
Citation: Laciak, M.; Kačur, J.;
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Abstract: In the steel production process in the LD converter, it is important to have information
about the melt temperature. The temperature and chemical composition of the steel are important
parameters in this process in terms of its completion. During the process, continuous measurement of
the melt temperature and thus also information about the end of the process are missing. This paper
describes three approaches to creating a mathematical model of melt temperature. The first approach
is a regression model, which predicts an immeasurable melt temperature based on other directly
measured process variables. The second approach to creating a mathematical model is based on the
machine learning method. Simple and efficient learning algorithms characterize the machine learning
methods. We used support vector regression (SVR) method and the adaptive neuro-fuzzy inference
system (ANFIS) to create a mathematical model of the melt temperature. The third approach is the
deterministic approach, which is based on the decomposition of the process and its heat balance.
The mathematical models that were compiled based on the mentioned approaches were verified and
compared to real process data.

Keywords: steelmaking process; LD converter; mathematical model; temperature; machine learning
methods

1. Introduction

Steel production is a metallurgical process of obtaining steel from iron with a lower
carbon content than pig iron alloys. The steelmaking process takes place in technological
equipment called a converter. The converter is part of a complex technological process
of steel production. At the beginning of the process is the pig iron production in a blast
furnace. Then, the pig iron is transported from the blast furnace in mixers to an out-of-
furnace desulphurization plant to reduce the percentage of sulfur in the pig iron. The pig
iron treated in this way continues to the steel plant, where it forms one of the important
inputs for steel production in the converter. Other inputs are steel scrap and slag-forming
additives to form converter slag (see Figure 1). From the point of view of the quality of
produced steel, it is very important to reach the steel’s required chemical composition
and the steel’s temperature at the end of the melt. These variables are not measured
during the process (i.e., continuously) but only at the end of the melt. Mathematical
methods and models are widely applicable for calculating measured process variables in
various technological processes. These models are based on different approaches to their
creation, e.g., Li et al. [1] proposed a new cyclone oxygen lance for the steelmaking process.
The physical model and various hydrodynamic and mathematical methods were used to
optimize the structure of the new oxygen lance.
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Figure 1. The LD converter.

One of the approaches for modeling steelmaking process variables is based on the
thermodynamical principle. Wu et al. in [2] describe a model based on a thermodynamic
equilibrium for an online prediction of the steel temperature in converters. This model
is based on composition values of gas exhaust provided by a gas analyzer. The steel
temperature is predicted by using this analysis and calculating the ratio of CO and CO2
in the converter gas. The results showed stability in the steel temperature calculation.
The authors of [3] present a mathematical model for estimating metal phases and slag
composition at blow proceeds in an LD converter. It was assumed that oxidation reactions
are taking place at the interface between metal phases and the slag in the emulsion. These
reactions are modeled using Gibbs’ free energy minimization in this interface (i.e., between
metal and slag). Qualitatively good results were reached, which confirmed the need for
further development of the proposed model. The modeling of the Vanadium extraction
process in a basic oxygen furnace is described by Zhou and Luo [4]. These authors proposed
a three-part dynamic model based on the Gibbs’ free energy minimization on the slag-metal
interface to study the effects of oxygen flow rate and coolant addition. The simulation
results confirmed that the lack of coolant would reduce (FeO) content and elevate the
molten bath temperature, and the excessive oxygen flow rate has little effect on the residual.
A model for predicting flux dissolution in the oxygen steelmaking process was described
by Kadrolkar et al. [5]. This model consists of the kinetic model for lime dissolution
and thermodynamic models. The proposed kinetic model was considered a function of
temperature and slag composition. The behavior of lime dissolution was successfully
predicted using the proposed model regardless of the thermodynamic model type selected.
It has been shown that for predicting the dissolution rate of lime in slag, it is necessary
to consider the free lime-controlled mechanism. Oxygen converter is the subject of the
research described by Jalkanen [6]. This research shows the use of a simulator, CONSIM 5,
as a substitute for a static model of the oxygen converter process. The simulation results
showed the necessity to create submodels for description interconnection between the
sub-phenomena (i.e., post-combustion, scrap melting, etc.) and the process’s main physical
and technological characteristics. Furthermore, taking into account a fluid flow modeling
and a mathematical model for the mass transfer of minor iron melt constituents to the
oxidation environments is also necessary.

