P&O) algorithm architecture is simple, easy to implement, and widely used in SPPS.
However, the P&O algorithm uses the perturbation characteristic to track the maximum
power point (MPP), which causes a power loss during the MPPT process. Additionally, the
MPP cannot be achieved under PSC, resulting in low system performance [20]. Liu et al.
examined the solar angle and horizon (SAH) algorithm to improve the performance of the
hill−climbing algorithm. This SAH algorithm analyzes the solar angle and horizon with
high efficiency under the UIC, but the efficiency decreases with environmental changes (as
PSC) [21]. Lu et al. used the solar photovoltaic module output power and load (SPMOPL)
MPPT control method to capture the MPP effectively. However, this SPMOPL MPPT control
method needs huge data analysis (such as irradiance level, temperature, SPVM output
voltage, etc.), which will cause a system burden [22]. Jagadeesan et al. proposed the right
half−plane (RHP) MPPT control mechanism for tracking the MPP on the Pspv−Vspv curve
of SPVM to improve the system efficiency. This control mechanism reduces the MPPT range
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and thus reducing the system burden. However, the system efficiency will be low if the
irradiance level and temperature change are high [23]. Uno et al. discussed the dual MPPT
control strategy, which analyzed the SPVM and power converter output voltage and current
signals to estimate the best duty cycle and capturing MPP. The dual MPPT control strategy
has high efficiency but requires multiple power MOSFETs and diodes, which increases the
system cost [24]. Mobarak et al. introduced the parabolic MPPT control strategy, which can
make calculations quickly and accurately to improve SPPS efficiency. However, this control
strategy must estimate multiple peak power points with the parabolic equations many
times under the PSC and track the MPP. This will increase the system burden and the MPPT
time [25]. Zhu et al. discussed the finite−state−machine (FSM) MPPT that can improve
the system efficiency under the UIC and PSC. However, the complicated control sequence
increases the burden on the controller. Also, the system requires multiple power converters
to be used in parallel, which increases the cost of the system [26]. Kiran et al. introduced
the variable step size artificial neural network (VSSANN) MPPT method that captures
MPP through artificial intelligence training to improve system efficiency. However, the
system requires the installation of an additional solar power meter and a thermometer,
which makes the system costly [27].

This study proposes a speed of light optical path difference measurement (SLOPDM)
MPPT based on estimating optical path difference angle. The proposed method calculates
the duty cycle for the boost converter to track the MPP by using the relationship between
optical path difference angle, solar photovoltaic module impedance Rspv, and load Ro. The
proposed SLOPDM control strategy helps achieve the high performance of the SPPS under
both the UIC and PSC, verified by the experimental result. The proposed SLOPDM-based
MPPT is fast, simple, low-cost, and does not cause a system burden.

Table 1 shows a comparison of various MPPT algorithms. The following points can
be concluded from this table. First, the proposed SLOPDM algorithm is the least complex
among the aforementioned algorithms. Second, the proposed algorithm performs better
than the P&O and RHP MPPT algorithms. Last, the MPP tracking speed of the proposed
algorithm is superior to the P&O, SAH, SPMOPL, dual MPPT, and FSM MPPT algorithms.

Table 1. Comparison of various MPPT algorithms.

Algorithm Complexity Performance MPPT Speed

P&O algorithm [20] Low Medium Low
SAH algorithm [21] Medium High Medium

SPMOPL algorithm [22] Medium High Medium
RHP MPPT algorithm [23] Low Medium High
Dual MPPT algorithm [24] Medium High Medium

Parabolic MPPT algorithm [25] Medium High High
FSM MPPT algorithm [26] High High Medium

VSSANN MPPT algorithm [27] Medium High High
Proposed SLOPDM algorithm Low High High

2. The Proposed Solar Photovoltaic Power System
2.1. The Configuration of the Solar Photovoltaic Module

A solar photovoltaic cell (SPVC) is composed of multiple P−N junction semiconduc-
tors, which convert light energy into electrical energy. Figure 2 displays the equivalent cir-
cuit of a single SPVC, where Iph is the current produced by the SPVC, Rpn is the non−linear
resistance of the P−N junctions, Dpn is the P−N junction diode, Rsh and Rs represent the
equivalent parallel resistance and the series resistance of the SPVC, respectively, Vspv and
Ispv represent the output voltage and current of the SPVC [28].
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The equivalent circuit of a single SPVC is shown in Figure 2. Using the P−N junction
characteristic, the formula of its output current Ispv is expressed as follows:

Ispv = np Iph − np Ir

[
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where np is the number of SPVC in parallel, ns is the number of SPVC in series, q is the
quantity of electric charge (1.6 × 10−19 C), k is the Boltzmann constant (1.38 × 10−23 J/◦K),
T is the temperature of SPVC, and A is SPVC’s ideality factor.

