
Citation: Kim, J.-y.; Lee, T.-h.; Lee,

S.-h.; Lee, J.-j.; Lee, W.-k.; Kim, Y.-j.;

Park, J.-w. A Study on Deep

Learning-Based Fault Diagnosis and

Classification for Marine Engine

System Auxiliary Equipment.

Processes 2022, 10, 1345. https://

doi.org/10.3390/pr10071345

Academic Editor: Jie Zhang

Received: 29 June 2022

Accepted: 8 July 2022

Published: 11 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

A Study on Deep Learning-Based Fault Diagnosis and
Classification for Marine Engine System Auxiliary Equipment
Jeong-yeong Kim 1,2,†, Tae-hyun Lee 1,†, Song-ho Lee 1 , Jong-jik Lee 1, Won-kyun Lee 2, Yong-jin Kim 1,*
and Jong-won Park 1,*

1 Department of Reliability Assessment, Korea Institute of Machinery and Materials, Daejeon 34103, Korea;
jykim8792@kimm.re.kr (J.-y.K.); thlee07@kimm.re.kr (T.-h.L.); dlrm741@kimm.re.kr (S.-h.L.);
ljjik@kimm.re.kr (J.-j.L.)

2 School of Mechanical Engineering, Chungnam National University, Daejeon 34134, Korea; wklee@cnu.ac.kr
* Correspondence: yjkim2014@kimm.re.kr (Y.-j.K.); jwpark@kimm.re.kr (J.-w.P.)
† These authors contributed equally to this work.

Abstract: Maritime autonomous surface ships (MASS) are proposed as a future technology of the
maritime industry. One of the key technologies for the development of MASS is condition-based
maintenance (CBM) based on prognostics and health management (PHM). The CBM technology can
be used for early detection of abnormalities based on the database and for a prediction of the fault
occurring in the future. However, this technology has a problem that requires a high-quality database
that reproduces the operation state of the actual ships and quantitatively and systematically indicates
the characteristics for the various fault state of the device. To solve this problem, this paper presents a
study on the development method of the fault database based on the reliability. Firstly, the reliability
analysis of the target device was performed to select five types of the core fault modes. After that, a
fault simulation scenario that defined the fault simulation test methodology was drawn. A land-based
testbed was built for the fault simulation test. The fault simulation database was developed with a
total of 109 sets through the fault simulation test. Additionally, a fault classification algorithm based
on deep learning is proposed. The classification performance was evaluated with a confusion matrix.
The developed database will be expected to serve as the basis for the development CBM technology
of MASS in the future.

Keywords: condition-based maintenance (CBM); fault diagnosis; 1D CNN; fault simulation database

1. Introduction

Maritime autonomous surface ships (MASS) are attracting attention as the future
technologies in the maritime industry. One of the core technologies for the development
of MASS is the self-diagnosis ship technology. The self-diagnosis ship is a technology
based on condition-based maintenance (CBM) that can improve the safety and efficiency
by performing autonomous decision-making using an artificial intelligence (AI) system
based on the database. In addition, this technology can replace the work that depended on
the experiential decisions of sailors [1].

Recently, the CBM technology has been actively studied in most industries such
as nuclear and thermal power plants. It is expected to improve health management
technology and reduce the maintenance costs by minimizing the replacement of parts
through predictive maintenance (PM) [2]. However, maintenance technology of ships
has depended on breakdown maintenance (BM) technologies that are repaired in case of
malfunction and time-based maintenance (TBM) technology that is repaired after use for
a certain period of time. Therefore, maintenance technology of ships has the problem of
high-costs due to frequent downtime and replacement of parts [2]. In order to solve this
problem, the CBM technology of ships that monitors the state in real time and detects the
fault of a system should be developed. In addition, the development of CBM technology
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can establish efficient measures about the maintenance to reduce unnecessary maintenance
costs and downtime and to increase the safety and reliability of the system.