The next group of mathematical models is based on material and heat balance. A
mathematical model for the improvement of the end-point control of a basic oxygen furnace
(BOF) was proposed by the authors of [7]. Material and heat balance dynamic equations
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are combined with the exhaust gas information in this model. The results showed that
the quantity of oxygen needed for decarburization and consumed on the cavity surface of
molten steel could be determined from the composition and flow rate of the gas exhausted
and the quantity of oxygen and submaterials charged into BOF. Subsequently, the steel bath
temperature can be calculated using the reaction theory model. Kumar et al. [8] proposed
a model for predicting hot metal and slag composition at the BOF operation. This model
consisted of a multi-zone kinetic model linked with a dynamic slag generation model.
The three reaction zones, i.e., slag-bulk metal zone, jet impact zone, and slag-metal-gas
emulsion zone, were considered for the overall refining kinetics calculation. The results
obtained from a 200-ton top blowing converter showed good agreement between simulated
values of metal and slag and measured data, and it was found that the post-combustion
ratio is an essential factor in controlling FeO content in the slag. Dering et al. [9] describe a
dynamical mathematical model to reach the economically optimal basic oxygen furnaces
operation (i.e., BOFs). This model extends the work of Dogan et al. [10] and adds the
model for slag formation, the energy balances model, the submodel for the decarburization
in the emulsion zone and an algebraic equation for the calculation of the calcium oxide
saturation in slag. The verification of the proposed model was realized on 71 melts in
a real BOF. The end-point carbon content was predicted with a precision of ±0.03% (for
80% melts), and the end-point temperature was predicted with a precision of ±30 ◦C (for
61% melts). Understanding the influence of control variables (i.e., blown oxygen amount
and lance height) is essential to control and optimize the basic oxygen steelmaking process.
The modeling of this process is possible because the steel and slag composition cannot
be measured continuously. Kattenbelt and Roffel [11] proposed a dynamic model for the
main blow. This model is based on iron oxide and a carbon balance connected with the
decarburization rate equation dependent on the lance height and the oxygen blowing rate.
It was found that an increase in the decarburization rate is dependent on an increase in
the iron ore addition rate, the oxygen blowing rate, and a decrease in lance height. The
review analysis of the steelmaking process is described in [12]. This analysis is based on
physical and mathematical modeling involving liquid–liquid mass transfer at the bottom
gas injection. It has been found that the mass transfer coefficient is affected primarily
by the gas flow rate, the injection method of this gas, the surfactants concentration, slag
emulsification, etc. Furthermore, in [13], the authors describe a mathematical model of
the converter process in the form of the material and heat balance. The proposed model
considers the processes of slag formation, metal batch formation, converter gas formation,
and blowing oxygen consumption. The results confirmed the use of the proposed model
for the steel temperature calculation, determining the slag additives, determining the
minimum volume of the blown oxygen, etc. The mathematical model for modeling carbon
concentration was described in [14]. This model is based on the carbon’s material balance in
input (i.e., the pig iron and scrap) and output (i.e., carbon in CO and CO2 concentration of
converter gas) materials. The proposed model mostly showed lower carbon concentration
values than the measured values. There was a difference in the range of ±0.06 at 90.71% of
melts, ±0.04 at 82.14% of melts, and ±0.02 at 63.57% of melts. The mathematical model
based on the heat balance for the melt temperature determination was proposed in [15].
The rate of the melt temperature change was determined using rates of melting lime and
scrap and the removal rate of unwanted elements. The temperature deviation up to 24 ◦C
was reached at 61% of the melts.

Nowadays, machine learning and neural networks methods are increasingly used
for the prediction process variables. Meradi et al. [16] proposed a model in the form of
neural networks for steel temperature prediction in an LD converter. A conventional
model was used to charge calculation. The presented neural networks model was based on
11 input process variables (i.e., Mn cast iron, weight scrap, weight limestone, wear of lining
refractory, etc.) and steel temperature as the output variable. The mean absolute error
reached 8 ◦C for neural networks and 30 ◦C for the conventional technique. Gu et al. [17]
described a dynamic model of the carbon content prediction for the steelmaking process. A
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long short-term memory (LSTM) model was used for this prediction. It has been found that
the prediction accuracies were 25% in the (−0.005, 0.005) range, 54% in the (−0.010, 0.010)
range, 71% in the (−0.015, 0.015) range, and 91% in the (−0.020, 0.020) range. The paper [18]
describes three alternatives for hot steel temperature determination: time-series forecasting,
infrared thermometry, and machine learning prediction. Machine learning technique based
on multivariate adaptive regression splines (MARS) for hot metal temperature forecasting
reached an accuracy close to that of IR thermometry but with much higher applicability
(87% vs. 40%). Furthermore, there was achieved 100% applicability by the combination
of measuring and modeling techniques at an error reduction of 7 ◦C. Andreiana et al. [19]
optimized the steelmaking process using self-learning machine learning, a concretely Q-
Learning algorithm. This algorithm was used as the core of a decision support system (i.e.,
DSS). The algorithm recommended the same actions as the operator 69.23% of the time
and a better option within 30.76% of the remaining time. In the paper [20], the authors of
the present article described methods for estimating melt temperature and carbon content
during the oxygen steelmaking process by using a non-contact soft-sensing based on the
support vector regression (SVR). It has been found that the selection of adequate pairs,
i.e., xt and yt (i.e., the observations and monitored targets), was the most serious problem
in training the SVR model. A more realistic course was achieved by SVM regression with a
polynomial kernel.

Mathematical models of the steelmaking process are also important from the point of
view of process control and optimization. The dynamic control system that supports the
control of the converter using a computer has been described by Takemura et al. [21]. For the
target carbon content and steel temperature, these models were established: decarburizing
rate model, temperature rising rate model, and control coolant evaluation model. The
described control system is determined to control by conformance to decarburizing rate and
temperature growing rate patterns. It has led to improved quality, steelmaking capacity,
unit consumption rate, yield, etc. The model for the steelmaking process’s end-point
prediction based on identifying the relative decarburization rate without measuring the
waste gas flow was described in [22].

2. Materials and Methods
2.1. Regression Model of the Melt Temperature

Regression analysis examines the functional relationship (course of dependence), ac-
cording to which the dependent variable Y changes with changes of independent quantities
x1, x2, . . . xk. We estimate the course of the dependence with suitable functions.

Yo = f
(

x1, x2, . . . , xk, b1, b2, . . . , bp, ε
)
, (1)

where b1, b2, . . . bp are the parameters of the regression function and ε is the random deviation.
The task of regression analysis is to find a functional relationship according to which

the dependent variable Y changes with the change of independent variables xi (suitable
regression function). At the same time, it is necessary to estimate the parameters of the
regression function (b1, b2, . . . bp). The regression approach to creating models for indirect
measurement of temperature is based on measured process data, on the basis of which we
can compile suitable regression models.

