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Abstract: The use of multiphase electric drives in industrial applications has increased in the last
few years. These machines’ advantages over the three-phase system make them appropriate for
harsh working situations. To increase their inherent reliability, some authors have been working in
sensorless control schemes, where the absence of an encoder ensures proper system performance.
Nevertheless, these sensorless control systems present some problems due to the uncertainties of the
parameters. In this regard, using extended Kalman filters overcomes this situation, since Kalman
filters consider the system error and measurement error in the estimation process. However, when
the three-phase Kalman filters are extended to the five-phase case of study, the complexity of the
problem increases substantially. In this work, the authors propose an extended Kalman filter, which
discomposes the original state equation, reducing the complexity of the estimation stage. In addition,
the system suppresses the third-harmonic injection, which enhances the overall phase-current quality.

Keywords: five-phase induction motor; extended Kalman filter; speed sensorless control;
parameter identification

1. Introduction

Induction motors are widely used in wind power generation, train traction, the auto-
motive industry, ship propulsion, and other fields because of their low maintenance cost,
good dynamic response, better speed–torque characteristics, and higher efficiency [1–4].
With the development of power electronics technology, the electrical system has overcome
the restriction of power supply phase numbers. The increase in phase number also brings
many advantages to the motor drive system. Compared with the traditional three-phase
motor, the five-phase motor has lower phase voltage, smaller torque ripple, and higher
reliability under the same power [5,6]. Nowadays, the multiphase motor possesses the
trend of gradually replacing the traditional three-phase motor.

Speed closed-loop control is indispensable in high-performance vector control of
induction motors. Generally, speed sensors, such as photoelectric encoders, are coaxially
connected with the motor to observe the speed. In harsh working environments, speed
sensors are prone to failure. In order to realize the accurate control of speed without speed
sensors, speed sensorless vector control has become an important subject in the field of
AC drive. The traditional speed sensorless vector control method for induction motors
uses stator current and voltage to estimate rotor flux linkage and slip [7]. In addition,
model-based speed sensorless induction motor drive technology, which combines the state
equation of the induction motor with the signal injection method, is also considered to be
a good method to achieve speed sensorless control [8]. These control methods based on
signal injection can realize speed sensorless control, but they have high complexity and
poor adaptability to the drive system [9]. Traditional speed sensorless control still has some
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problems due to the uncertainty of the parameters during the operation of the motor. In
order to overcome these uncertainties, several methods based on model estimation, such
as a model reference adaptive system, full-order observer, extended Luenberger observer,
sliding mode observer, and the extended Kalman filter, have become the main research
focuses [10–13]. Different from the deterministic method used in observer designs in model
reference adaptive system technology, the extended Kalman filter takes the system error
and measurement error into account in the estimation process. The ability to adjust the
Kalman filter according to the noise characteristics of measurement and initial disturbance
highlights the advantages of the stochastic method over the deterministic method [14,15].

Different from the three-phase induction motor, the vector control of the five-phase
induction motor with centralized winding should consider both the fundamental space and
the third-harmonic space, and it generally adopts the control method of third-harmonic
current suppression [16]. Therefore, when designing an EKF observer, the order of the state
equation of the five-phase induction motor is higher than that of the three-phase induction
motor. Considering the difference in the state equation of the five-phase induction motor,
if the fundamental space and the third-harmonic state-space variables of the five-phase
induction motor are controlled at the same time, the state equation of the system will reach
the ninth order [17]. If other state variables are introduced, it will be higher and increase
the complexity of the system. Therefore, a double EKF structure is proposed in this paper,
which can decompose the original ninth-order state equation into a fourth-order and a
fifth-order state equation when the third-harmonic current is small. The EKF observer
based on this structure can simultaneously observe the rotor angular velocity, fundamental
space rotor flux linkage, and third-harmonic space rotor flux linkage.

The rest of this paper is structured as follows: in Section 2, the linear and discrete state
equations of the fundamental spatial components of the five-phase squirrel cage induction
motor are derived; Section 3 introduces the EKF algorithm and the double EKF structure;
then, the results of speed prediction and flux linkage prediction are discussed in Section 4;
finally, Section 5 summarizes the research of this paper.

