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Abstract: Liquid fertilizers are mainly applied by spraying liquid fertilizer on the surface of crop 

leaves and by deep openings between rows. The first causes considerable environmental pollution, 

and the second can easily cause to damage the root system of crops. In this study, corn crops were 

taken as the study object and an efficient deep-hole application method for liquid fertilizer based on 

alternate drilling was proposed. The needle body is driven by the spur gear wheel system in a caving 

mechanism to puncture holes alternately in a vertical posture and high-speed punctures are imple-

mented with less disturbance to the soil. The cylindrical hollow cam of the mechanism is controlled 

so that the fertilizer needle sprays fertilizer when injected into soil and stops injecting when pulled 

out of the soil. Based on the bench test, fertilizer injecting performance and energy saving perfor-

mance of the differential two-way fertilizer supply distribution device were analyzed and the head 

loss for energy saving value is 2.1, 3.1, and 5.5 m. Based on numerous field tests, the puncture track, 

hole width, and hole spacing are analyzed under different puncture speeds. Field tests were carried 

out according to a quadratic orthogonal rotating combination design and the results show that when 

the fertilization depth for agronomic requirements is 80 mm and the machine work speed and for-

ward speed are 127 r min−1 and 1.40 m s−1, respectively, the hole width is 39.9 mm, the hole spacing 

is 320 mm. The efficient deep-hole application method for liquid fertilizer based on alternate drilling 

can provide support for data analysis and theoretical design of liquid fertilizer deep application 

technology for corn crops. 

Keywords: acupuncture mechanism; high-speed hole drilling; liquid fertilizer; corn; design;  

optimization 

 

1. Introduction 

Corn is an important food crop, with more than 177 million hectares planted worldwide 

each year [1–3]. It is mainly cultivated in the United States, China, Brazil, and Argentina. Liq-

uid fertilizer application methods mainly include foliar injecting, drip irrigation, and deep 

application [1–4]. Foliar spray fertilization is to spray liquid fertilizer rapidly on the surface of 

crop leaves by injecting a system, which is fast and effective in operation. Although the foliar 

spray fertilization method is efficient, it contributes to environmental pollution [5]. The drip 

irrigation fertilization method has a high fertilizer utilization rate and little environmental pol-

lution, but the cost is higher and not suitable for large field operations [6,7]. Deep furrow 

opening can reduce the volatilization of nitrogen but the furrowing tends to cause damage to 

crop roots [8,9]. 

Liquid fertilizer hole deep application technology can improve soil structure, increase 

soil organic matter, and improve soil microbial activity while saving liquid fertilizer [10–14]. 

Plant roots can rapidly absorb the nitrogen, phosphorus, and potassium elements in liquid 

fertilizer to improve crop yield and ensure grain quality [9,15–18]. 
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Womac and Tomkins [19] used a crank-slider mechanism to drive an injecting needle to 

perforate the soil and stop injecting. Da Silva et al. [20] used a cam-crank rocker combination 

mechanism to drive the fertilizer injecting needle to achieve a cavity application function on 

sugarcane crops at fixed points. These two application methods could ensure the vertical pos-

ture of the injecting needles during the process of entering and leaving the soil, and the hole 

opening could meet the smaller target, but the drive unit of the drill adopted a “lever mecha-

nism movement form” to achieve liquid fertilizer application, which limited the movement 

characteristics and efficiency of the mechanism itself and made it difficult to meet the require-

ments of efficient and deep liquid fertilizer application. 

Wang et al. [21] designed a crank rocker mechanism to achieve a deep-hole liquid ferti-

lizer application function with a hole-driving component. Due to the same “lever mechanism 

movement form”, the deep-hole liquid fertilizer application efficiency was low, and the hole 

opening was large. On this basis, Wang et al. [22] designed a ShiYefeiJi-2 (SYJ-2) deep-hole 

liquid fertilizer application spreader. The drive system of the drilling mechanism adopted a 

fully elliptical gear planetary system, which improved the drilling efficiency and could better 

meet the deep application requirements of liquid fertilizer holes; however, the nonvertical 

posture of the needle body and the positive structural form of drilling led to large holes on the 

soil surface and mechanical damage to the crops. 

Therefore, in this context, this paper proposes an efficient deep-hole application method 

for liquid fertilizer based on an alternate drilling method. This research study includes 

conceptual design, experimental evaluation, and analysis. 