Estimates of the parameters of the regression function can be determined using
the least-squares method, which is based on Gauss’s multiple-verified principle: “The
sum of the squares of the differences between the actual and theoretical values is the
smallest possible”.

F =
n

∑
k=1

(Yi −Yo
i )

2 → MIN (2)

F =
n

∑
k=1

(
Yi − f (x 1, x2, . . . , xk, b1, b2, . . . , bp

))2. (3)
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By minimizing the deviation F, we get a system of Equations from which we can
calculate the vector of model parameters bi [15,23].

∂F
∂bi

= 0 i = 1, 2, . . . p. (4)

In the proposal for the melt temperature regression model, we consider that the
independent variables are measured variables from the converter gas analysis at the process
outlet (Figure 2) and the process control variables. These variables are measured during
the process and include:

- the concentration of CO in converter gas (%),
- the concentration of CO2 in converter gas (%),
- the concentration of H2 in converter gas (%),
- the concentration of O2 in converter gas (%),
- the volume flow of converter gas (m3/hour),
- the pressure of converter gas (Pa)
- the lance height (cm),
- the volume flow of oxygen (Nm3/min).

Figure 2. Scheme of the regression model.

Three variants of regression models were proposed to verify the regression model,
which differs in structure. The structure of the proposed melt temperature regression
models is as follows:

Model RM1:

Tmelt(k + 1) = b0 + b1.Tcg(k) + b2.CO(k) + b3.CO2(k)++b4.H2(k) + b5.Tmelt(k); (5)

Model RM2:

Tmelt(k + 1) = b0 + b1.Tcg(k) + b2.CO(k) + b3.CO2(k)++b4.H2(k) + b5.Tmelt(k) + b6.Pgran(k) + b7.VO2(k); (6)

Model RM3:

Tmelt(k + 1) = b0 + b1.Tcg(k) + b2.kkCO(k) + b3.kkCO2(k)++b4.H2(k) + b5.Tmelt(k) + b6.Pgran(k) + b7.VO2(k), (7)

where bi are parameters of model, k is time step, Tmelt is melt temperature (◦C), Tcg is the
temperature of converter gas (◦C), CO is the concentration of CO in converter gas (%), CO2
is the concentration of CO2 in converter gas (%), H2 is the concentration of H2 in converter
gas (%), Pgran is the pressure of converter gas on entry to the granivor (Pa), VO2 is the
cumulative amount of blown oxygen (m3), kkCO is the cumulative concentration of CO in
converter gas (%), kkCO2 is cumulative concentration CO2 in converter gas (%).

The regression model predicts the melt temperature during melting based on directly
measured process variables. Each time step calculates the melt temperature based on the
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measured variables from the previous time step. Figure 3 shows the behavior of %CO and
cumulative %CO in converter gas

Figure 3. The behavior of %CO and cumulative %CO (kk_CO) in converter gas.

2.2. Deterministic Model of the Melt Temperature

Creating a complex deterministic model for the steelmaking process in the converter
is a relatively demanding process, while the accuracy of the model depends mainly on the
number of parameters that need to be determined. In this approach for the proposal of the
melt temperature model, two models were created:

• Deterministic model with feedback;
• Simplified deterministic model without feedback.

In the deterministic model with feedback, we assume that the converter gas flow and
its composition are measured, which simplifies the description of the individual sub-models.
The concentrations of the individual metal impurities (% C, % Si, % Mn, % P) are calculated
based on the composition of the converter gas. In the second type of deterministic model
without feedback, these concentrations are calculated by approximation at known initial
values (concentrations of components in pig iron) and final or required values. These
concentrations form one of the inputs to the model. Figure 4 shows the schematic scheme
of both deterministic models.

Figure 4. The principle scheme of deterministic models (a) model with feedback, (b) model
without feedback.
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2.2.1. The Modeled Processes of Steelmaking

The steelmaking process in the converter is a complex heterogeneous batch process
with continuous oxygen input. When creating a deterministic model, we proceed from
certain simplifications of selected processes, which represent:

• Scrap melting process;
• The decomposition process of slag-forming additives;
• The process of oxidation of elements C, Si, Fe, Mn, P in the melt and others.

Scrap melting process
The process of melting scrap is an important process in terms of heat balance, respec-

tively, for melt temperature calculation. The description of this process is based on the heat
balance and the carbon balance at the interface of scrap and molten metal, which is given
by the following Equations:

htc(Tme − Tsci) =
λsc

∆x
(Tsci − Tsc) + ∆Hsc

(
−dWsc

dτ

)
(8)

Sscρsckx(Cme − Csci) = (Cme − Csc)

(
−dWsc

dτ

)
, (9)

where Tme, Tsc are the temperature of melt and scrap (◦C), Tsci is the temperature on the
interference melt-scrap (◦C), Cme, Csc are the concentration of carbon in melt and scrap
(kg/kg), Csci is the concentration of carbon on the interference melt-scrap (kg/kg), Wsc
is the weight of scrap (kg), ∆Hsc is the latent heat of scrap melting (kJ/kg), htc is heat
transfer coefficient (W/m2/K), λsc is the thermal conductivity of scrap (W/m/K), kx is
mass transfer coefficient (m/s), Ssc is scrap surface (m2), ρsc is scrap density (kg/m3) [7,24].

From Equations (8) and (9) it is possible to calculate the melting rate of scrap and,
subsequently, from the rate of the amount of molten scrap. The molten scrap must be
assigned to the melt (liquid metal), which requires a recalculation of the composition, the
weight of the liquid metal, and also the calculation of the physical heat increment of the
scrap according to Equation (10).

dQ f yzSr = dMSrCpSrTSr, (10)

where dMSr is the decline of molten scrap (kg), CpSr is the specific heat capacity of scrap
(J/kg/K), TSr is scrap temperature (K).