2. Linear, Discrete State-Space Model for Five-Phase Squirrel Cage Induction Motors

Similarly to the three-phase induction motor, the five-phase induction motor can also
transform the five-phase voltage and current into the two-phase stationary coordinate
system and the two-phase synchronous rotating coordinate system through coordinate
transformation. The Clark conversion formula from the five-phase rotating coordinate
system to the two-phase stationary coordinate system can be written as [18]:
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The Park conversion equation from a two-phase stationary coordinate system to a
two-phase simultaneous rotational coordinate system can be written as [19]:[
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where x is voltage, current, or flux linkage. The fundamental space-stator current and rotor
flux linkage in the two-phase stationary coordinate system are selected as state variables,
and the corresponding state equations are as follows [20]:

disα1
dt = L2

r Rs+L2
mRr

Lr(L2
m−Ls Lr)

isα1 − LmRr
Lr(L2

m−Ls Lr)
ψrα1 − Lmωr

(L2
m−Ls Lr)

ψrβ1 − Lr
(L2

m−Ls Lr)
usa1

disβ1
dt = L2

r Rs+L2
mRr

Lr(L2
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isβ1 +
Lmωr

Lr(L2
m−Ls Lr)

ψrα1 − LmRr
(L2

m−Ls Lr)
ψrβ1 − Lr

(L2
m−Ls Lr)

usβ1
dψrα1

dt = LmRr
Lr

isα1 − Rr
Lr

ψrα1 −ωrψrβ1
dψrβ1

dt = LmRr
Lr

isβ1 + ωrψrα1 − Rr
Lr

ψrβ1

(3)

where Lm, Ls, and Lr are the equivalent mutual inductance, stator-side equivalent self-
inductance, and rotor-side equivalent self-inductance, respectively, whose values are
2.5 times the mutual inductance, stator-side self-inductance, and rotor-side self-inductance
in the fundamental space of the five-phase squirrel cage induction motor.

The dynamic state-space model of the fundamental space of the five-phase induction
motor has four state variables. In order to realize vector control without a speed sensor,
the rotor angular velocity is added as a state variable so that the expanded-order system
equations of the five-phase induction motor are obtained. Since the Kalman filter algorithm
is applicable to linear systems, the digitalization of the algorithm requires the discretization
of the algorithm, while the state-space equations of the five-phase squirrel cage induction
motor are nonlinear and continuous. Therefore, the state-space equations of the five-phase
motor should be linearized and discretized. Consider the linear system shown in Figure 1,
whose state and measurement equations can be written as:

dx(t)
dt = f [x(t)] + Bu(t) + w(t)

y(t) = h[x(t)] + v(t)
(4)
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Figure 1. Linear system block diagram.

The Taylor expansion of Equation (4) at x̂(t), retaining the constant and primary terms
and rounding off the higher terms, yields:

dx(t)
dt = f [x̂(t)] + ∂ f [x(t)]

∂x(t) |x(t)=x̂(t)∆x + Bu(t) + w(t)

y(t) = h[x̂(t)] + ∂h[x(t)]
∂x(t) |x(t)=x̂(t)∆x + v(t)

(5)

where ∆x = x(t)− x̂(t). w(t) and v(t) represent system noise and measurement noise,
respectively, which are Gaussian white noise with the average expectation of 0.

The linearized state equation is discretized, and assuming that the sampling period Ts
is sufficiently small, the following approximation can be made at the moment k:

dxk
dt
≈ xk − xk−1

Ts
(6)

From Equation (4) to (6), the state equations of the discretized five-phase induction
motor base-wave space linear system can be obtained as:{

xk = xk−1 + [Akxk−1 + Bu]Ts + wk−1
yk = Hxk + vk

(7)
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where:
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x =
[
isα1 isβ1 ψrα1 ψrβ1 ωr

]T ; y =
[
isα1 isβ1

]T ; u =
[
usα1 usβ1

]T

R′ = L2
r Rs+L2

mRr
Ls L2

r
; L′ = Lm

σLs Lr
; σ = 1− L2

m
Ls Lr

is the magnetic flux leakage coefficient and

Tr = Lr
Rr

is the rotor time constant. Define the system noise matrix w(k) as a 5 × 1 or-
der matrix, and the covariance matrix Q = cov(w) = E

{
w, wT} as a 5 × 5 order ma-

trix. The measurement noise v(k) is a matrix of order 2 × 1, and its covariance matrix
R = cov(v) = E

{
v, vT} is a matrix of order 2 × 2.