In Equation (1), Ir represents the SPVC’s reverse saturation current, which can be
expressed as follows:

Ir = Irr

(
T
Tr

)3
exp

[ qEGap

kA

(
1
Tr
− 1

T

)]
(2)

where Tr is the reference temperature of SPVC, Irr is the reverse saturation current of SPVC
at temperature Tr, and EGap is the energy across the band gap of semiconductor material.

Figure 3 displays the schematic diagram of the SPVC, solar photovoltaic module
(SPVM), and solar photovoltaic array [29]. Solar photovoltaic cells can be connected in
parallel and series to form an SPVM, whereas a solar photovoltaic array is composed of
multiple SPVMs with series and parallel connections.

2.2. Solar Photovoltaic Module’s Connection with Power Electronic Converter

This study adopts two SPVMs and implements the experiment with the solar photo-
voltaic simulator, where the specification of a single solar photovoltaic module is shown
in Table 2. When the irradiance level (IL) = 1000 W/m2 and the temperature = 25 ◦C,
the single SPVM has an open−circuit voltage Voc = 50 V, short−circuit current Isc = 6 A,
maximum power point voltage VMPP = 40 V, maximum power point current IMPP = 5.4 A,
and maximum power point power PMPP = 215 W.
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Table 2. Specifications of a single SPVM.

Parameters Value

Voc 50 V
Isc 6 A

VMPP 40 V
IMPP 5.4 A
PMPP 215 W

In SPPS, the output voltage of SPVM is low. The power electronic converter can
increase the voltage level up to a value required by the load and facilitate the stable
voltage, so power electronics technology is widely used in SPPS. In addition, the MPPT
controller can further enhance the SPVM output power (as shown in Figure 4) by sensing
the output voltage or current of the SPVM. Accordingly, pulse−width modulation (PWM)
signal is generated for the power switches which drive the converter. There are many
kinds of power electronic converters employed in the MPPT controller for SPPS, such as
single-ended primary inductor converter (SEPIC), buck-boost, Flyback, boost converters,
etc. [30–33]. The boost converter [30] is most commonly used in MPPT systems mainly
because of its merit of having a simple circuit structure, easy implementation, and high
efficiency. Therefore, the boost converter has been selected as the power electronic converter
in this study [30].
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The relationship between output voltage Vo, SPVM voltage Vspv, and duty cycle D is
shown as follows:

Vo =
Vspv

1− D
(3)

The relationship between output current Io, SPVM current Ispv, and duty cycle D is
expressed as:

Io = Ispv(1− D) (4)

The relationship between the load impedance Ro, SPVM impedance Rspv, and duty
cycle D is displayed as follows:

Ro

Rspv
=

1

(1− D)2 (5)

where load impedance Ro = Vo/Io and SPVM impedance Rspv = Vspv/Ispv.
Table 3 shows the SPVC efficiency range [34]. The material included monocrystalline

silicon, polycrystalline silicon, amorphous silicon, monocrystalline compound, and poly-
crystalline compound with a conversion efficiency range of 15~2 %, 12~18%, 6~9%, 18~30%,
and 10~12%, respectively. Different SPVC materials have different conversion efficiencies.
Therefore, SPVM impedance and SPVM output power are also different.

Table 3. The SPVC efficiency range.