The first step for the development of CBM technology is acquire the fault simulation
database of various types [3]. However, study on the development of the database is lacking
because the maintenance technologies of the ships such as BM and TBM were performed.
In addition, there is a problem in that it takes a long time to acquire various databases of
the ships. To solve this problem, the fault simulation database will be developed through
land tests. The second step for technology development is to diagnose and predict the
faults based on AI algorithms. Recently, a study on a fault diagnosis based on AI is being
actively performed [4]. In addition, the fault diagnosis system of existing ships has been
developed so that engine manufacturers can monitor and diagnosis their own engine faults.
This system is limited as systems of large ships consider the working environment and
user environment of the ship [5].

A fault diagnosis system for MASS must be developed not only in the engine but also
in the most auxiliary devices surrounding the engine system. The supply pump is the
auxiliary device most closely installed with the engine and is a core device for the operation
and fuel supply of the engine [6,7]. Accordingly, a fault of the supply pump may cause a
critical fault of the engine system, which is core to the safety of the ship’s operation and
on-time arrival and departure [8]. Therefore, it is obvious that the CBM development of the
fuel supply pump is a technology that improves the safety and efficiency of MASS.

In this paper, in order to develop the fault simulation database based on reliability, we
propose the experimental study of the fuel supply pump. First, a fault case and reliability
analysis of the target device was performed to select the core fault modes. After that, the
fault simulation scenario that defined the fault simulation test methodology was drawn. A
land-based testbed was built for the fault simulation test. By using a land-based testbed,
the fault simulation database was developed. Additionally, the algorithm model based on
deep learning was proposed for the fault diagnosis and classification. The performance of
the algorithm was evaluated with a multi-class confusion matrix.

2. Reliability Analysis of Screw Pump
2.1. Target Device

The engine system of the ships was composed as various auxiliary devices such as
the heaters, the purifiers, and the pumps. The fuel supply pump is most closely installed
with the engine. In addition, it is a core device of the engine system that supplies the fuel
to the engine quickly and stably [6]. The target device to use in this study was selected as
the three-axis screw pump from KRAL co., ltd., Gyeonggi-do, Korea, which has a similar
function and configuration of the supply pump used in actual ships. The structure of the
pump is shown in Figure 1.

The three-axis screw pump consists with the main rotor and two idlers and jaw
coupling that transmits power of the motor. The maximum speed of the pump rotates at a
speed of 1770 RPM, and it stably supplies the fuel of 100 L for a minute despite rotating at
a high speed.
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Figure 1. The 3-axis screw pump of target device. Reprinted/adapted with permission from Refs. [6,9].

2.2. Reliability Analysis

The reliability analysis was performed to quantitatively represent the core fault modes
of the target device. Firstly, the fault case analysis was performed to draw the risk, operating
characteristics, performance requirements, and fault rate accounting to fault of the fuel
supply pump using the ship equipment fault case collection [10] and offshore reliability
data [11]. After that, the three techniques of the reliability analysis used: fault modes,
effects, and criticality analysis (FMECA), criticality matrix analysis (CMA), and fault tree
analysis (FTA). In addition, the risk priorities were evaluated using the potential fault types,
causes, and mechanisms of fault and methods of detection and management. The five types
of the core fault modes such as bearing lubrication and wear, coupling elastomer wear,
mechanical seal degradation, misalignment, and cavitation were selected as the results of
the reliability analysis. The results of reliability analysis are shown in Table 1.

Table 1. Fault modes, effects and criticality analysis (FMECA) for 5 types fault modes of pump.

Main Parts Fault Modes Fault Causes and
Mechanisms Fault Effect

Criticality
Occurrence Severity Detection

Motor/Pump
bearing Sticking of bearing Particle injection,

Poor lubrication
Occurrence of

vibration and noise 5 4 2

Mechanical seal Leakage Deterioration, Poor
lubrication Reduced Efficiency 5 4 2

Jaw coupling Elastomer wear Overload,
Overheating Increase vibration 5 5 3

Coupling wear Misalignment Increase vibration 4 5 2

Rotor Rotor crack Cavitation Occurrence of
vibration and noise 5 5 2

2.3. Fault Simulation Scenario

The fault simulation scenario that defined an experimental methodology based on
several prior studies for the fault simulation tests of five types of the fault modes was
developed. In addition, it presented the fault simulation diagram to visualize the test
methodology. The fault simulation scenario is shown in Table 2.
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Table 2. Fault simulation scenario for 5 types of the fault modes of pump.