3. Extended Kalman Filtering Algorithm

The application of the extended Kalman filter in the state estimation of the five-phase
induction motor is shown in Figure 2. The red dotted box is the prediction part of the
extended Kalman filter algorithm, and the blue dotted box is derived from the state-space
equation of the motor. The function of the prediction part is to cause the error between the
estimated value and the real value to be close to zero through a large number of calculations,
so as to achieve the purpose of real-time tracking.
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Figure 2. EKF observer.

Assuming that the state estimate x̂k−1 at the moment k − 1 is a known quantity, the
calculation steps of the extended Kalman filter can be written as follows:

A priori prediction step: the state estimate at moment k is predicted based on
the state estimate at moment k − 1, which is called a priori estimation and has the
following expression: {

x̂k|k−1 = x̂k−1|k−1 +
(

Ak|k−1 + Bkuk

)
Ts

ŷk|k−1 = Hkx̂k|k−1
(8)
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Calculate the predicted covariance matrix:

Pk|k−1 = Fk|k−1Pk−1|k−1FT
k|k−1 + Q (9)

where:

F = I + TsA =


1− TsR′

σ 0 Ts L′s
Tr

TsL′ωr TsL′ψrβ1

0 1− TsR′
σ −TsL′ωr

Ts L′
Tr

−TsL′ψrα1
Ts Lm

Tr
0 1− Ts

Tr
−Tsωr −Tsψrβ1

0 Ts Lm
Tr

Tsωr 1− Ts
Tr

Tsψrα1
0 0 0 0 1

;

Calculate the Kalman gain Kk|k−1:

Kk|k−1 = Pk|k−1HT
(

HPk|k−1HT + R
)−1

(10)

A posteriori correction step: The optimal solution obtained x̂k|k from the gain Kk|k−1
calculated by Equation (6) is called the posterior value, and its expression is as follows:

x̂k|k = x̂k|k−1 + Kk|k−1

(
yk − ŷk|k−1

)
(11)

Calculate the covariance matrix Pk|k for the next moment:

Pk|k =
(

I−Kk|k−1H
)

Pk|k−1 (12)

If the fundamental magnetic chain, the third-harmonic magnetic chain, and the rotor
angular velocity are to be observed simultaneously, the equation of state of the system as a
whole is a matrix of order 9, and a general microcontroller or DSP cannot handle such a
huge amount of data. In fact, after suppressing the current in the third-harmonic space,
its electromagnetic torque generated in the third-harmonic space can be approximated
as 0, and the effect on the rotor angular velocity can be negligible. Based on this, two
EKF observers are used to observe the fundamental magnetic chain, the third-harmonic
magnetic chain, and the rotor angular velocity. The first EKF observer is used to observe
the fundamental magnetic chain and rotor angular velocity, and the second EKF observer is
used to observe the third-harmonic magnetic chain. The predicted rotor angular velocity of
the first EKF observer is used as the input to the second EKF observer, which is structured
as follows.

As shown in Figure 3, EKF1 observes the rotor magnetic chain in the fundamental
space and the rotor angular velocity, and EKF2 observes the rotor magnetic chain in the
third-harmonic space. The equation of state in the third-harmonic space can be written as:

disα3
dt =

L2
r3Rs+L2

m3Rr3
Lr3(L2

m3−Ls3Lr3)
isα − Lm3Rr3

Lr3(L2
m3−Ls3Lr3)

ψrα − 3Lm3ωr
(L2

m3−Ls3Lr3)
ψrβ − Lr3

(L2
m3−Ls3Lr3)

usa3

disβ3
dt =

L2
r3Rs+L2

m3Rr3
Lr3(L2

m3−Ls3Lr3)
isβ3 +

3Lm3ωr
Lr3(L2

m3−Ls3Lr3)
ψrα3 − Lm3Rr3

(L2
m3−Ls3Lr3)