SPVC Material Conversion Efficiency Range

Monocrystalline silicon 15~20%
Polycrystalline silicon 12~18%

Amorphous silicon (Sic, SiGe, and SiH) 6~9%
Monocrystalline compound (GaAs, InP) 18~30%
Polycrystalline compound (CdS, CdTe) 10~12%

When sunlight hits the SPVM connected to the load, it will generate Vspv and Ispv.
However, the SPVM structure has a key effect on the SPVM impedance and the SPVM
output power. An SPVM structure includes soda lime glass (SLG), ethylene vinyl acetate
(EVA), SPVC, and back layer, etc. [34], as shown in Figure 5. If the SPVM structure is of poor
quality, damaged, and has other abnormal problems, it will affect the SPVM output power.
Although, many factors affect SPVM’s output power. However, this study proposed an
MPPT that can be used to achieve the best system performance for various types of SPVM.
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The system used in this study is structured as two SPVMs connected in series. The
input of the boost converter is connected to SPVMs, whereas the output is connected to the
load. Secondly, the MPPT control strategy is embedded in the controller (Figure 4). Finally,
the controller generates the PWM signal for the boost converter to capture MPP depending
on the proposed SLOPDM MPPT control strategy. The details about the proposed SLOPDM
MPPT control strategy for the SPPS can be seen in Section 3.

3. Proposed Speed of Light Optical Path Difference Measurement MPPT
Control Strategy

Figure 6 is the schematic diagram showing the relationship between the sun, earth,
and planets, where the sunlight shines on the planet and the planet reflects the light to the
earth. However, the earth revolves around the sun. It leads to the position of the planet
seen on the earth being different from the actual position of the planet due to the speed
combination of the earth’s revolution and light. It is similar to being on a running train
when it’s raining outside, and the rain looks like it is falling diagonally when observed
from inside the train car.
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In the 18th century, Prof. Bradley proposed the speed of light optical path difference
measurement (SLOPDM) method to calculate the actual planetary position. The planetary
position could be calculated accurately using this method [35]. This study extends the
use of the SLOPDM method for maximum power point tracking. So, the proposed MPPT
method in this study is named SLOPDM MPPT. A detailed description of the proposed
MPPT control strategy has been presented below.

In Figure 6, the earth’s revolution speed is
⇀
V, the speed of light reflected by the planet

⇀
C is 3 × 105 km/s, and the angle of the optical path difference is θ. Figure 7 demonstrates a

schematic diagram of the relationship between the earth’s revolution speed
⇀
V, the light
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speed
⇀
C , and the angle of the optical path difference θ, which can also be represented by

Equation (6).
⇀
C =

⇀
V

tan θ
(6)

where
⇀
C is constant as 3 × 105 km/s,

⇀
V changes with the distance between the sun and

the earth.
⇀
V becomes higher when the distance between the earth and the sun is reduced.

Therefore,
⇀
V is not constant.
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Figure 7. The schematic diagram of the relationship between
⇀
V ,

⇀
C , and θ.

Figure 8 is transformed from Figure 7, which shows the relationship between angle θ1
and its opposite Y. In Figure 8, the radius of the circle is regarded as 1 depending on the

light speed
⇀
C , which is a constant value; angle θ1 corresponds to the angle of the optical

path difference θ. Using Equation (5), Figures 7 and 8 and assuming that Y is proportional

to the
⇀
V and Rspv, the relationship between

⇀
V, Y, Rspv, Ro, and duty cycle D are expressed

as Equation (7).

⇀
V ∝ Y ∝ Rspv = Ro(1− D)2 (7)
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When θ1 = 0◦,
⇀
C is proportional to the radius (1). By substituting Equation (6) into (7),

the relationship between tanθ1, Rspv, Ro, and duty cycle D can be obtained as follows:

tan θ1·
⇀
C =

⇀
V ∝ D2 − 2D +

(
1− Rspv

Ro

)
= 0

tan θ1 ∝ D2 − 2D +
(

1− Rspv
Ro

)
= 0

(8)

When θ1 = 45◦, Equation (8) will be transformed into Equation (9).

tan θ1·
⇀
C =

⇀
V ∝ D2 − 2D +

(
1− Rspv

Ro

)
= 1

tan θ1 ∝ −D2 + 2D +
Rspv
Ro

= 1
(9)

If the value of Rspv and Ro are known, the duty cycle D at θ1 = 0◦ and θ1 = 45◦ can be
calculated using Equations (8) and (9), respectively. Therefore, this study can estimate the
MPPT’s duty cycle to achieve MPP using the relationship between tanθ1, Rspv, Ro, and duty
cycle D.