The decomposition process of slag-forming additives
The decomposition process of slag-forming additives is based on the decomposition

of calcium carbonate.

CaCO3(s)→ CaO(s) + CO2(g) + ∆HCaCO3. (11)

The carbonate decomposition process only starts if the partial pressure of carbon
dioxide in the gas surrounding the carbonate is less than the decomposition pressure. The
following Equations give the decomposition pressure peq and the chemical reaction rate kch.

peq = peq0e−
Eeq0

T (12)

kch = kD
(

peq − pCO2

)
, (13)

where pCO2 is partial pressure CO2 on the surface

kD = kD0e−
ED0

T . (14)

Based on Equations (12) and (14), we can write Equation (13) in the form of Equation (15).
Due to porosity, the resulting velocity is mainly affected by temperature, CO2 partial



Processes 2022, 10, 1378 8 of 19

pressure, and increased total surface area. The surface magnification is modeled as the ratio
of the pore surface (Spor) to the geometric surface of the particle (Sgeom) [25].

kch = kD peq − kD pCO2

Spor

Sgeom
. (15)

With respect to the previous equations, it is possible to calculate the decomposition
rate of slag-forming additives and subsequently recalculate the amount of decomposed
additives from the decomposition rate of slag-forming additives. The components of the
decomposed additives must be assigned to the molten metal and slag, which requires
recalculation of the composition, the weight of the liquid metal and the slag, and it is also
necessary to calculate the physical heat gain of the slag-forming additives dQfyzTp according
to Equation (16).

dQ f yzTp = dMTpCpTpTTp, (16)

where dMTp is the decline of slag-forming additives (kg), CpTp is the specific heat capacity of
slag-forming additives (J/kg/K) and TTp is the temperature of slag-forming additives (K).

In addition to the physical heat, it is also necessary to consider the heat required for
the decomposition of calcium carbonate Equation (17).

dQrozVa = dMTpxCO2 ∆HCaCO3 , (17)

where xCO2 is the proportion by weight of additives attributable to CO2 from limestone
(kg/kg) and ∆HCaCO3 is the thermal enthalpy of limestone decomposition (J/kg).

In the case of limestone decomposition, CaO is formed, which in the case of the avail-
able components SiO2 and P2O5 can react in the slag according to the following Reactions.

2CaO + SiO2 → 2CaO.SiO2 + ∆H2CaO.SiO2 (18)

4CaO + P2O5 → 4CaO. P2O5 + ∆H4CaO.P2 O5 . (19)

The heat that arises from the formation of slag is given by the Equation (20).

dQtvoTr = dMSiO2 ∆H2CaO.SiO2 + dMP2O5 ∆H4CaO.P2O5 . (20)

The process of oxidation of elements
The process of oxidation of the elements C, Si, Fe, Mn, and P is described by the

following chemical Reactions (21)–(25). The description of the processes is based on
the assumption of the known amount and composition of blown oxygen (N2, O2) and
the amount and composition (CO, CO2, O2) of the converter gas. Flow rates (VCOex,
VCO2ex and VO2ex) are calculated for the converter gas, which is determined by the
product of the measured waste gas flow and the concentration of the respective component,
e.g., VCOex = Vwg. xCOex, where Vwg = Vwg.Kwg. The Kwg coefficient is evaluated at the
end of each smelting as the ratio of carbon fed in pig iron and scrap to carbon in the form
of CO and CO2. This coefficient allows realizing a mass balance in the correct form.

C + 1/2O2 → CO + ∆HCO (21)

Si + O2 → SiO2 + ∆HSiO2 (22)

Fe + 1/2O2 → FeO + ∆HFeO (23)

Mn + 1/2O2 →MnO + ∆HMnO (24)

P + 5/4O2 → 1/2P2O5 + ∆HP2 O5 (25)

The air intake flow Vair is given by Equation (26).

Vair =
(
VN2ex −VN2bl

)
/xN2air, (26)
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where VN2 ex is the flow of N2 in converter gas (m3/s), VN2 bl is the flow of N2 in blow
oxygen (m3/s), xN2 air is the concentration of N2 in the air (m3/m3).

We also consider the formation of CO2 from the reaction between CO from the reaction
zone and O2 from the intake air VCO2 s Equation (27). The CO2 flow from the VCO2 f reaction
zone can be calculated by Equation (28).

VCO2s = 2
(
VairxO2air −VO2ex

)
(27)

VCO2 f = VCO2ex −VCO2s, (28)

where VO2 ex, VCO2 ex is the flow O2 and CO2 in converter gas (m3/s).
The oxygen loss flow VO2 loss is given by (29) and the effective oxygen flow VO2 eff by

Equation (30).

VO2loss =
VCO2 f

2
(29)

VO2e f f = VO2 −VO2loss. (30)

The flow of CO from the reaction zone Equation (31) is given by the flow of CO and
CO2 in the converter gas reduced by CO from the slag-forming additives, and the flow of
oxygen VO2 dec for decarbonization is given by Equation (32).

VCOcav = VCOex + VCO2ex −VCOsub (31)

VO2dec =
VCOcav

2
. (32)

The ratio of the volume of oxygen to decarbonization to the total volume of effective
oxygen represents the proportion of oxygen used to oxidize the carbon Equation (33). The
contribution of oxygen to the oxidation reactions of other elements is based on the rate of
the respective oxidation reaction and the concentration of oxidized elements Equation (34).