2. Materials and Methods 

2.1. Machine Structure 

The deep-hole liquid fertilizer applicator is shown in Figure 1. 

  

(a) (b) 

 

(c) 

Figure 1. The deep-hole liquid fertilizer applicator. (a) side view. (b) rear view. (c) top view. 1. frame 

assembly; 2. liquid fertilizer injecting control mechanism; 3. liquid fertilizer feeding main pipeline; 

4. sprocket A; 5. main drive shaft; 6. liquid fertilizer pump; 7. three-point suspension assembly; 8. 

worm gear reducer; 9. power input shaft assembly; 10. helical spur gear binding mechanism; 11. 

liquid fertilizer feeding branch rod; 12. ground wheel assembly; 13. main drive belt; 14. sprocket B; 

15. sprocket C; 16. sprocket D. 
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The front and rear parts of the frame assembly are installed with a three-point 

suspension frame assembly and ground wheel assembly, respectively, and the liquid 

fertilizer pump, worm gear reducer, power input shaft assembly, main drive shaft, liquid 

fertilizer injecting control mechanism, and drilling mechanism are installed on the frame 

assembly in turn. The main drive belt is mounted on the worm gear reducer, the liquid 

fertilizer pump, and the power input shaft assembly. The main liquid fertilizer delivery 

line connects the liquid fertilizer pump to the liquid fertilizer injecting control mechanism. 

The liquid fertilizer feeder line connects the liquid fertilizer application control 

mechanism to the drilling mechanism. Sprocket A, sprocket C, sprocket B, and sprocket 

D are fixed on the main drive shaft from the outside to the inside, and a chain connects 

the worm gear reducer to sprocket B. Sprocket A and sprocket D are connected to the 

liquid fertilizer application control mechanism through the chain, and sprocket C is 

connected to the cavity tying mechanism through the chain. 

2.2. Working Principle of the System 

During the operation, the deep-hole liquid fertilizer applicator is connected to the 

tractor by the three-point suspension assembly, which is pulled forward by the tractor; 

the PTO (Power Take Off) of the tractor is connected to the power input shaft assembly, 

and the rotating power input shaft assembly is driven by the worm gear reducer and 

liquid fertilizer pump through the main drive belt. The reducer rotates the main drive 

shaft driven by sprocket B. The main drive shaft drives sprocket A, sprocket C, and 

sprocket D to rotate synchronously. Sprocket A and sprocket D drive the liquid fertilizer 

injecting control mechanism to rotate and work, feeding the hole applicator into the hole 

tying mechanism via the liquid fertilizer feeding branch pipe. Sprocket C drives the 

drilling mechanism for rotary motion and finally completes the hole applicator’s inclined 

vertical posture drilling and liquid fertilizer hole-deepening operation. The body of the 

cavity applicator is shown in Figure 2. The dimensions of this prototype system are (W: 

2600, H: 975, L: 1710), and four rows of operations can be performed simultaneously at a 

time. 

 

Figure 2. Photo of the deep-hole liquid fertilizer applicator. 

2.3. Structure and Working Principle of Drilling Mechanism 

To achieve high efficiency and reduce crop damage, the drilling mechanism is 

designed, as shown in Figure 3. The tie point mechanism is mainly composed of five equal 

spur gears, a drive housing, a flange, a bevel gear, an outer housing, a rocker arm, a 

fertilizer spray needle, and other parts. 

The sprocket shaft and the sun wheel shaft are driven by a bevel gear, which runs 

through the sun wheel and is solidly attached to the drive housing. The flange and sun 

wheel are fixed to the outer housing and remain stationary with respect to the ground. 

The drive housing can rotate around the center of rotation of the flange, as shown in 

Figure 3a. 
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The five spur gears are arranged in equal order inside the drive housing cavity, and 

the rocker arm and the solid body of the needle are mounted on the axis line of the upper 

and lower planetary wheels, respectively. The initial installation angle of the fertilizer 

spray needle needs to meet vertical to the ground, as shown in Figure 3b. 

When working, the external power source drives the sprocket shaft to rotate; then, 

under the action of the bevel gear, the sun wheel shaft drives the housing around the 

flange centerline for rotational motion under the action of spur gear galaxy transmission, 

forcing the fertilizer needle to always ensure vertical attitude movement. As the 

mechanism presents the inclined structure form, it reduces the mechanical collision 

damage, as shown in Figure 3c. 