Using the transformation of Equations (5)−(9), the relationship between Rspv, angle
θ1, and duty cycle D can be drawn, as shown in Figure 9. In Figure 9, the right y−axis
represents the impedance of SPVMs Rspv; the left y−axis represents the duty cycle D; the
x−axis represents the angle; the straight blue line shows the results when Rspv changes from
1 Ω to 46 Ω; and the brown curve shows the results when D changes from 0 to 0.1. When
load Ro = 200 Ω, Rspv = 34 Ω, angle = 34◦ using the Equations (5)–(9), 0.06 is the optimal
duty cycle of the MPPT, because the proposed SLOPDM MPPT control strategy regards
the optical path difference measurement of the light speed as the basis and considers the
relationship between the load Ro and Rspv to calculate the MPPT duty cycle D. Therefore,
the proposed SLOPDM control strategy can capture the MPP rapidly and accurately.
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Figure 10 shows the flowchart of the proposed SLOPDM MPPT control strategy. First,
the system measures Vspv, Ispv, Vo, and Io. The Rspv and Ro will only be calculated when the
boost converter’s output current Io 6= 0. Second, the dPspv/dVspv is the next parameter to be
checked. If dPspv/dVspv = 0, the system is operating at MPP and the duty cycle D is fixed.
By contrast, if dPspv/dVspv 6= 0, the proposed SLOPDM MPPT will be performed. Next, the
system calculates the angel with Rspv and Ro (Figure 9). Finally, the system substitutes Rspv,
Ro, and angle θ1 into Equation (8) to obtain the MPPT’s duty cycle D, and drives the boost
converter to capture the MPP.
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Figure 11 displays the architecture diagram of the solar photovoltaic simulator that
connects the boost converter and embeds the proposed SLOPDM MPPT control strategy.
The solar photovoltaic simulator simulates two SPVMs connected in series whose total
rated power is 430 W, and the specification of a single SPVM is shown in Table 2. The
specifications of the boost converter inductor L1 and capacitor C1, as well as the microcon-
troller unit (MCU), are shown in Table 4. The control flow of the proposed SLOPDM MPPT
strategy is explained as follows: First, the voltage and current sensors are employed at
the solar photovoltaic simulator’s output Vspv and Ispv to capture the voltage Vspv,ref and
current Ispv,ref signals to be transmitted to the MCU. Second, the boost converter’s output Vo
and Io uses voltage and current sensors to catch the voltage Vo,ref, and current Io,ref signals
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transmitted to the MCU. Third, the Vspv,ref, Ispv,ref, Vo,ref, and Io,ref signals are utilized to
calculate the MPPT duty cycle using the proposed SLOPDM MPPT control strategy, whose
operating frequency is 50 kHz. Finally, the MCU generates the MPPT duty cycle to drive
the power MOSFET SW1 of the boost converter, thus tracking the MPP.
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converter and embeds the proposed control strategy.

Table 4. The specification of the boost converter and the MCU.

Parameter Specification

MCU Microchip, model number: 18F4520
L1 of the boost converter 0.5 mH
C1 of the boost converter 330 µF

4. Experiment Results

The prototype of the solar photovoltaic system used in this study is displayed in
Figure 12. The specification of this experimental setup is shown in Table 5. In this study, the
proposed SLOPDM control strategy, SAH, and P&O algorithms have been experimentally
implemented under both the UIC and PIC with the irradiance level (IL) of 700 W/m2 and
65 W/m2. A comparative analysis of these control strategies has also been performed to
demonstrate the effectiveness of the proposed control strategy. The experiment results
verify that the efficiency of the proposed SLOPDM algorithm is higher than that of the SAH
and P&O algorithms.

Table 5. Specifications of the experimental setup.

Equipment/Components Specification

Solar photovoltaic simulator Chroma, model number: 62020H
Computer ASUS, model number: X515E

Scope Tektronix, model number: DPO 2014B

Power supply Gwinstek, model number: GPS−4303Wanptek,
model number: NPS306W

Load Ro 70 Ω and 450 Ω
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4.1. Experimental Results under Uniform Irradiance Condition

Figure 13 displays the gate−source voltage of the power MOSFET (vgs), output voltage
(Vo), output current (Io), and output power (Po) waveforms of the boost converter under the
test condition having IL = 700 W/m2, the temperature = 25 ◦C obtained by implementing
certain control strategies. Figure 14 shows the Pspv−Vspv characteristic curve of the SPVM
at IL = 700 W/m2 and the temperature = 25 ◦C obtained using certain control strategies.