ψrβ − Lr3
(L2

m3−Ls3Lr3)
usβ3

dψrα3
dt = Lm3Rr3

Lr3
isα3 − Rr3

Lr3
ψrα3 − 3ωrψrβ3

dψrβ3
dt = Lm3Rr3

Lr3
isβ3 + 3ωrψrα3 − Rr3

Lr3
ψrβ3

(13)

where ψ̂rα1 and ψ̂rβ1 are the predicted flux linkage in the fundamental space in the two-
phase stationary coordinate system. ω̂r is the predicted angular velocity. ψ̂rα3 and ψ̂rβ3
are the predicted flux linkage of the third-harmonic space in the two-phase stationary
coordinate system.
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Similarly, the equation of state in the third-harmonic space after linearizing and
discretizing Equation (13) can be written as:{

xk
′ = xk−1

′ + [Ak
′xk−1

′ + B′u′]Ts + wk−1
′

yk
′ = H′xk

′ + vk
′ (14)

where:

A′ =


− R3

′

σ3
0 3L3

′

Tr3
L3
′ωr

0 − R3
′

σ3
−L3

′ωr
3L3
′

Tr3
Lm3
Tr3

0 − 1
Tr3

−3ωr

0 Lm3
Tr3

3ωr − 1
Tr3

; B′ =


1

σ3Ls3
0

0 1
σ3Ls3

0 0
0 0

; H′ =
[

1 0 0 0
0 1 0 0

]
;

x′ =
[
isα3 isβ3 ψrα3 ψrβ3

]T ; y′ =
[
isα3 isβ3

]T ; u′ =
[
usα3 usβ3

]T ;

R3
′ =

L2
r3Rs+L2

m3Rr3
Ls3L2

r3
; L3

′ = Lm3
σ3Ls3Lr3

; σ3 = 1− L2
m3

Ls3Lr3
is the magnetic flux leakage coeffi-

cient of the third-harmonic space, and Tr3 = Lr3
Rr3

is the torque constant of the third-harmonic
space. Define the system noise matrix w(k)′ as a 4 × 4 order matrix and the covariance
matrix Q′ = cov(w′) = E

{
w′, w′T

}
as a 4 × 1 order matrix. The measurement noise v(k)′

is a matrix of order 2 × 1 and its covariance matrix R′ = cov(v′) = E
{

v′, v′T
}

is a matrix
of order 2 × 2.

The initial parameter settings of the EKF observer are critical, especially the initial
values of the system noise matrix Q, the measurement noise covariance matrix R, and the
prediction covariance matrix P. The selection of these initial parameters directly determines
the overall performance of the algorithm, and the improper selection of initial values can
lead to scattering of the whole system.

For the system noise covariance matrix Q, it mainly includes the system external dis-
turbances, motor parameter variation effects, and errors in the linearization discretization
process. If Q becomes larger, it means that the system noise becomes stronger, indicating
that the weighting effect of the measurement feedback is enhanced, and the EKF transient
response becomes faster [21].

For the measurement noise covariance matrix R, it mainly includes the actual sensor
measurement error, microcontroller sampling error, and other factors. If R is increased, it
corresponds to a larger deviation in the current measurement, weakening the weight of the
algorithm’s predicted value, which will lead to a slower transient response [21].

For the error covariance matrix P, its initial state is generally chosen to be a diagonal
array with all elements equal, which has a large effect on the convergence rate of the EKF
and the amplitude of the transient state, with little effect on the steady state [22].
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The selection of these matrices is related to the parameters of the motor body and is
generally obtained using a trial-and-error approach. After a large number of trial-and-error
values, the initial values were taken as follows:

Q = diag[0.5 , 0.5 , 5× 10−5 , 5× 10−5 , 5× 10−3]
R = diag[0.05 , 0.05]
P = diag[1 , 1 , 1 , 1 , 1]
Q′ = diag[0.5 , 0.5 , 5× 10−5 , 5× 10−5]
R′ = diag[0.05 , 0.05]
P′ = diag[1 , 1 , 1 , 1]