(a) (b) 

 

(c) 

Figure 3. Drilling mechanism. (a) two-dimensional diagram of the structure. (b) two-dimensional 

diagram of spur gear planetary systems. (c) diagram of field work. 1. sprocket shaft; 2. helical gear; 

3. Flange; 4. outer casing; 5. planetary frame; 6. rocker arm; 7. fertilizer spray needle; 8. upper 

planetary wheel; 9. intermediate wheel; 10. lower planetary wheel. 

2.4. Parameters of Drilling Mechanism 

A full spur gear planetary system can achieve the perpendicular and motion 

characteristics of the fertilizer needle [23–25], and its structural sketch is shown in Figure 

4. 
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Figure 4. Sketch of full spur gear planetary mechanism. 

The Line OA (The red line in Figure 4) is the main influencing factor in determining 

the longitudinal size of the drive housing. If the longitudinal size is too large, the kinetic 

performance of the mechanism becomes poor, and the driving force becomes large; if the 

longitudinal size is too small, interference can occur between the adjacent fertilizer 

needles, and the hole spacing becomes small. To ensure a corn plant inter-row of 320 mm 

and good dynamics, the Line OA should be between 120–150 mm. In this paper, the Line 

OA was 136 mm, and the spur gear knuckle curve was used to obtain a diameter of 68 

mm. To avoid driving the shell to scrape the soil and to achieve the agronomic 

requirements of deep fertilization depth, the design size of the needle needs to be slightly 

larger than the spur gear knuckle curve radius of 34 mm with an 80 mm hole depth; thus, 

the shell wall thickness was added at the size, thus setting the length of the needle at 140 

mm. 

2.5. Structure and Working Principle of Drilling Mechanism 

The liquid fertilizer application control mechanism is designed to achieve the goal of 

efficient and low-loss fertilizer delivery. The mechanism can be directly connected to the 

hose interface of the fertilizer injecting needle, which reduces the loss of fertilizer during 

the fertilizer delivery process [26,27]. The mechanism mainly consists of a sprocket shaft 

housing, a sprocket shaft, a spindle sleeve, a sub sleeve, a planetary wheel, an inner gear 

ring, a top bar, an outer housing, and a cylindrical hollow cam [28–30]. 

The outer housing is solidly attached to the sprocket shaft housing and the sprocket 

shaft is connected through the sprocket shaft housing to the sub shaft sleeve and spindle 

sleeve inside the housing. One side of the spindle sleeve is bonded to the other side of the 

sub sleeve. 

The other end of the spindle sleeve has two planetary wheels symmetrically inlaid 

on the circumference and the other end of the secondary sleeve has two top rods 

symmetrically inlaid on the circumference. The inner gear ring is on the outer shell and 

engages with the planetary wheels and the main sleeve, planetary wheels and inner gear 

ring form the differential wheel system. 

The cylindrical hollow cam is seated in the housing and mated with the top rod, while 

the sleeve, top rod, and cylindrical hollow cam form the cam mechanism. A two-

dimensional model of the mechanism is shown in Figure 5. 



Processes 2022, 10, 1320 6 of 17 
 

 

(a) 

  

(b) (c) 

Figure 5. Two-dimensional model of the liquid fertilizer injecting control mechanism. (a) Liquid 

fertilizer injecting control mechanism; (b) differential wheel mechanisms; (c) cylindrical hollow cam 

mechanism. 1. sprocket shaft housing; 2. outer housing; 3. inner gear ring; 4. planetary wheel; 5. 

sprocket shaft; 6. main shaft sleeve; 7. sub shaft sleeve; 8. top bar; 9. cylindrical hollow cams. 10. 

running pulley. 

When working, the external power source drives the sprocket shaft and inner gear 

ring. The sprocket shaft drives the spindle sleeve, and the sub sleeve for rotational motion, 

the movement of the planetary wheel inside the spindle sleeve is in the form of a combined 

motion of rotation around the axis line and rotation of the sprocket axis line and the 

operation of the differential wheel system makes the angular velocity of the planetary 

wheel zero. 

The cylindrical hollow cam mechanism makes the top rod in the sub shaft sleeve 

rotate and reciprocate linearly on the cylindrical hollow convex contour [31,32], ensuring 

the opening and closing of the fertilizer drain hole while rotating synchronously with the 

planetary wheel. 