Figure 13a displays the experimental results of the proposed SLOPDM MPPT control
strategy. Figure 13b,c are the results of the SAH and P&O algorithms, respectively. First,
Rspv and Ro were calculated using Vspv, Ispv, Vo, and Io measurements of 21.2 Ω and 70 Ω,
respectively. Second, angle θ1 and MPPT duty cycle D were estimated using Equation (8)
and Figure 9, which are 1.4◦ and 0.43, respectively. The proposed SLOPDM control strategy
produced the duty cycle D = 0.43, Vo = 140 V, and VMPP = 80.6 V (from Equation (3)) for the
SPPS and the actuating point accurately operate at MPP Pmpp = 305 W at t = ta as demon-
strated in Figure 14a. The SAH algorithm’s actuating point operating at MPP Pmpp = 305 W
is shown in Figure 14b, whereas the P&O algorithm’s actuating point operating at MPP
Pmpp = 305 W is depicted in Figure 14c.

Figure 15 demonstrates the waveforms of the gate−source voltage of the power
MOSFET (vgs), output voltage (Vo), output current (Io), and output power (Po) of the boost
converter at IL = 65 W/m2 and temperature = 25 ◦C by implementing certain control
strategies. Figure 16 shows the Pspv−Vspv characteristic curve of the SPVM at IL = 65 W/m2

and temperature = 25 ◦C obtained using certain control strategies.
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Figure 13. The waveforms of vgs, Vo, Io, and Po under UIC with IL = 700 W/m2 and
temperature = 25 ◦C by implementing the control strategy (a) SLOPDM, (b) SAH, and (c) P&O
algorithms. (Horizontal axis: 2 s/div).



Processes 2022, 10, 1452 14 of 23

Processes 2022, 10, x FOR PEER REVIEW 13 of 23 
 

 

 
(c) 

Figure 13. The waveforms of vgs, Vo, Io, and Po under UIC with IL = 700 W/m2 and temperature = 25 
°C by implementing the control strategy (a) SLOPDM, (b) SAH, and (c) P&O algorithms. (Horizon-
tal axis: 2 s/div). 

 
(a) 

 
(b) 

Processes 2022, 10, x FOR PEER REVIEW 14 of 23 
 

 

 
(c) 

Figure 14. Pspv−Vspv characteristic curve of SPVM under UIC at IL = 700 W/m2 and temperature = 25 
°C by using the control strategy (a) SLOPDM, (b) SAH, and (c) P&O algorithms. 

Figure 13a displays the experimental results of the proposed SLOPDM MPPT control 
strategy. Figure 13b,c are the results of the SAH and P&O algorithms, respectively. First, 
Rspv and Ro were calculated using Vspv, Ispv, Vo, and Io measurements of 21.2 Ω and 70 Ω, 
respectively. Second, angle θ1 and MPPT duty cycle D were estimated using Equation (8) 
and Figure 9, which are 1.4° and 0.43, respectively. The proposed SLOPDM control strat-
egy produced the duty cycle D = 0.43, Vo = 140 V, and VMPP = 80.6 V (from Equation (3)) for 
the SPPS and the actuating point accurately operate at MPP Pmpp = 305 W at t = ta as demon-
strated in Figure 14a. The SAH algorithm’s actuating point operating at MPP Pmpp = 305 W 
is shown in Figure 14b, whereas the P&O algorithm’s actuating point operating at MPP 
Pmpp = 305 W is depicted in Figure 14c. 

Figure 15 demonstrates the waveforms of the gate−source voltage of the power 
MOSFET (vgs), output voltage (Vo), output current (Io), and output power (Po) of the boost 
converter at IL = 65 W/m2 and temperature = 25 °C by implementing certain control strat-
egies. Figure 16 shows the Pspv−Vspv characteristic curve of the SPVM at IL = 65 W/m2 and 
temperature = 25 °C obtained using certain control strategies. 

 
(a) 

Figure 14. Pspv−Vspv characteristic curve of SPVM under UIC at IL = 700 W/m2 and
temperature = 25 ◦C by using the control strategy (a) SLOPDM, (b) SAH, and (c) P&O algorithms.



Processes 2022, 10, 1452 15 of 23

Processes 2022, 10, x FOR PEER REVIEW 14 of 23 
 

 

 
(c) 

Figure 14. Pspv−Vspv characteristic curve of SPVM under UIC at IL = 700 W/m2 and temperature = 25 
°C by using the control strategy (a) SLOPDM, (b) SAH, and (c) P&O algorithms. 