In the EKF speed sensorless control system, SVPWM modulation is used [23].The
control strategy is IRFOC (indirect field-oriented control) [24,25]. The five-phase inverter is
an H-bridge structure, and the overall flow chart is shown in Figure 4.
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The current voltage conversion module includes two PI controllers, which use the
difference between the measured current and the reference current. The PI controller
estimates the voltage necessary to minimize this current difference. For the fundamental
space, the current given signals i*sd1 and i*sq1 are calculated from the given torque signal
T*

em1 and the given flux signal ψ*
r1, respectively. The given torque signal is derived from

the predicted speed and the error signal of the given speed through a PI controller. For
the third-harmonic space, the given current signals i*sd3 and i*sq3 are set to 0 to achieve the
effect of restraining the third-harmonic current.
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4. Results and Discussion

In order to verify the effectiveness of the EKF algorithm in the control of a five-phase
motor without a speed sensor, a simulation model of it was built in Matlab/Simulink in
this study, and the EKF speed sensorless vector control system shown in Figure 4 was
established. Among them, the motor parameters used were as seen in Table 1, and its
modeling in Simulink is shown in Figure 5.

Table 1. Motor parameters.

Parameter Symbol Value

Stator resistance Rs 0.95 Ω
Fundamental space rotor resistance Rr1 0.78 Ω

Third-harmonic space rotor resistance Rr3 0.52 Ω
Fundamental space spatial mutual inductance Lm1 99.35 mH

Third-harmonic space mutual inductance Lm3 11.04 mH
Fundamental space-stator leakage inductance Lsloss1 6.87 mH
Fundamental space rotor leakage inductance Lrloss1 4.04 mH

Third-harmonic space stator leakage inductance Lsloss3 3.86 mH
Third-harmonic space rotor leakage inductance Lrloss3 3.76 mH

Magnetic pole pairs np 2
Rotational inertia J 0.056 kg·m2

Rated speed nN 1410 rpm
Rated voltage UN 380 V

Rated frequency fN 50 Hz
Rated field current Ism 3.86 A
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The model is mainly divided into five modules: coordinate transformation modules,
voltage–magnetic chain modules, magnetic chain–current modules, current–electromagnetic
torque modules, and electromagnetic torque-speed modules. The coordinate transfor-
mation module is based on the five-phase Clark transformation matrix and its inverse
transform matrix. The five-phase voltage is decoupled to the fundamental space and three-
harmonic space of the αβ coordinate system, and then the transformation is converted them
into the ABCDE five-phase voltage. In the voltage–magnetic chain module, the magnetic
chain is calculated using the input voltage, current, and motor resistance. The magnetic
chain–current module uses the inductive matrix and each phase magnetic chain to obtain
the current. The torque–speed module mainly calculates motor rotor rotation speed.

4.1. Speed Prediction under Different Working Conditions

In order to verify whether the EKF algorithm can replace the traditional speed sensor,
first, the feedback value of the speed loop was changed to the real speed of the motor. Here,
EKF was used as an observer. The whole system adopted indirect field-oriented control
structure. At that time, the comparison between the predicted speed of the EKF algorithm
and the speed of indirect field vector control with a speed sensor is shown in Figure 6.
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As shown in Figure 6, different from the vector control, the EKF algorithm introduced
an error matrix in the iterative operation process, so the pulsation of speed waveform
given by the EKF algorithm was larger than the real speed of IRFOC. Under the rated
working condition, the EKF algorithm was accurate in observing the change in the rotating
speed. Therefore, the EKF algorithm can replace the traditional speed sensor. Based on this
premise, the structure of Figure 4 was adopted in the subsequent simulation, and the speed
predicted by EKF was directly substituted into the speed closed-loop.

To verify the speed tracking performance of the algorithm, four working conditions
shown in Table 2 were selected for simulation:

Table 2. Different working conditions.

Working Condition Rotor Angular Speed Setting Load Torque Setting

1 0~4 s:100 rad/s 0~4 s:0 N·m
2 0~4 s:100 rad/s 0~4 s:6 N·m

3 0~1.5 s:60 rad/s1.5~3 s:90
rad/s3~4 s:30 rad/s 0~4 s:0 N·m

4 0~1.5 s:100 rad/s1.5~4 s:−100
rad/s 0~4 s:0 N·m
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The four working conditions in Table 2 were used to test the speed prediction perfor-
mance of the EKF algorithm under no-load, on load, acceleration and deceleration, and
forward and reverse rotation. It can be seen from Figure 7 that the EKF algorithm had a
good speed prediction performance under these four working conditions. It can be seen
from Figure 7a that, when the speed reached the given speed, there was a steady-state error
of about 0.5 rad/s between the EKF algorithm and the actual speed. It can be seen from
Figure 7b–d that, when the given speed changed suddenly or the load was added, a small
error occurred between the predicted speed and the real speed, and then the predicted
speed quickly converged to the actual speed. This showed that the overall robustness of
the system was good, and it can be applied to the conditions requiring a wide range of
speed regulation.
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4.2. Rotor Flux Identifications