The liquid fertilizer flows in from the inlet hole at a certain pressure. When the top 

bar moves from the pulling track to the returning track of the cylindrical hollow cam, the 

liquid fertilizer flows out from the outlet hole and is applied into the soil by the injecting 

needle through the hose. The red curve in Figure 5 shows the liquid fertilizer flow 

trajectory; when the top bar moves to the near rest stage, the top bar closes, and the liquid 

fertilizer stops being sprayed. 
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2.6. Fertilizer Injecting Control Mechanism Parameters 

2.6.1. Differential Wheel Mechanism 

To make the movement form of the needle outlet hose interface of the liquid fertilizer 

injecting mechanism consistent, a double planetary wheel-internal gear ring differential 

wheel system is adopted. According to the requirements of the needle movement 

characteristics of the drilling mechanism, a double planetary wheel-internal gear ring 

differential wheel system is adopted to meet the requirements of zero angular velocity of 

the injecting mechanism and the movement matching of rotation around the sprocket axis 

line to solve the mutual interference of the connecting hoses between the liquid fertilizer 

injecting control mechanism and the drilling mechanism and the “self-tightening” 

problem [31,32], as shown in Figure 6. 

 

Figure 6. Hose connection type. 

The number of teeth in the inner ring and the planetary wheel are 75 and 25, 

respectively, so that the angular velocity of the planetary wheel is zero, the ratio of angular 

velocity between the sprocket axis, and the inner ring is 3:2. The three-dimensional 

structure of the mechanism is shown in Figure 7. 

 

Figure 7. Differential wheel mechanism 3D model. 1. Planetary wheel; 2. Inner gear ring; 3. Sprocket 

shaft. 

2.6.2. Cylindrical Hollow Cam Mechanism 

Fertilizer injecting needles are required to spray fertilizer while in the soil and stop 

injecting when out of the soil in one working cycle. According to the overall structural 

dimensions of the liquid fertilizer injecting control mechanism, the average cylindrical 

radius of the cylindrical hollow cam mechanism was determined to be 50 mm, the 

maximum stroke was 6 mm, and the top roller radius was 10 mm. 

The angle between the inlet and outlet of the fertilizer needle and the horizontal plane 

was used to determine the angle of motion of the cylindrical hollow cam’s thrust stroke 

as 47°, and the angle of motion of the return stroke was 39.6°, as shown in Figure 8. The 

three-dimensional model of the cam mechanism is obtained, as shown in Figure 9. 
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Figure 8. Two-dimensional diagram of fertilizer needles in the soil and out of the soil. 

 

Figure 9. Cylindrical hollow cam mechanism 3D model.1. Roller; 2. Top bar; 3. Cylindrical hollow 

cam. 

2.7. Traction Equipment 

This study uses John Deere (Ningbo, Zhejiang, China) Agricultural Machinery Co., 

Ltd. 280 model tractor, the tractor has good performance, operating ground clearance, and 

a number of advantages, suitable for corn fertilization operations, a machine supporting 

power of 28 horsepower, drive form for the rear wheel drive, ground clearance height of 

310 mm, front wheel specifications for 4.00–16, rear wheel specifications for 9.5–24, 

suitable for corn crop fertilizing operations. 

2.8. Bench Test 

To analyze the fertilizer injecting performance of this fertilizer sprayer, we conducted 

bench tests on the differential two-way fertilizer supply distribution device and the 

drilling mechanism. The test was conducted on 6 April 2020 in an open space outside the 

agricultural and animal husbandry laboratory of Northeast Agricultural University, 

Xiangfang District, Harbin City, Heilongjiang Province (126°43′48″ N, 45°44′56″ E). To 

analyze the working performance and the rationality of the design of the distribution 

device, fertilizer injecting performance and energy saving tests were conducted. The main 

equipment used for the tests is shown in Table 1 and Figure 10. 

Table 1. The main equipment used for the test. 

Name Specifications Function 

Fertilizer measuring  

container 
1500 mL 

Obtain fertilizer from the fertilizer 

spray needle 

Funnel D-100 mm 

Preventing fertilizer from overflowing 

from the measuring cylinder when 

measuring 
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Syringes 30 mL 

Accurate acquisition of the residual 

fertilizer in the fertilizer measuring 

container 

Stopwatch Precision-0.01s 
Measurement of fertilizer injecting 

time 

Measuring cylinder 200 mL Measuring the volume of fertilizer 

Liquid fertilizer 
Urea ammonium 

nitrate solution (1%) 
Test drug 

 

Figure 10. Test device. 1. Liquid fertilizer pump; 2. Distribution device; 3. Cavity tying mechanism; 

4. Funnel; 5. Measuring cylinder; 6. Syringe; 7. Fertilizer injecting needle; 8. Fertilizer measuring 

container. 