σC =
VO2dec

VO2e f f
(33)

σi =
kiCim

∑j k jCjm
(1− σC), (34)

where i, j = Si, Fe, Mn, P; ki is the rate constant of the oxidation reaction of the i-th element,
Cim is the concentration of the i-th element in the melt (kg/kg).

The amount and composition of metal and slag are then calculated based on the
distribution of oxygen between the individual oxidation reactions [7].

In terms of heat, it is necessary to calculate the amount of heat from exothermic
oxidation reactions Equation (35) as well as the physical heat of the intake air Equation (36)
and blown oxygen Equation (37).

QexoRe = dMC∆HCO + dMSi∆HSiO2 + dMFe∆HFeO + dMMn∆HMnO + dMP∆HP2O5 (35)

dQ f yzVz = VairCp,airTair (36)

dQ f yzOx = VoxCp,oxTox, (37)

where Vair, Vox is the flow rate of intake air and blown oxygen (m3/s), Cp,air, Cp,ox is the
specific heat capacity of intake air and blown oxygen (J/m3/K), Tair, Tox is the temperature
of intake air and blown oxygen (K).
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2.2.2. The Heat Balance

The heat balance of the steelmaking process is based on the heat supplied Qpri, which
is given by the Equation (38).

Qpri = QsurFe + QexoRe + QtvoTr + Q f yzSr + Q f yzOx + Q f yzTp + Q f yzVz, (38)

where QsurFe is the physical and latent heat of the input pig iron (J), QexoRe is the heat from
exothermic oxidation reactions of elements C, Si, Fe, Mn, P (J), QtvoTr is the heat from slag
formation reactions (in creation 2CaO.SiO2 and 4CaO.P2O5) (J), QfyzSr is the physical heat
of the input steel scrap (J), QfyzOx is the physical heat of the blown oxygen (J), QfyzTp is the
physical heat of the input slag-forming additives (J), QfyzVz is the physical heat of the
intake air (J).

In the case of the heat consumed Qspo, we consider the following items.

Qspo = Q f yzMe + Q f yzTr + QrozVa + Q f yzKP + Q f yzPr + Qstr, (39)

where QfyzMe is the physical and latent heat of the liquid metal (J), QfyzTr is the physical and
latent heat of slag (J), QrozVa is the heat needed to decompose the limestone (J), QfyzKP is the
physical heat of the converter gas (J), QfyzPr is physical heat of dust in converter gas (J), Qstr
is another heat losses (J).

In the case of heat balance, i.e., equality of heat supplied and heat consumed, we can
calculate the melt temperature by Equation (40).

Tmelt =
Qpri −Q f yzTr −QrozVa −Q f yzKP −Q f yzPr −Qstr −Mme

(
Tme,sl

(
cpme,s − cpme,l

)
+ Qme,sl

)
Mmecpme,l

, (40)

where Mme is the weight of melt (kg), Tme,sl is metal melting temperature (K), cpme,s is the
specific heat capacity of solid metal (J/kg/K), cpme,l is the specific heat capacity of liquid
metal (J/kg/K).

According to the previous relations, we can express all items of the heat balance and
then calculate the temperature of the melt. In order to be able to implement the heat balance
correctly, we need to express the heat losses Qstr, so we need to know the share of heat
input to other unspecified losses. For this reason, three linear regression models have
been proposed to calculate the heat loss coefficient (koefQstraty). The heat loss coefficient is
calculated at the beginning of the smelting based on the input parameters, which are pig
iron’s weight and temperature, and steel scrap’s weight Equations (41)–(43).

koe fQstraty = a0 + a1Tsuze (41)

koe fQstraty = a0 + a1Tsuze + a2msrot (42)

koe fQstraty = a0 + a1Tsuze + a2msrot + a3msuze. (43)

2.3. Machine Learning Model of the Melt Temperature

Another potential approach to creating a mathematical model for indirect measure-
ment of the melt temperature in the converter is the machine learning methods.

Machine learning methods are a subset of soft computing, which deals with the recog-
nition of so-called patterns (in terms of input-output relationship) that are observable in the
examined system. Machine learning theories and algorithms fall into the artificial intelli-
gence (AI) category. Machine learning algorithms can predict the system’s future behavior
based on the model created from the samples of the training set of input observations.
In principle, it is a computer model based on a regression function and a large matrix of
optimized α support vectors (i.e., non-zero Lagrange multipliers). The model predicts on
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the basis of a regression Equation (44), where it is possible to set different types of kernel
functions (e.g., polynomial, Gaussian, exponential, and others).

f (x) = ∑l
i=1(αi − α∗i )k(xi, x ) + b. (44)

If we consider a regression with one output variable, then the observation of the
investigated object can be written as a sequence of pairs (x1, y1), . . . , (xi, yi), . . . , (xl , yl),
xi ∈ Rn, yi ∈ R.

There are a number of methods and techniques in machine learning. As part of the
verification of the Machine learning methodology for predicting the melt temperature, we
decided to apply two methods:

• Support vector regression (SVR);
• Adaptive neuro-fuzzy inference system (ANFIS).

2.3.1. Support Vector Regression

Support vector regression (SVR) models are used for data prediction and classification.
The basic idea is to map data to high-dimensional space through nonlinear mapping and
perform linear regression in that space [26]. This mapping can be written mathematically
by Equation (45).

f (x) = (ω ·Φ(x)) + b where Φ(x) : Rn →F , ω ∈F (45)

Vector xi represents one sample of input observations xi = (xi1, xi2, . . . , xin). In our
case, it can be one line from the process data of the melt. Parameter b represents the limit
value or so-called threshold. So linear regression in high-dimensional space corresponds to
nonlinear regression in low-dimensional input space Rn. Because Φ(x) is a fixed parameter
ω we determine from the data by minimizing the amount of empirical risk Remp[ f ] and
complexity term ‖ω‖2, which forces flatness in space F . The mathematical notation of the
optimization problem to be minimized has the form Equation (46).