Fault Modes
Motor and

Pump-Bearing
Lubrication/Particle

Injection

Mechanical Seal
Degradation

Jaw Coupling
Elastomer Wear Misalignment Cavitation

Fault test plan
Complete remove of

lubricant Particle
injection (0.5 g)

120 ◦C, 90 h
degradation

Normal: 0%
Remove1: 25%
Remove2: 50%
Remove3: 75%

Angular: max. 0.9◦
Lateral: max.

0.25 mm Offset: max.
4 mm

Outlet pressure
change

Fault simulation
diagram
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A real-time status monitoring and data acquisition system was built using the C# S/W 
from JYTEK inc., Gyeonggi-do, Korea. In addition, the Amadeus S/W from FAMTECH 
co., ltd., Gyeongnam, Korea, monitored and analyzed the characteristic factors in the high-
frequency range. 

The bearing lubrication fault test completely removed the grease, and the particle
injection test was performed by injecting 0.5 g of the particle. The jaw coupling elastomer
wear test was simulated in a degradation test while removing the wings of the normal
elastomer. The mechanical seal was degraded at 120 ◦C for 90 h for fault simulation. In the
case of the misalignment test, the fault simulation test was applied as the maximum change
of the angular, lateral, and offset change in the design specification standard. Finally, the
cavitation test was performed by applying the artificial cavitation according to the change
in outlet pressure.

3. Development of the Fault Simulation Database
3.1. Experimental Testbed

Study on the development of the fault simulation database was limited in terms of time
and finance. Therefore, the database was to be acquired through land tests. A land-based
testbed was built for the fault simulation test. The engine system of the actual ships was
built as the combined system of various auxiliary devices such as the purifiers, the fuel
tanks, and the fuel supply pumps. But the land-based testbed was built as an individual
system to monitor the functional parts of the fuel supply pump. The structure of the
land-based testbed is shown in Figure 2.
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A real-time status monitoring and data acquisition system was built using the C# S/W
from JYTEK inc., Gyeonggi-do, Korea. In addition, the Amadeus S/W from FAMTECH
Co., Ltd., Gyeongnam, Korea, monitored and analyzed the characteristic factors in the
high-frequency range.

The measurement locations of the built-in, vibration, and noise sensors were selected
according to KS Standards [12,13]. The data sampling rates were 1 kHz, 25.6 kHz, and
51.2 kHz, and it was acquired to observe in the maximum frequency range of the data.
In addition, the three-axis accelerometer from PCB piezotronics, inc., KISTLER co., ltd.,
Walden Ave, NY, USA, was used to acquire the various data.

3.2. Fault Simulation Test

The fault simulation test was performed with reference to the test methods through
several previous studies [14–25]. By using the test methodology, a specimen for the fault
simulation test was prepared. After that, the fault specimen was reinstalled to monitor
the performance according to the fault effect. The methodology for each fault simulation
test is listed in Sections 3.2.1–3.2.5, and the results of the fault simulation test are shown in
Figure 3.
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3.2.1. Pump/Motor Bearing

Figure 3a shows the results of the bearing fault test. The fault simulation was performed
by lubrication fault and particle injection tests. The lubrication fault test was used to simulate
the evaporation of the lubricating oil of the bearing grease, and the fault was simulated
by completely removing grease from the bearing using a lubricating remover. The particle
injection test was used to simulate wear fault of the inner and outer rings due to the particle
entering the bearing, and the fault was simulated by injecting 0.5 g of 300 µm particles.