2.8.1. Fertilizer Application Volume and Liquid Fertilizer Pump Pressure Bench Test 

To explore the relationship between fertilizer application volume and liquid fertilizer 

pump pressure, the pressure value of the liquid fertilizer pump was predicted when the 

agronomic requirement of 20–30 mL of fertilizer application volume was reached. In the 

test, the liquid fertilizer pump pressure was selected as the variable and the output shaft 

speed as the quantitative to see how the fertilizer application volume varied with the 

liquid fertilizer pump pressure. The speed of the differential bi-directional fertilizer 

distribution device was set at 75 r min−1 to ensure the same speed as the cavity tying 

mechanism, and the three levels of liquid fertilizer pump pressure were 0.2, 0.3, and 0.4 

MPa. 

2.8.2. Fertilizer Energy Loss and Liquid Fertilizer Pump Pressure Bench Test 

To explore the relationship between energy loss and liquid fertilizer pump pressure, 

the head loss of the differential two-way fertilizer supply distribution device was 

calculated by Bernoulli equation, as shown in Equation (1). 

Z1+
P1

ρg
+

v1
2

2g
 = Z2+

P2

ρg
+

v2
2

2g
+hw (1)

where, Z1 is the position head (m), P1 is the Static pressure of liquid fertilizer at the outlet 

of liquid fertilizer pump (Pa), P2 is the Static pressure of liquid fertilizer at the outlet of 

fertilizer spray needle (Pa), ρ is the liquid fertilizer density (kg m−3), g is the gravitational 

acceleration (m s−2), v1 is the liquid fertilizer flow velocity at the outlet of the liquid 

fertilizer pump (m s−1), v2 is the liquid fertilizer flow velocity at the outlet of the fertilizer 

spray needle (m s−1), hw is the total head loss of liquid fertilizer (m). 

According to the volume of liquid fertilizer and injecting time according to Equation 

(2) to calculate the flow of the fertilizer spray needle at the outlet at different pressures. 

v2 = 
V

A2t
 (2)
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where, v2 is the fertilizer spray needle outlet flow velocity (m s−1), A2 is the cross-sectional 

area at the outlet of a single fertilizer spray needle (m2), V is the liquid fertilizer volume, 

(m3), t is the fertilizer injecting time, (s). 

The flow velocity at the outlet of the liquid fertilizer pump is calculated by the 

continuity equation of the fluid, i.e., Equation (3). 

v1A1 = 4 v2A2 (3)

where, A1 is the cross-sectional area at the liquid fertilizer pump outlet, (m2), since Z1−Z2 

is approximately equal to 1.0 m, so α = 1, the flow of liquid fertilizer at the outlet of the 

fertilizer spray needle is free outflow, so P2−P1 = 0. According to Equation (3), the entire 

pipeline system can be obtained with the total head loss of liquid fertilizer pressure 

changes. 

2.9. Field Test 

To verify the working performance of the fertilizer application machine, a field test 

was conducted. The test was conducted on 18 June 2020 in the experimental field 

(127°2′58″ S, 45°31′18″ E) of Northeast Agricultural University in Acheng District, Harbin 

(Heilongjiang Province). The climate is temperate monsoon, with an annual precipitation 

of 500–600 mm, an average annual temperature of 4.25 °C, short cool summers, and long 

cold winters. The experimental area was 130 m × 50 m, and the study area was the 

Dongnong No. 253 corn field, which was in the intertillage and fertilization period. The 

pre-sowing period met the requirements of the dominant planting pattern of 650 mm row 

spacing and 300–320 mm plant spacing. The mean values of the main physical and 

chemical properties of the soil are shown in Table 2, where the cone index was determined 

by a TJSD-750 soil firmness tester (Baoding, Hebei, China Puyunong Technology Co., 

Ltd.). Soil bulk density was measured by the ring knife method, using an aluminum ring 

knife (60 cm3) and an electronic balance (accuracy 0.01 g, Shenzhen,Guangdong, China 

Lintao Instruments Co.). Soil water content and temperature were measured by a VMS-

3000-TR soil temperature and water content sensor (Jinan, Shandong, China Vemsee 

Corporation). Soil cone index was determined by a TJSD-750 soil firmness tester (Baoding, 

Hebei, China Puyunong Technology Co., Ltd.), and pH was determined by a ZD-06 soil 

acidity moisture meter (Shenzhen, Guangdong, China Zhengda Instrument Co., Ltd.).  