The rated field current of the motor used in this simulation was 3.86 A, so the rated
fundamental space given flux linkage can be calculated as 0.96 Wb from Equation (15). In
order to verify the flux linkage prediction ability of the EKF algorithm, the simulation was
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conducted by changing the field current to 50%, 64%, 84%, and 100% of the rated field
current under condition 1 in Table 2.

ψre f = 2.5IsmLm1 (15)

Similarly, according to formula (15), when the field current was 50%, 64%, and 84% of
the rated value, the corresponding fundamental space given flux linkage was 0.48 Wb, 0.61
Wb, and 0.81 Wb. For the third-harmonic spatial flux linkage, its given value is always 0,
so its predicted flux linkage was also about 0.

It can be seen from Figure 8 that the EKF algorithm could accurately predict the
change in rotor flux linkage in the fundamental space in a steady state. Table 3 lists the
predicted values and error values in four cases. It can be seen that the prediction error
of flux linkage accounted for about 10% of the given value. In addition, the estimated
value of the flux linkage fluctuated slightly in the steady state. This is because the rotor
position angle in the IRFOC method estimated the position of the magnetic flux relative
to the stator by integrating the slip frequency and the actual rotor angular speed. In the
simulation experiment, the predicted rotor angular velocity was used instead of the actual
rotor angular velocity. However, there was a small error between the predicted speed and
the actual speed. Therefore, the calculated rotor position angular velocity also deviated
from the reality, resulting in a small pulsation of the flux linkage in the steady state.
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Table 3. Prediction error of fundamental space rotor flux linkage.

Working Condition (Flux Linkage Amplitude) Predicted Flux Linkage Value Error Value

50% of rated field current (0.48 Wb) 0.54 Wb 0.06 Wb
64% of rated field current (0.61 Wb) 0.68 Wb 0.07 Wb
84% of rated field current (0.81 Wb) 0.89 Wb 0.08 Wb

Rated field current (0.96 Wb) 1.06 Wb 0.10 Wb

It can be seen from Figure 9 that the predicted flux linkage of the third-harmonic in
four cases was about 0, which also indicated that the third-harmonic current was effectively
suppressed when the field current was changed.
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4.3. Third-Harmonic Current Suppression Effect

Figures 10 and 11 show the stator current waveform and the stator third-harmonic
current waveform under condition 1 in Table 2. It can be seen from Figure 10 that the overall
sinusoidal degree of the stator current was good, and its FFT analysis is shown in Figure 12.
According to Figure 12, when the given speed was 100 rad/s, the corresponding stator
current frequency was 31.83 Hz, and the THD of the stator current was 8.58%, indicating
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that the third-harmonic current had been effectively suppressed. It can be seen from
Figure 10 that most of the third-harmonic currents were distributed below the amplitude of
0.6 A in the steady state.
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5. Conclusions

In this study, the EKF algorithm was extended to the parameter identification of the
five-phase squirrel cage induction motor, and the theoretical part was derived in detail.
On the premise of restraining the third-harmonic current of the motor, a new double EKF
structure was proposed, which simplified the state equation of the system. The simulation
results showed that the EKF algorithm was accurate in predicting the rotor angular speed,
and the algorithm was suitable for the sensorless control of the five-phase squirrel cage
induction motor, which needs a wide range of speed regulation. The EKF algorithm could
observe the rotor flux linkage, but there was an error between the predicted value and the
given value, which was about 10% of the given value. In view of the shortcomings of this
paper, the follow-up research direction could be to reduce the order of the state equation of
the whole system without the third-harmonic current suppression.