Rreg[ f ] = Remp[ f ] + λ‖ω‖2 = ∑l
i=1 C( f (xi)− yi) + λ‖ω‖2, (46)

where l is the number of samples (x1, x2, . . . , xl), C is the cost function, λ is the regularization
constant. For a large set of cost functions, Equation (46) can be minimized by solving the
quadratic programming problem [26]. Vectorω can be written in terms of data points as
follows:

ω = ∑l
i=1(αi − α∗i )Φ(xi), (47)

where αi, α∗i are the solution to the quadratic programming problem.
Parameters αi, α∗i have an intuitive interpretation as coating or suppression forces

f (xi) to measure yi. We can rewrite the problem as a scalar product in a low-dimensional
input space [27].

f (x) = ∑l
i=1(αi − α∗i )(Φ(xi) � Φ(x)) + b = ∑l

i=1(αi − α∗i )k(xi, x ) + b. (48)

2.3.2. Adaptive Neuro-Fuzzy Inference System

An adaptive neuro-fuzzy inference system or adaptive network-based fuzzy inference
system (ANFIS) is a kind of artificial neural network that is based on the Takagi–Sugeno
fuzzy inference system. The technique was developed in the early 1990s [28,29]. Since it
integrates both neural networks and fuzzy logic principles, it has the potential to capture
the benefits of both in a single framework. Its inference system corresponds to a set of fuzzy
IF–THEN rules that have the learning capability to approximate nonlinear functions [30].
Hence, ANFIS is considered to be a universal estimator. For using the ANFIS in a more effi-
cient and optimal way, one can use the best parameters obtained by a genetic algorithm [31].
It has uses in intelligent situational aware energy management systems [32].



Processes 2022, 10, 1378 12 of 19

It is possible to identify two parts in the network structure, namely the premise and
consequence parts. In more detail, the architecture is composed of five layers (Figure 5) [33].
The first layer takes the input values and determines the membership functions belonging
to them. It is commonly called the fuzzification layer. The membership degrees of each
function are computed by using the premise parameter set, namely {a,b,c}. The second
layer is responsible for generating the firing strengths for the rules. Due to its task, the
second layer is denoted as “rule layer”. The role of the third layer is to normalize the
computed firing strengths, by dividing each value by the total firing strength. The fourth
layer takes as input the normalized values and the consequence parameter set {p,q,r}. The
values returned by this layer are the defuzzification ones, and those values are passed to
the last layer to return the final output [34].

Figure 5. Adaptive neuro-fuzzy inference system (ANFIS) [33].

The first layer of an ANFIS network describes the difference to a vanilla neural network.
In general, neural networks operate with a data preprocessing step, in which the features
are converted into normalized values between 0 and 1. An ANFIS neural network doesn’t
need a sigmoid function but does the preprocessing step by converting numeric values into
fuzzy ones [35].

Here is an example: suppose the network gets as input the distance between two
points in the 2nd space. The distance is measured in pixels, and it can have values from
0 up to 500 pixels. Converting the numerical values into fuzzy numbers is performed
with the membership function, which consists of semantic descriptions like near, middle,
and far. Each possible linguistic value is given by an individual neuron. If the distance is
located within the category “near”, the neuron “near” fires with a value from 0 until 1, if
the distance is located within the category “near”. While the neuron “middle” fires, if the
distance is in that category. The input value “distance in pixels” is split into three different
neurons for near, middle, and far.

3. Results

The proposed models for indirect measurement of the melt temperature in the con-
verter were verified on the basis of data from real melts (process). The results of the models
are presented in terms of absolute Equation (49) and relative deviation Equation (50).

∆Tabs = abs
(

Tmod(τend)− Tmeas(τend)
)

(49)

∆Trel =
abs

(
Tmod(τend)− Tmeas(τend)

)
Tmeas(τend)

.100, (50)

where Tmod(τend) is the model melt temperature Tmeas(τend) is measured melt temperature
at the end of melting.
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3.1. Results of the Regression Model

Within the regression approach, three regression Models (5)–(7) were proposed, the
results of which are shown in Table 1. The parameters of model bi were calculated from
data from other melts and were verified on a sample of data from 10 melts. In the first row
of the table melt temperature (Tmeas) is measured at the end of the process for each melt.
The next rows of the table show the model temperature for each model (RM1–RM3) and
the models’ calculated absolute and relative deviation.

Table 1. The results of the three regression models.

No. Melt 1 2 3 4 5 6 7 8 9 10

Tmeas (◦C) 1655 1648 1702 1647 1656 1642 1657 1668 1665 1688

RM1
Tmod (◦C) 1651 1662 1713 1681 1688 1646 1681 1732 1680 1723

∆Tabs (◦C) 4.0 14.4 11.2 33.6 31.9 3.8 24.3 64.0 15.2 35.2
∆Trel (%) 0.24 0.87 0.66 2.04 1.93 0.23 1.47 3.84 0.91 2.08

RM2
Tmod (◦C) 1646 1671 1709 1648 1659 1632 1652 1688 1689 1706

∆Tabs (◦C) 9.3 22.7 6.6 1.1 3.1 9.9 4.5 19.9 23.8 18.0
∆Trel (%) 0.56 1.38 0.39 0.07 0.19 0.60 0.27 1.19 1.43 1.07

RM3
Tmod (◦C) 1646 1671 1709 1650 1661 1632 1653 1689 1688 1706

∆Tabs (◦C) 9.2 22.5 7.0 3.0 4.6 9.8 3.6 20.6 23.3 17.9
∆Trel (%) 0.55 1.37 0.41 0.18 0.28 0.60 0.22 1.23 1.40 1.06

The worst results were achieved with model RM1. The absolute temperature deviation
was in the range of 3–64 ◦C. Models RM2 and RM3 achieved comparable results. The
absolute temperature deviation was in the range of 1–24 ◦C. A graphical representation of
the absolute deviation for all regression models is shown in Figure 6.