3.2.2. Misalignment

Figure 3b shows the process of performing the fault simulation test for the misalign-
ment test. The misalignment test was performed to observe the effect on coupling when
misalignment occurred. The fault simulation test was performed by applying the maximum
change based on the design specification of the device.

3.2.3. Jaw Coupling

Figure 3c shows the results of the jaw coupling elastomer wear test. In the fault
simulation test, the elastomer wing was removed to simulate the fault for elastomer wear
that occurs during overheating of the coupling. The elastomer wing was removed up to
three to simulate the faults occurring according to the deterioration step.

3.2.4. Mechanical Seal

Figure 3d shows the process of performing a mechanical seal deterioration test. Me-
chanical seal deterioration was simulated by thermal aging due to friction of the seal during
pump operation. Thermal aging was performed at 120 ◦C for 90 h using a heat dryer. After
thermal aging, the mechanical seal was reinstalled on the pump and operated to observe
the functional effect of the pump.

3.2.5. Cavitation

Figure 3e shows the cavitation simulation test with indicators and diagrams. This was
intended to simulate a cavitation fault caused by a pressure difference in the service tank
or particle in the pipe. In the fault simulation test, cavitation was simulated by an artificial
fault by reducing the outlet pressure by up to 20% above the normal pressure.

3.3. Fault Simulation Database

In order to perform the fault diagnosis, it is important to collect a high-quality
database [26]. The database was acquired through the fault simulation test. It was saved
as a csv. file with a tag number designated. Table 3 shows the acquired database status.
Through the normal test and fault simulation tests and additional tests were data acquired.

The database was acquired as at least three sets for each fault mode, normal data were
acquired as five sets. The motor and pump bearing lubrication fault and particle injection
test data were acquired as a total of 20 sets, as each of 5 sets. For the jaw coupling fault
simulation test, the misalignment test and elastomer wear test were performed. In case of
the misalignment test, the test data were acquired as a total of 32 sets as offset, angular,
and lateral tests. In the case of the elastomer wear test, the test data were acquired as a
total of 18 sets by removing up to three elastomer wings. For the mechanical seal test, a
degradation test was performed, and the test data were acquired as a total of five sets. The
cavitation test was performed by controlling the outlet pressure, and the test data were
acquired as a total of four sets. Through additional tests such as the bearing life test and
the complex fault test, a total of 25 sets were acquired. Through the fault simulation test, a
total of 109 sets were acquired, and a database was developed as a csv. file with a capacity
of 500 GB.
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Table 3. Database development status of pump.

Device Components Fault Simulation Test Data Acquisition (Set)

Pump

Normal Normal 5

Motor Bearing Lubrication 5
Particle injection 5

Pump Bearing Lubrication 5
Particle injection 5

Jaw Coupling

Misalignment
Offset 20

Angular 6
Lateral 6

Elastomer
Remove1 8
Remove2 5
Remove3 5

Mechanical Seal Mechanical Seal Degradation 5

Rotor Cavitation 4

Option test Bearing life test
25Complex fault test

Total
Built-in data

109Add-on data
Noise data

3.4. Data Analysis

The causes of malfunction of rotating equipment are mostly of vibration. The vibration
signal is measured to detect the fault. Furthermore, it can analyze the magnitude of the
vibration according to the rotation frequency to detect and diagnosis the cause of the
fault [27]. In this chapter, the database was analyzed using the data-driven approach. By
using the vibration data of the developed database, the characteristic change analysis was
performed according to the cause of the fault.

Figure 4 shows fast Fourier transform (FFT) and short time Fourier transform (STFT)
graphs of five pump fault modes. A raw signal is difficult to analyze as normal or fault.
Therefore, by using FFT and STFT, the characteristic change according to the time domain
and frequency domain was closely analyzed [28].