Table 2. Physical and chemical properties of soil in the Acheng experimental field base of Northeast 

Agricultural University. 

Cone Index 

(MPa) 

Soil Bulk 

Density 

(g cm−3) 

 

Soil Water 

Content 

(%) 

Soil  

Temperature 

(°C) 

Depth 

(mm) 
pH 

0.8 1.29 13.50 25.47 80 7.14 

2.10. Test Program 

In this study, the width of the holes and the spacing of the holes was used as an 

indicator to measure the performance of the liquid fertilizer hole application machine. The 

experimental fields were calibrated according to the number of rows, and each row was 

randomly selected to measure the width of the holes and the spacing between the holes 

with 100 holes. A steel plate ruler was used to measure the width of the holes; a stopwatch 

was used to calibrate the working speed and rotation speed of the drilling during the field 

operation of the hole applicator. The test factors were coded as shown in Table 3. 
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Table 3. Coding table of level of experimental factors. 

Code Number 
Drilling Speed 

(r min−1) 

Forward Speed 

(m s−1) 

+1.414 150.0 1.9 

+1 141.2 1.8 

0 120.0 1.5 

−1 98.8 1.2 

−1.414 90.0 1.1 

ANOVA was used to analyze the variance values of the test data and determine 

whether the factors had a significant effect on the test indexes and whether the interaction 

was significant. The response surface was fitted with a binary regression equation to 

determine the optimal combination of hole rotation speed and forward velocity to achieve 

the theoretically optimal hole width and spacing response index values. 

3. Results and Discussion 

3.1. Fertilizer Application Volume and Liquid Fertilizer Pump Pressure Bench Test 

The results of the single-factor test for the fertilizer spray performance test are shown 

in Table 4. 

Table 4. Liquid fertilizer volume and time data. 

Liquid Fertilizer Pump 

Pressure 

(Mpa) 

Amount of Fertilizer 

(mL) 

First Second Third Fourth Fifth 

0.2 13.8 13.7 14.1 13.6 13.6 

0.3 19.6 19.4 19.2 19.0 19.2 

0.4 22.4 22.7 22.1 21.9 22.7 

It can be seen from Figure 11 that when the rotational speed of the distribution device 

is fixed at 75 r min−1, the amount of fertilizer applied increases with the increase of liquid 

fertilizer pump pressure. The reason is that when the rotational speed and injecting time 

of the differential two-way fertilizer distribution device are certain, the volume of the 

fertilizer applied is proportional to the cross-sectional area of the fertilizer inject port and 

the flow velocity. Under the condition that the cross-sectional area of the fertilizer spray 

port is certain, the volume of the fertilizer is only related to the flow velocity, while the 

flow velocity is proportional to the pressure of the liquid fertilizer pump, so the fertilizer 

application volume gradually increases with the increase of the pressure of the liquid 

fertilizer pump. For fertilizer spray performance, it is important to be able to maintain a 

linear variation of the pressure of the liquid fertilizer pump with respect to the amount of 

fertilizer applied. These results were consistent with a finding proposed by Da Silva and 

Maglhães [33], and Fuadi et al. [34]. 
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Figure 11. Influence of different hydraulic pump pressures on liquid fertilizer amount. 

3.2. Energy Saving Test 

The data on the volume and timing of fertilizer injecting in the energy saving 

experiment are shown in Table 5. 

Table 5. New pipeline system liquid fertilizer volume and time data. 

No. 