Author Contributions: Data curation, X.L. and J.Z.; Methodology, X.L.; Resources, H.C. and S.Z.;
Software, H.X.; Writing—original draft, X.L.; Writing—review and editing, Y.X. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: Thanks to J.Z. for providing guidance on the data analysis of this article, Y.X.,
H.X., H.C. and S.Z. for revising and sorting this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Benbouhenni, H.; Bizon, N. A Synergetic Sliding Mode Controller Applied to Direct Field-Oriented Control of Induction

Generator-Based Variable Speed Dual-Rotor Wind Turbines. Energies 2021, 14, 4437. [CrossRef]
2. De Pancorbo, S.M.; Ugalde, G.; Poza, J.; Egea, A. Comparative Study between Induction Motor and Synchronous Reluctance

Motor for Electrical Railway Traction Applications. In Proceedings of the 5th International Electric Drives Production Conference
(EDPC), Nuremberg, Germany, 15–16 September 2015.

3. Gnacinski, P.; Tarasiuk, T.; Mindykowski, J.; Peplinski, M.; Gorniak, M.; Hallmann, D.; Pillat, A. Power Quality and Energy-
Efficient Operation of Marine Induction Motors. IEEE Access 2020, 8, 152193–152203. [CrossRef]

4. Yang, Z.; Shang, F.; Brown, I.P.; Krishnamurthy, M. Comparative Study of Interior Permanent Magnet, Induction, and Switched
Reluctance Motor Drives for EV and HEV Applications. IEEE Trans. Transp. Electrif. 2015, 1, 245–254. [CrossRef]

5. Pandey, R.; Panda, A.K.; Patnaik, N. Comparative Performance Analysis of DTC fed Three-Phase and Five-Phase Induction Motor.
In Proceedings of the 5th International Conference on Devices, Circuits and Systems (ICDCS), Coimbatore, India, 5–6 March 2020;
pp. 162–166.

6. Sarwer, Z.; Sartaj, M.; Khan, M.R.; Zaid, M.; Shahajhani, U. Comparative Performance Study of Five-Phase Induction Motor.
In Proceedings of the IEEE International Conference on Innovations in Power and Advanced Computing Technologies, Vellore,
India, 22–23 March 2019.

7. Holtz, J. Sensorless control of induction motor drives. Proc. IEEE 2002, 90, 1359–1394. [CrossRef]
8. Piippo, A.; Salomaki, J.; Luomi, J. Signal injection in sensorless PMSM drives equipped with inverter output filter. IEEE Trans. Ind.

Appl. 2008, 44, 1614–1620. [CrossRef]
9. Shivaramakrishna, K.V.; Chauhan, A.K.; Raghuram, M.; Singh, S.K. Sensorless Control of Induction Motor using EKF:Analysis of

Parameter Variation on EKF Performance. In Proceedings of the IEEE International Conference on Power Electronics, Drives, and
Energy Systems (PEDES), Trivandrum, India, 14–17 December 2016.

10. Accetta, A.; Cirrincione, M.; Pucci, M.; Vitale, G. Neural Sensorless Control of Linear Induction Motors by a Full-Order Luenberger
Observer Considering the End Effects. IEEE Trans. Ind. Appl. 2014, 50, 1891–1904. [CrossRef]

11. Comanescu, M. Design and Implementation of a Highly Robust Sensorless Sliding Mode Observer for the Flux Magnitude of the
Induction Motor. IEEE Trans. Energy Convers. 2016, 31, 656–664. [CrossRef]

12. Korzonek, M.; Tarchala, G.; Orlowska-Kowalska, T. A review on MRAS-type speed estimators for reliable and efficient induction
motor drives. ISA Trans. 2019, 93, 1–13. [CrossRef] [PubMed]

13. Salim, R.; Mansouri, A.; Bendiabdellah, A.; Chekroun, S.; Touam, M. Sensorless passivity based control for induction motor via
an adaptive observer. ISA Trans. 2019, 84, 118–127. [CrossRef] [PubMed]

http://doi.org/10.3390/en14154437
http://doi.org/10.1109/ACCESS.2020.3017133
http://doi.org/10.1109/TTE.2015.2470092
http://doi.org/10.1109/JPROC.2002.800726
http://doi.org/10.1109/TIA.2008.2002274
http://doi.org/10.1109/TIA.2013.2288429
http://doi.org/10.1109/TEC.2016.2516951
http://doi.org/10.1016/j.isatra.2019.03.022
http://www.ncbi.nlm.nih.gov/pubmed/30987804
http://doi.org/10.1016/j.isatra.2018.10.002
http://www.ncbi.nlm.nih.gov/pubmed/30318364