Figure 4a shows the normal signal as a graph. In the normal signal, amplitude changes
of 1 mm/s2 in the range of 2 k to 2.7 kHz were observed. Figure 4b shows the pump
bearing a fault signal. The amplitude of the pump bearing fault signal was observed
to increase to 2.8 mm/s2 in the range of 2k~2.5 kHz, and it was also observed that the
amplitude increased in the range of 3 k~4 kHz. Figure 4c shows a misalignment signal. It
was observed that the amplitude of the fault signal increased to 4 mm/s2 in the range of
0.9 k~1 kHz, and it was also observed that the amplitude increased in the range of 2.5k and
4.2 kHz. Figure 4d shows the jaw coupling fault signal. It was observed that the amplitude
changes of the fault signal decreased compared to the normal signal in the range of 2 k to
2.7 kHz. This was because it was analyzed that the power transmission was decreased due
to the occurrence of an elastomer degradation fault. Figure 4e shows a mechanical seal
fault signal. It was observed that the amplitude of the fault signal increased to a maximum
of 2 mm/s2 in the range of 1.8 k to 2.5 kHz. Figure 4f shows the cavitation fault signal. The
fault signal observed a continuous amplitude increase from the low frequency region to the
range of 1.8 kHz.
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4. Fault Diagnosis Based Deep Learning

In Section 3, the frequency analysis observed that there was a difference of the normal
and fault. In this chapter, the data pre-processing proposed a method using time-series
data without 2D image transformation. After that, the algorithm model was applied to the
1D CNN based on deep learning and evaluated the performance using a confusion matrix.

4.1. Data Preprocessing

The time-series data was composed of the sampling data points by extracting con-
tinuous values over time. The time-series data have various features. Furthermore, the
time-series data have noise and a high dimensionality. For this, recently, there are various
signal processing methods such as wavelet analysis and filtering. However, the signal
processing method may require expert knowledge and may result in data information loss.
Therefore, the time-series data can reduce the data pre-processing process such as wavelets
and filtering [29].

The vibration data of the fault simulation database consist of the time-series data
acquired for 10 min at a sampling rate of 25,600 Hz. The data used the vibration data x,
y, z axes, and it was used without data feature extraction. In order to minimize the loss
of the time series data having a one-dimensional array, the pre-processing process used
the method of resampling to reduce the data size. Table 4 shows the data pre-processing
process. In order to evaluate the fault classification performance according to the sampling
rate of the data, the sampling rate of 25,600 Hz data was transformed into data having
sampling rates of 12,800 Hz, 2560 Hz, 1280 Hz, 256 Hz, and 128 Hz. In addition, a hamming
window was used to prevent data leakage errors. The data have different ranges of the
feature according to the normal and fault modes, so we performed the normalization
to convert them to a common scale. This pre-processing process was applied with the
vibration data of the normal and five types of the fault modes, and labeling with values of
0 to 5.

Table 4. Resampling of pump vibration data.

Sampling Rate (Hz) Input Data Columns Window Fault Modes Labels

25,600 84,480,000 3 (x, y, z) Hamming Normal 0
12,800 42,240,000 3 (x, y, z) Hamming Bearing Fault 1
2560 8,448,000 3 (x, y, z) Hamming Misalignment 2
1280 4,224,000 3 (x, y, z) Hamming Jaw coupling 3
256 844,800 3 (x, y, z) Hamming Mechanical seal 4
128 422,400 3 (x, y, z) Hamming Cavitation 5

4.2. CNN Model Construction and Training

CNN is one of the deep neural networks that is evaluated for high performance
in image and video classification. It consists of several convolution and pulley layers,
and outputs the data by weighted summing of the input data with a filter [30]. CNN
models share the same feature regardless of the dimensions, but there is a difference in
the dimension of the input data and the filtering approach. In general, 2D CNN models
that learn the photos and videos learn features of the input data by filtering along the x
and y axes. On the other hand, the 1D CNN model has a lower complicated calculation
method than the 2D CNN by filtering only on the x-axis [31]. Due to the low computational
processing requirements, it can be used in real-time and low-cost, even on low-performance
computers [32].