Figure 13a displays the experimental results of the proposed SLOPDM MPPT control 
strategy. Figure 13b,c are the results of the SAH and P&O algorithms, respectively. First, 
Rspv and Ro were calculated using Vspv, Ispv, Vo, and Io measurements of 21.2 Ω and 70 Ω, 
respectively. Second, angle θ1 and MPPT duty cycle D were estimated using Equation (8) 
and Figure 9, which are 1.4° and 0.43, respectively. The proposed SLOPDM control strat-
egy produced the duty cycle D = 0.43, Vo = 140 V, and VMPP = 80.6 V (from Equation (3)) for 
the SPPS and the actuating point accurately operate at MPP Pmpp = 305 W at t = ta as demon-
strated in Figure 14a. The SAH algorithm’s actuating point operating at MPP Pmpp = 305 W 
is shown in Figure 14b, whereas the P&O algorithm’s actuating point operating at MPP 
Pmpp = 305 W is depicted in Figure 14c. 

Figure 15 demonstrates the waveforms of the gate−source voltage of the power 
MOSFET (vgs), output voltage (Vo), output current (Io), and output power (Po) of the boost 
converter at IL = 65 W/m2 and temperature = 25 °C by implementing certain control strat-
egies. Figure 16 shows the Pspv−Vspv characteristic curve of the SPVM at IL = 65 W/m2 and 
temperature = 25 °C obtained using certain control strategies. 

 
(a) 

Processes 2022, 10, x FOR PEER REVIEW 15 of 23 
 

 

 
(b) 

 
(c) 
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Figure 15. The waveforms of vgs, Vo, Io, and Po under UIC at IL = 65 W/m2 and temperature = 25 ◦C
by implementing the control strategy (a) SLOPDM, (b) SAH, and (c) P&O algorithms. (Horizontal
axis: 2 s/div).
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Figure 15a displays the experimental results of the proposed SLOPDM MPPT control
strategy. Figure 15b,c are the results of the SAH and P&O algorithms, respectively. First,
Rspv and Ro were calculated using Vspv, Ispv, Vo, and Io measurements of 213.8 Ω and 450 Ω,
respectively. Second, angle θ1 and MPPT duty cycle D were estimated using Equation (8)
and Figure 9, which are 2.47◦ and 0.28, respectively. The proposed SLOPDM control strategy
produced the duty cycle D = 0.28, Vo = 105 V, and VMPP = 75.7 V (from Equation (3)) for
the SPPS and the actuating point accurately operate at MPP Pmpp = 26.6 W at t = ta as
demonstrated in Figure 16a. The SAH algorithm’s actuating point operates the same as
the proposed method at MPP Pmpp = 26.6 W at t = ta while the actuating point moves away
from the MPP at t = tb, and the power drops to Pmpp = 24.5 W, as shown in Figure 16b. This
is because the SAH algorithm performs poorly under the low irradiance level condition
(LILC). In Figure 16c, the P&O algorithm’s actuating point operated unstably until t = tb.
When t = tc, the actuating point becomes unstable again. The MPP captured by the P&O
algorithm Pmpp is 12.5 W, as depicted in Figure 16c. The reason is that the P&O algorithm
cannot efficiently track MPP with perturbation characteristics under the LILC.

The above results are organized in Table 6, which shows the comparison of proposed
SLOPDM, SAH, and P&O algorithms under UIC. The proposed SLOPDM algorithm can
reach 99% efficiency at the IL = 700 W/m2 and 65 W/m2, which is higher than the efficiency
of SAH and P&O algorithms.

Table 6. The comparison of proposed SLOPDM, SAH, and P&O algorithms under UIC.

Algorithm Efficiency
IL = 700 W/m2 IL = 65 W/m2

SAH 99% 91%
P&O 99% 47%

SLOPDM 99% 99%

4.2. Experimental Results under the Partial Shading Conditions

Figure 17a shows the solar photovoltaic simulator simulating two SPVMs connected
in series when the IL is 700 W/m2, and the temperature is 25 ◦C. A single SPVM includes
32 SPVCs (8 × 4). Two SPVMs connected in series have 64 SPVCs (8 × 8), 15 of which
are shaded. Under this condition, the SPVMs have Isc = 4.7 A, Voc = 90 V, Vmpp = 47.2 V,
Impp = 4.25 A, and Pmpp = 200.6 W. Figure 17b shows that the solar photovoltaic simulator
simulating two SPVMs connected in series when the IL is 65 W/m2 and temperature = 25 ◦C.
A single SPVM includes 32 SPVCs (8 × 4). Two SPVMs are connected in series, having
64 SPVCs (8× 8), 30 of which are shaded. Under this condition, the SPVMs have Isc = 0.68 A,
Voc = 57 V, Vmpp = 17.5 V, Impp = 0.628 A, and Pmpp = 11 W.