Processes 2022, 10, 1440 15 of 15

14. Barut, M.; Bogosyan, S.; Gokasan, M. Speed-sensorless estimation for induction motors using extended Kalman filters. IEEE
Trans. Ind. Electron. 2007, 54, 272–280. [CrossRef]

15. Shi, K.L.; Chan, T.F.; Wong, Y.K.; Ho, S.L. Speed estimation of an induction motor drive using an optimized extended Kalman
filter. IEEE Trans. Ind. Electron. 2002, 49, 124–133. [CrossRef]

16. Feng, Y.X.; Liao, Y.; Zhang, X.K. A Third Harmonic Current Elimination Strategy for Symmetrical Six-Phase Permanent Magnet
Synchronous Motor. IEEE Access 2021, 9, 167570–167579. [CrossRef]

17. Bounasla, N.; Barkat, S.; Benyoussef, E.; Tounsi, K. Sensorless Sliding Mode Control of a Five-Phase PMSM using Extended
Kalman Filter. In Proceedings of the 8th International Conference on Modelling, Identification and Control (ICMIC), Algiers,
Algeria, 15–17 November 2016; pp. 97–102.

18. Parsa, L.; Toliyat, H.A. Five-phase permanent-magnet motor drives. IEEE Trans. Ind. Appl. 2005, 41, 30–37. [CrossRef]
19. González, O.; Rodas, J.; Gregor, R.; Ayala, M.; Rivera, M. Speed sensorless predictive current control of a five-phase induction

machine. In Proceedings of the 2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA), Siem Reap,
Cambodia, 18–20 June 2017; pp. 343–348.

20. Wen-Jieh, W.; Chun-Chieh, W. A rotor-flux-observer-based composite adaptive speed controller for an induction motor. IEEE
Trans. Energy Convers. 1997, 12, 323–329. [CrossRef]

21. Bolognani, S.; Tubiana, L.; Zigliotto, M. Extended Kalman filter tuning in sensorless PMSM drives. IEEE Trans. Ind. Appl. 2003, 39,
1741–1747. [CrossRef]

22. Janiszewski, D. Extended kalman filter based speed sensorless PMSM control with load reconstruction. In Proceedings of the
32nd Annual Conference of the IEEE-Industrial-Electronics-Society, Paris, France, 7–10 November 2006; pp. 4186–4189.

23. Zheng, L.; Fletcher, J.E.; Williams, B.W.; He, X. Dual-Plane Vector Control of a Five-Phase Induction Machine for an Improved
Flux Pattern. IEEE Trans. Ind. Electron. 2008, 55, 1996–2005. [CrossRef]

24. Abbasi, H.; Ghanbari, M.; Ebrahimi, R.; Jannati, M. IRFOC of Induction Motor Drives Under Open-Phase Fault Using Balanced
and Unbalanced Transformation Matrices. IEEE Trans. Ind. Electron. 2021, 68, 9160–9173. [CrossRef]

25. Consoli, A.; Scarcella, G.; Testa, A. Slip frequency detection for indirect field oriented control drives. IEEE Trans. Ind. Appl. 2004,
40, 194–201. [CrossRef]

http://doi.org/10.1109/TIE.2006.885123
http://doi.org/10.1109/41.982256
http://doi.org/10.1109/ACCESS.2021.3136596
http://doi.org/10.1109/TIA.2004.841021
http://doi.org/10.1109/60.638868
http://doi.org/10.1109/TIA.2003.818991
http://doi.org/10.1109/TIE.2008.918464
http://doi.org/10.1109/TIE.2020.3026278
http://doi.org/10.1109/TIA.2003.821804

	Introduction 
	Linear, Discrete State-Space Model for Five-Phase Squirrel Cage Induction Motors 
	Extended Kalman Filtering Algorithm 
	Results and Discussion 
	Speed Prediction under Different Working Conditions 
	Rotor Flux Identifications 
	Third-Harmonic Current Suppression Effect 

	Conclusions 
	References