Table 5 shows the structure of the 1D CNN model. Figure 5 shows an internal structure
for the fault classification algorithm. It consists of four 1D convolution layers and one
dense layer, and the activation functions were set as ReLU and soft max. It has a six-output
node to classify input data into normal and five-types of failure modes. Max pooling was
configured to form features between two 1D convolution layers and global average pooling
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was configured to transform features into one-dimensional vectors. The drop out was set at
50% to minimize overfitting. The Adam optimizer was used to optimize the model, the
learning rate was set to 0.001, the batch size was set to 100, and the epochs were set to 50.
For data learning, train data was used for 80% of the input data and test data was used for
20%, and validation data was used for 20% of the train data.

Table 5. D CNN structure.

Layer Type Filters Size Filters Number Activation

1 Convolution 1D 100 15 Relu
2 Convolution 1D 100 15 Relu
3 Max-pooling 1D 100 1 -
4 Convolution 1D 100 10 Relu
5 Convolution 1D 100 10 Relu
6 Global-average-pooling 1D 100 - -
7 Dropout 0.5 - -
8 Dense layer 6 - Softmax
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4.3. Evaluation Performence

The confusion matrix is one of the methods for representing the measured and pre-
dicted values according to the results of classification [33]. In addition, the confusion matrix
visualizes and analyzes the distribution of predicted labels for measured labels in one table.
This is the most useful method for the evaluation of the precision, recall, and F1-score.
The evaluation for measured values and predicted values can be expressed as indices of
the true positive (TP), true negative (TN), false positive (FP), and false negative (FN) [34].
Table 6 shows the confusion matrix, and Equation (1) calculates the precision through TP
and FP. Equation (2) calculates the recall through TP and FN, and Equation (3) calculates
the F1-score through TP, FP, and FN [35].

Table 6. Confusion matrix.

Predicted Positive Predicted Negative

Actual Positive TP FN
Actual Negative FP TN
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The fault classification results were evaluated through the multi-class confusion matrix.
The multi-class confusion matrix was composed of n × n dimensions with various class
labels such as A0, A1, · · · , An. Therefore, instances such as TP, TN, FP, and FN of a binary
classification confusion matrix cannot be applied. However, based on this, it is possible
to analyze with a focus on a specific class. It can be consisted as the multi-class confusion
matrix by combining it as a whole [36,37]. The construction of the multi-class confusion
matrix is shown in Table 7.

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1 score =
2TP

2TP + FP + FN
(3)

Table 7. Multi-label confusion matrix.

Predicted

A1 Aj An

Actual
A1 N11 N1j N1n
Ai Ni1 Nij Nin
An Nn1 Nnj Nnn

Table 8 shows the results of classification of the normal and fault data according to the
sampling rate. Most of the input data were evaluated with the high performance of 0.99 or
more in the accuracy, precision, recall, and f1-score. Figure 6 shows the accuracy and loss
of train and validation data. Most of the input data were trained with a high accuracy of
0.9 or more, and the validation was also evaluated with the high accuracy. However, in the
loss data, it was observed that the over-fitting occurred the lower the sampling rate of the
input data, and this was analyzed as a lack of a data.

Figure 6a shows the accuracy and loss by a sampling rate of 25,600 Hz. Training and
validation data were evaluated with a high accuracy of 1.00 and it was observed to have
the low loss rate of less than 0.1. Figure 6b shows the accuracy and loss by a sampling
rate of 12,800 Hz. This sampling rate was observed with the highest accuracy and it was
observed to have a low loss rate of less than 0.01. Figure 6c shows the accuracy and loss by
a sampling rate of 2560 Hz. This sampling rate was observed to have a higher accuracy
than the sampling rate of 25,600 Hz, and the loss rate was also a low of less than 0.05.
Figure 6d shows the accuracy and loss by the sampling rate of 1280 Hz. This sampling rate
was observed as a high accuracy of 1.00 and it was observed to have a lower loss rate than
the sampling rate of 12,800 Hz. Figure 6e shows the accuracy and loss by the sampling
rate of 256 Hz. This sampling rate was observed to have a high accuracy, but the loss rate
was observed as higher than another sampling rate. It was analyzed that the overfitting
was caused by a lack of data. Figure 6f shows the accuracy and loss by a sampling rate of
128 Hz. This sampling rate was also observed with a high performance. In addition, the
loss rate was observed to be as high as 0.2 or more. It was also analyzed that overfitting was
caused by lack of the data. Figure 7 shows the fault classification results according to the
sampling rate as a multi-class confusion matrix. This observed that the fault classification
was classified with a high performance according to the measured and predicted values.
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Table 8. Evaluation performance by sampling rate.