Figure 18 displays the Pspv−Vspv characteristic curve of the SPVM under PSC at
IL = 700 W/m2 and temperature = 25 ◦C. Figure 18a displays the experimental results of
the proposed SLOPDM MPPT control strategy. The angle θ1 and MPPT duty cycle D were
estimated using Equation (8) and Figure 9. The actuating point is accurately operated
at MPP Pmpp = 200 W. Figure 18b,c are the results of the SAH and the P&O algorithms,
respectively. The SAH algorithm’s actuating point operated at Pmpp = 190 W due to its
ability to operate around MPP under PSC. The P&O algorithm’s actuating point operated
at Pmpp = 105 W, which shows that the P&O algorithm is unsuitable under PSC. This is
because the actuating point of the P&O algorithm tracks the MPP with the perturbation
characteristic, which is suitable to operate on a Pspv−Vspv characteristic curve with only
one MPP (as in the case of UIC). However, Pspv−Vspv characteristic curve has multiple peak
power points under PSC, and the P&O algorithm actuating point will not be able to judge
the MPP immediately and produce low power [22].
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Figure 19 demonstrate the Pspv−Vspv curve of the SPVM under PSC at IL = 65 W/m2

and temperature = 25 ◦C. Figure 19a displays the experimental results of the proposed
SLOPDM MPPT control strategy. First, uses the Vspv, Ispv, Vo, and Io measurements. Second,
angle θ1 and MPPT duty cycle D were estimated using Equation (8) and Figure 9. The
actuating point is accurately operated at MPP Pmpp = 10.9 W like Figure 18a. Figure 19b,c are
the results of the SAH and P&O algorithms, respectively. The SAH algorithm’s actuating
point operated at Pmpp = 10.3 W like Figure 18b. The P&O algorithm’s actuating point
operated at Pmpp = 3.9 W like Figure 18c.
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The above results are organized in Table 7, which shows the comparison of proposed
SLOPDM, SAH, and P&O algorithms under PSC. The proposed SLOPDM algorithm can
reach 99% efficiency under the IL of 700 W/m2 and 65 W/m2, whose efficiency is higher
than that of the SAH and P&O algorithms.

Table 7. The comparison of proposed SLOPDM, SAH, and P&O algorithms under PSC.

Algorithm Efficiency
IL = 700 W/m2 IL = 65 W/m2

SAH 95% 94%
P&O 52% 35%

SLOPDM 99% 99%

5. Conclusions

This research developed a novel SLOPDM MPPT control strategy for SPPS. The es-
timation of the optical path angle difference is used as the basis for the proposed control
strategy. This is done by determining the relationship between the optical path angle
difference, solar photovoltaic power impedance Rspv and load Ro, and then calculating the
duty cycle corresponding to the MPP, which then drives the boost converter to capture the
MPP. The proposed method can easily and rapidly achieve MPP. In this study, the experi-
mental verification is carried out under both the UIC and PSC. The proposed SLOPDM
algorithm performance is 99% under UIC, which is higher than that of the SAH and P&O
algorithms. In addition, the proposed SLOPDM algorithm reached 99% under PSC with the
irradiance level of 700 W/m2 and 65 W/m2, while the SAH algorithm efficiencies are 95%
and 94%, and the P&O algorithm efficiencies are 52% and 35%, respectively. Under PSC,
the proposed SLOPDM algorithm performed far better than the SAH and P&O algorithms.
Finally, this novel control strategy does not need to change the hardware circuit design and
requires any additional solar power meter. This reduces the cost and the complexity of the
system significantly.

Future work can test and verify the proposed SLOPDM MPPT algorithm with multiple
sets of SPPS. Furthermore, the related parameters can be modified to make it a faster MPPT
control strategy, evaluate the period, and state that SPPS does not have to use MPPT, further
improving SPPS efficiency.
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