Figure 6. Absolute deviation of temperature for regression models.

3.2. Results of the Deterministic Model

The model created by the deterministic approach was verified for two variants. The
first variant is a deterministic model with feedback and the second is a deterministic model
without feedback. The heat losses (Qstr) within the heat balance of these models were
calculated using three regression Models (41)–(43).

Thus, both variants of the models were verified for the heat loss coefficient calculated
according to the three models. The designation of individual model variants is as follows:
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• DM1_1—deterministic model with feedback, heat loss coefficient according to the
model Equation (41).

• DM1_2—deterministic model with feedback, heat loss coefficient according to the
model Equation (42).

• DM1_3—deterministic model with feedback, heat loss coefficient according to the
model Equation (43).

• DM2_1—deterministic model without feedback, heat loss coefficient according to the
model Equation (41).

• DM2_1—deterministic model without feedback, heat loss coefficient according to the
model Equation (42).

• DM2_1—deterministic model without feedback, heat loss coefficient according to the
model Equation (43).

The results of the deterministic model with feedback are shown in Table 2, in the form
of absolute and relative deviation. The results of this model are very similar for all variants
of the model for calculating the heat loss coefficient. The largest absolute deviation was
achieved for melt no. 4, approximately 75 ◦C. From the overall point of view, the best
results were achieved by the DM1_3 model, which has an average absolute deviation of
about 21 ◦C. Figure 7 shows the average absolute deviations for the three variants of the
heat loss coefficient model.

Table 2. The results of the deterministic model with feedback.

No. Melt 1 2 3 4 5 6 7 8 9 10

Tmeas (◦C) 1655 1648 1702 1647 1656 1642 1657 1668 1665 1688

DM1_1
Tmod (◦C) 1656 1669 1694 1722 1674 1622 1642 1661 1631 1659

∆Tabs (◦C) 0.6 20.8 8.2 75.4 17.6 19.9 14.9 7.0 33.8 29.4
∆Trel (%) 0.04 1.26 0.48 4.58 1.06 1.21 0.90 0.42 2.03 1.74

DM1_2
Tmod (◦C) 1653 1668 1684 1723 1674 1624 1644 1664 1633 1656

∆Tabs (◦C) 1.9 19.8 18.3 75.9 17.7 18.4 13.3 4.3 32.4 31.7
∆Trel (%) 0.11 1.20 1.08 4.61 1.07 1.12 0.80 0.26 1.95 1.88

DM1_3
Tmod (◦C) 1641 1657 1700 1721 1670 1630 1649 1665 1636 1659

∆Tabs (◦C) 14.0 8.7 2.3 74.1 13.8 11.9 7.6 3.1 28.7 29.0
∆Trel (%) 0.85 0.53 0.14 4.50 0.84 0.72 0.46 0.18 1.72 1.72

Figure 7. Absolute deviation of temperature for deterministic model with feedback.
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The results of the deterministic model with feedback are shown in Table 3. The largest
absolute deviation for this model (66 ◦C) was achieved for melt no. 3, a variant of model
DM2_1. The deviations achieved in the variants of the DM2_2 and DM2_3 models are
very similar. The maximum of absolute deviation is 36 ◦C, which is half as much as in the
DM2_1 variant. The graphical course of absolute deviations of individual variants of the
model is shown in Figure 8.

Table 3. The results of the deterministic model without feedback.

No. Melt 1 2 3 4 5 6 7 8 9 10

Tmeas (◦C) 1655 1648 1702 1647 1656 1642 1657 1668 1665 1688

DM2_1
Tmod (◦C) 1654 1658 1768 1669 1633 1616 1619 1642 1625 1687

∆Tabs(◦C) 0.9 10.2 66.0 22.3 23.2 25.8 37.6 25.9 40.4 1.2
∆Trel (%) 0.06 0.62 3.88 1.35 1.40 1.57 2.27 1.55 2.42 0.07

DM2_2
Tmod (◦C) 1638 1649 1718 1660 1621 1621 1621 1644 1631 1673

∆Tabs(◦C) 17.0 1.2 16.2 13.4 34.7 21.3 36.0 24.1 34.5 14.8
∆Trel(%) 1.03 0.07 0.95 0.81 2.10 1.30 2.17 1.44 2.07 0.88

DM2_3
Tmod (◦C) 1639 1651 1717 1659 1621 1621 1621 1644 1631 1674

∆Tabs (◦C) 15.6 2.5 15.4 12.5 34.6 21.5 36.3 24.4 34.2 14.4
∆Trel (%) 0.94 0.15 0.90 0.76 2.09 1.31 2.19 1.46 2.06 0.86

Figure 8. Absolute deviation of temperature for deterministic model without feedback.