Sampling Rate (Hz) 25,600 12,800 2560 1280 256 128

Loss 0.00 0.00 0.00 0.00 0.00 0.0038
Precision 1.00 1.00 1.00 1.00 1.00 1.00

Recall 1.00 1.00 1.00 1.00 1.00 1.00
F1-score 1.00 1.00 1.00 1.00 1.00 1.00
Accuracy 1.00 1.00 1.00 1.00 1.00 0.9988
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5. Conclusions

In this paper, a study on the development of the fault simulation database was pro-
posed with various experimental methodologies. First, the reliability analysis has been
performed to select five types of the core fault modes of the target device. A fault scenario
that defines the fault simulation test methodology has been drawn based on several prior
studies for the fault simulation tests of five types of fault modes. A land-based testbed
has been built to perform the fault simulation test. The fault simulation database has been
developed using a land-based testbed. Additionally, the faults were classified using a fault
diagnosis algorithm based on deep learning. The performance of the fault classification
was evaluated with a multi-class confusion matrix.

1 The reliability analysis was performed to select five types of the core fault modes such
as bearing lubrication and wear, jaw coupling elastomer wear, mechanical seal degradation,
misalignment, and cavitation. The fault simulation scenario was defined as the fault
simulation test methodology of five types of the fault modes.

2 A land-based testbed was built to perform the fault simulation tests. The fault
simulation database was constructed through the fault simulation test using a land-based
testbed. The fuel supply system of the ships is integrated into several auxiliary pieces of
equipment. However, it was built as an individual system to analyze the fault characteristics
and performance of the target device.

3 The fault simulation test was performed on the bearing lubrication and particle
injection, jaw coupling elastomer wear, mechanical seal degradation, misalignment, and
cavitation test. The fault simulation database was developed with a total of 109 sets, which
consisted of normal data of 5 sets, bearing fault of 20 sets, jaw coupling wear of 18 sets,
mechanical seal degradation of 5 sets, misalignment of 32 sets, cavitation of 4 sets, and a
bearing life test and complex fault test of 25 sets.

4 The frequency analysis of the constructed fault database was confirmed by validation
to classify the normal and fault with a data driven approach. The frequency analysis was
observed up to the maximum frequency range of data using FFT.

5 The fault classification was performed by applying a 1D CNN algorithm based on
deep learning using the fault simulation database. The data pre-processing was performed
using the resampling method to select the optimal sampling rate. The sampling rate was
reduced with 25,600, 12,800, 2560, 1280, 256, and 128 Hz.

6 The performance of the fault classification according to the sampling rate was
evaluated using a multi-class confusion matrix, and it was confirmed to have a high
performance of the fault classification with 0.99 or higher on the accuracy and an F1-score
of the low sampling rate.

This study will be used as basic data for the fault classification of pumps and can
lead to a study to evaluate the residual life based on the mechanism of core parts. The
constructed database will be expected to be the basis for the development of the fault
diagnosis and prediction algorithms for MASS in the future. As a follow-up study, the
complex test on the multi-fault modes will be performed to acquire the additional fault
database. The constructed database will be verified reliably and validated based on the
actual data of ships. This study will be the basis to establish an efficient maintenance plan
for the various auxiliary equipment of ships, and it will be expected to have positive results
in terms of the cost and health management technology.
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