Pressure (MPa) 

0.2 0.3 0.4 

Volume 

(mL) 

Time 

(s) 

Volume 

(mL) 

Time 

(s) 

Volume 

(mL) 

Time 

(s) 

First 852.7 4.96 1040.4 4.91 1207.0 5.05 

Second 846.4 5.00 1025.7 4.96 1204.1 5.12 

Third 851.6 5.11 1021.5 5.02 1198.3 5.10 

Fourth 856.8 4.91 1018.4 5.04 1197.5 4.96 

Fifth 850.7 5.01 1021.8 5.02 1203.6 5.02 

Total 4258.2 24.99 5127.8 24.95 6010.5 25.25 

According to the sum of volume and time of liquid fertilizer in Table 5. According to 

Equation (2), the flow velocity of liquid fertilizer at different pressures at the outlet of the 

fertilizer spray needle was calculated, and the values of 8.7, 10.4, and 12.1 m s−1. 

The flow velocity at the outlet of the liquid fertilizer pump is calculated by Equation 

(3), where the cross-sectional diameter at the outlet of the liquid fertilizer pump is 11 mm, 

and its values are 1.8, 2.1, and 2.5 m s−1. The total head loss of liquid fertilizer with pressure 

for the entire piping system had values of 9.0, 12.6, and 15.0 m. The total head loss values 

of the liquid-fertilizer rotor-type converter were calculated to be 11.1, 15.7, and 20.5 m. 

The calculated energy saving values of the piping system for the differential two-way 

fertilizer supply distribution device are 2.1, 3.1, and 5.5 m. The relationship between 

energy saving and liquid fertilizer pump pressure is obtained, as shown in Figure 12. 

 

Figure 12. Relationship between energy saving and liquid fertilizer pump pressure. 
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The energy loss of liquid fertilizer in the differential two-way fertilizer supply 

distribution device is caused by local head loss and line loss, the length of the fertilizer 

delivery pipe of the whole device is short, and the resistance coefficient along the pipe 

wall material is small. Therefore, this study ignores the line loss. The head loss is 

expressed by hj. Equation (4) can analyze the mechanism of local head loss in the flow of 

liquid fertilizer in the pipeline. According to the head loss values in Figure 12, it is known 

that the liquid fertilizer energy loss gradually increases with the gradual increase of liquid 

fertilizer pump pressure. 

The piping system of differential bidirectional fertilizer supply and distribution 

device has four fertilizer injecting needles, two more than the liquid fertilizer rotor type 

converter [32]. Based on the fluid continuity equation, the liquid fertilizer flow velocity at 

the outlet of the differential two-way fertilizer supply distribution device is equal to half 

of that of the liquid fertilizer rotor type converter, and its local resistance loss includes one 

sudden expansion tube, two sudden reduction tubes, and one 90° right-angle round bend 

tube, with local loss coefficients of 0.23, 0.34, and 0.8, respectively. Although the 

differential two-way fertilizer supply distribution device had one more 90° right angle 

round bend tube loss form compared with the liquid fertilizer rotor type converter, the 

theoretical analysis of the distribution device liquid fertilizer energy loss is less than the 

converter liquid fertilizer energy loss, the formula for the Equations (5) and (6). The test 

results show that the differential two-way fertilizer supply distribution device has higher 

fertilizer spraying efficiency. 

Hj = ζ
v2

2g
 (4)

where, v is the average flow velocity of cross section (m s−1), g is the gravitational 

acceleration (m s2), ζ is the local resistance coefficient. 

H1j = 0.34 
v2

2g
 (5)

h2j = 0.57 
v2

2g
 (6)

where, h1j is the differential two-way fertilizer supply distribution device energy loss (J), 

h2j is the energy loss of liquid fertilizer rotor type converter (J). 

3.3. Effect of Forward Speed and Drilling Speed on Hole Width and Hole Spacing 

To investigate the effect of forward speed and drilling speed on hole width and hole 

spacing, the machine was tested in the field at different forward speeds. The fertilizer 

needle drilling motion combines two motions [35,36]: one is a circular motion when the 

drilling mechanism rotates, and the other is a linear motion when the machine keeps 

moving. When the trajectory of the fertilizer injection needle is a “short pendulum”, the 

hole width is the distance between the in-soil and out-soil points of the needle body. When 

the trajectory of the fertilizer injection needle is a “trochoid”, the hole width is the 

maximum chord length of the trajectory of the needle body into and out of the soil [36]. 

Figure 13 shows the drilling trajectory of the fertilizer injecting needle under the action of 

forward speed of 1.1–1.9 m s−1, when the drilling speed is 120 r min−1. As the forward speed 

increases, the hole width first decreases and then increases, and the hole spacing gradually 

increases. Figure 14 shows the drilling trajectory of the fertilizer injecting needle under 

the action of 90–150 r min−1, when the forward speed is 1.5 m s−1. As the drilling speed 

increases, the hole width decreases and then increases, and the hole spacing gradually 

decreases. 
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Figure 13. Relationship between the influence of the forward speed on trajectory. 