3.3. Results of the Machine Learning Model

As part of the machine learning approach for predicting the melt temperature, we
verified two models based on the support vector regression methodology and the adaptive
neuro-fuzzy inference system. The results of both models are shown in Table 4. The largest
absolute deviation in both models was achieved for melt no. 3. For the SVR model it
was 54 ◦C and for ANFIS it was 80 ◦C. The SVR model, which had an average absolute
deviation of 18.5 ◦C, achieved better results. The graphical course of absolute deviations of
SVR and ANFIS models is shown in the Figure 9.

Table 5 shows the results of all models and their variants in terms of average absolute
and relative deviation. The best results were obtained by the regression model (RM2 and
RM3), in which the value of the average absolute deviation is about 12 ◦C. Of the models
based on the deterministic approach, it was the DM1_3 model, whose average relative
deviation is 19.3 ◦C. When comparing machine learning models, the SVR model achieved
better results at the level of the best deterministic model.
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Table 4. The results of the machine learning models.

No. Melt 1 2 3 4 5 6 7 8 9 10

Tmeas(◦C) 1655 1648 1702 1647 1656 1642 1657 1668 1665 1688

ANFIS
Tmod (◦C) 1640 1635 1621 1619 1635 1635 1640 1625 1617 1624

∆Tabs(◦C) 14.8 12.4 80.2 27.5 20.2 6.8 16.5 42.7 47.5 63.2
∆Trel(%) 0.89 0.75 4.71 1.67 1.22 0.41 0.99 2.56 2.85 3.74

SVR
Tmod (◦C) 1655 1669 1648 1650 1657 1665 1675 1671 1646 1648

∆Tabs(◦C) 0.4 21.9 53.9 3.1 1.5 23.3 18.6 3.9 18.7 39.3
∆Trel(%) 0.02 1.33 3.17 0.19 0.09 1.42 1.12 0.24 1.12 2.33

Figure 9. Absolute deviation of temperature for machine learning model.

Table 5. Average absolute and relative deviation of models.

Model Average Absolute Deviation (◦C) Average Relative Deviation (%)

RM1 23.8 1.43
RM2 11.9 0.71
RM3 12.2 0.73

DM1_1 22.7 1.37
DM1_2 23.4 1.41
DM1_3 19.3 1.17
DM2_1 25.4 1.52
DM2_2 21.3 1.28
DM2_3 21.1 1.27
ANFIS 33.2 1.98

SVR 18.5 1.10

4. Conclusions

The paper describes three different approaches for predicting melt temperature in
the steelmaking process, i.e., regression, deterministic and machine learning approaches.
Several variants of mathematical models were verified in individual approaches. Within
the regression approach, three models were proposed, which differed in structure and
number of independent variables. In the deterministic approach, two models were created
and verified, which differ in the methodology of determining the content of impurities in
the melt (i.e., % C, % Mn, % P, % Si). The heat losses in the heat balance in these two models
used the support of the heat loss coefficient. In the case of the machine learning approach,
two models were implemented, i.e., support vector regression (SVR) and adaptive neuro-



Processes 2022, 10, 1378 17 of 19

fuzzy inference system (ANFIS). All proposed models were verified on real process data by
calculating the absolute and relative deviation of the end temperature.

Within the regression approach models, the lowest average absolute deviation was
achieved by the RM2 model (11.9 ◦C) based on direct measurement of the concentration of
CO, CO2, H2 in the converter gas and on the cumulative amount of blown oxygen. The
cumulative amount of blown oxygen positively affected the reduction of the deviation,
which was also confirmed in the RM3 model.

In the deterministic approach, the lowest average absolute deviation (19.3 ◦C) was
achieved by the feedback model DM1_3, for which three parameters were used in the
calculation of the heat loss coefficient, i.e., the temperature of pig iron, the weight of pig
iron, and the weight of steel scrap. The positive effect of these parameters was also reflected
in the model without feedback (model DM2_3), for which the average absolute deviation
was 21.1 ◦C.

In the case of the machine learning methods, the lowest average absolute deviation
(18.5 ◦C) was achieved for the SVR model. This model was able to better approximate the
standard dynamic course of the steelmaking process.

These results appear to be the most accurate model based on a regression approach.
However, the disadvantage of these methods and machine learning methods are the high
reliance on previous data approximation and on the process’ dynamic. The deterministic
approach based on mathematical–physical laws is not so dependent on the parameters/data
of previous melts. Excluding the extreme value of the melting deviation no. 3, the average
deviation of the DM1_3 model decreased to 11.3 ◦C, which is comparable to the RM2
regression model. From the above, we can state that the quality of the input data greatly
influences the calculation of the predicted melt temperature. For this reason, it would be
appropriate to verify the proposed models on a larger set of melts and from the achieved
results to select the model with the best accuracy or to use a combination of several models
with acceptable accuracy. It is also necessary to minimize unspecified heat losses in the
deterministic model (Qstr). Very important for the accuracy of models is the measured
input data from the process (e.g., the weight of pig iron, the temperature of pig iron, the
concentration of elements in converter gas, etc.). Accurate measurement of these data can
improve the accuracy of the model.
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20. Kačur, J.; Laciak, M.; Flegner, P.; Terpák, J.; Durdán, M.; Tréfa, G. Application of Support Vector Regression for Data Driven
Modeling of Melt Temperature and Carbon Content in LD Converter. In Proceedings of the 2019 20th International Carpathian
Control Conference (ICCC), Kraków-Wieliczka, Poland, 26–29 May 2019; IEEE: Danvers, MA, USA, 2019. [CrossRef]

21. Takemura, Y.; Saito, T.; Fukuda, S.; Kato, K. BOF Dynamic Control Using Sublance System. Nippon. Steel Tech. Rep. 1978, 11.
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