 

Figure 14. Relationship between the influence of the drilling speed on the trajectory. 

3.4. Parameter Optimization Test Results 

The effective cooperation between the drilling speed and forward speed is the key 

factor for the small hole opening of soil surface travel. To obtain the change pattern of the 

hole width and hole spacing under the interaction of different advancing speeds and 

drilling speeds of the machine, the experiments were conducted with the forward speed 

and the drilling speed as the independent variables, and the hole width and hole spacing 

as the measurement indicators, using a quadratic orthogonal rotational combination 

design test [37,38] scheme to obtain the variation law of the hole width and hole spacing 

under the interactions of different forward speeds and drilling speeds of the implement; 

the obtained test results are shown in Table 6. 

Table 6. Schemes and results of experiment. 

No 

Test Factors Performance Indicator 

X1-Drilling Speed 

(r min−1) 

X2-Forward Speed 

(m s−1) 

Y1-Hole Width 

(mm) 

Y2-Hole Spacing 

(mm) 

1 −1 −1 39.6 363.7 

2 1 −1 66.6 255.4 

3 −1 1 99.7 544.4 

4 1 1 40.9 383.3 

5 −1.414 0 83.2 499.7 

6 1.414 0 54.1 300.9 

7 0 −1.414 60.9 274.2 

8 0 1.414 74.5 475.0 

9 0 0 38.2 375.0 

10 0 0 41.3 372.1 

11 0 0 36.1 376.0 
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12 0 0 38.6 379.0 

13 0 0 35.1 371.2 

14 0 0 33.3 376.3 

15 0 0 35.3 372.6 

3.5. Response Surface Analysis 

We can see that the interaction between the drilling speed and forward velocity is 

significant. These results were consistent with a finding proposed by Hu, Li, Wang, He, 

Zhang, Chen and Wang [4], Gaowei et al. [39]. Finally, the test data were optimized to 

obtain an optimal range of operating parameters. The constraint conditions were Y1 = min, 

Y2 = 300–320 mm, X1 = 90–150 mm and X2 = 1.1–1.9 m s−1, as shown in Figure 15. When the 

working speed and advance speeds were 127 r min−1 and 1.40 m s−1, respectively, the 

performance of the drilling mechanism was optimal, with a hole width of 39.9 mm and a 

hole spacing of 320 mm. 

 

Figure 15. Optimization of optimal operating parameter range. 

The interaction between the drilling mechanism speed and the forward speed of the 

machine is satisfied by the different trajectories formed by the fertilizer injecting needles, with 

consequent differences in the width of the holes on the soil surface. To achieve a small hole 

opening and agronomically required hole spacing, tests were carried out with different 

operating parameters. The results showed that when the working speed and forward speeds 

were 127 r min−1 and 1.40 m s−1, respectively, the performance of the machine was optimal, and 

a better fertilizer delivery method could be achieved for corn plants. 

4. Conclusions 

In this study, we proposed an efficient liquid fertilizer drilling method based on alternate 

drilling, and found that the forward speed and drilling speed had a significant effect on the 

hole width and hole spacing. The optimal combination of parameters for the most suitable 

corn growing area was 127 r min−1 and 1.40 m s−1 for drilling speed and forward speed. The 

hole width is 39.9 mm and the hole spacing is 320 mm. 

The results of this paper show that an efficient liquid fertilizer drilling method based on 

alternate drilling can effectively reduce the hole width to minimize liquid fertilizer 

volatilization compared with the traditional liquid fertilizer deep application method and is 

suitable for the spacing of maize crops. Therefore, this method can provide an effective means 

for the future field of agricultural machine design. At the same time, this operation method 

can significantly reduce the amount of chemical fertilizer application, reduce environmental 

pollution, and bring greater economic benefits. 
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The results of this paper also have some limitations. First, the results of this paper are 

mainly applicable to maize crops, while the applicability to other crops needs to be further 

investigated. Second, the field trials conducted in this study included a few uncontrolled 

variables, so the results of this paper may not be able to better illustrate the regularity of the 

test results, and a large number of replicated trials in soil bins should be conducted to further 

verify the effectiveness of the machine operation. 
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