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Abstract: This paper associates with stability analysis of linear impulsive stochastic delay systems
(ISDSs). Although many conclusions about the stability of ISDSs have been obtained based on
Lyapunov’s method, relatively few research theories about delay-dependent stability with less con-
servativeness have been established. Therefore, we introduce an appropriate Lyapunov-Krasovskii
functional (LKF) to work out this problem, and a novel delay-dependent exponential stability the-
orem is first deduced. On the other hand, when mean-square stability is considered, we present
delay-dependent stability conditions, it is of interest to note that the proposed conditions do not
depend on the size of delays in the diffusion term, which solves the problems of determining the
mean-square stability of ISDSs for which the diffusion term delays are not available. In the end, two
numerical examples are carried out to verify the feasibility of our conclusions.

Keywords: ISDSs; delay-dependent; mean-square stability

1. Introduction

The presence of time-delays frequently affects real life such as biology, engineering,
communication, and the long-distance-transmission systems, etc (see, e.g., [1–3]). Such
delays may have significant influences on the overall behavior of a dynamical system and
result in oscillation, poor performance, and even instability. Therefore, the investigations
about the stability of time-delay systems (TDSs) have become topical issues in the past
few decades (see, e.g., [4–9]). In accordance with the dependence of stability conditions
on delays, the criteria for stability of TDSs come in two varieties: those named delay-
independent stability (DIS) criteria and those that are delay-dependent stability (DDS)
criteria (see, e.g., [10–13]). Generally, the DDS conditions may be less conservative than DIS
conditions, especially for the small delays. For instance, Ref. [10] obtained the DDS criterion
of uncertain TDSs, which can be verified by solving related LMIs. Furthermore, impulsive
systems have been carefully conducted in [14,15] since they construct a mathematical
framework for the dynamic processes whose states experience instantaneous jumps at
certain times. Moreover, the extended discussions around stability studies of impulsive
delayed systems (IDSs) were presented in [16–18]. For instance, in [17], by introducing a
switching parameter, input-to-state stability for IDSs was guaranteed by a Razumikhin-
type criterion.

At the same time, some structures and parameters of impulsive delay systems are
inevitably affected by stochastic perturbation in some real-world progress. In consequence,
as a suitable mathematical model to describe impulsive control problems under stochastic
noise, impulsive stochastic delay systems (ISDSs) have triggered concerns [19–23]. There-
fore, many effective research methods were presented for analyzing the stability of ISDSs,
such as the comparison principle, the Lyapunov function, the Lyapunov-Razumikhin the-
orem, and the LKF method. More specifically, Ref. [24] proposed DDS and DIS criteria
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for the exponential mean-square stability of stochastic time-delay systems by using the
comparison principle. On the basis of the discussions on Lyapunov functions, Ref. [21]
obtained some criteria of the global exponential stability for ISDSs. In [22], by employing
Razumikhin technique, a few theorems were set up to ensure pth moment exponential
stability for ISDSs with Markovian switching. Specifically, Ref. [23] obtained the p-th
moment exponential stability of ISDSs driven by G-motion.

Taking the effect of the actual impulse perturbation into account, we cope with DDS
conditions for a kind of ISDSs in this paper. It is well-known that the stability criteria using
the Lyapunov function method and the Razumikhin technique require the construction of
Lyapunov functions, however, the Lyapunov functions are not easy to construct, so the rel-
evant conclusions are not convenient in practical applications. In contrast, stability criteria
given in the form of LMI using the LKF method do not have the trouble of constructing
Lyapunov functions, and they can be verified directly by Matlab. Therefore, we obtained
sufficient conditions for the mean-square exponential stability of ISDSs by using a suitable
LKF, and the DDS conditions obtained may possess less conservativeness. In particular,
it is difficult to obtain the diffusion term delays in some real systems. Therefore, for the
situation where the diffusion term delays are not directly available, we establish draft-
delay-dependent/diffusion-delay-independent conditions for the mean-square stability of
ISDSs. In general, the main contributions of our work are as follows:

(i) A DDS theorem for exponential stability of ISDSs is founded by using an appropriate
LKF, which can be verified by the feasibility of LMIs.

(ii) When mean-square stability is considered, we propose sufficient conditions for this
kind of ISDSs, and the established DDS criterion does not rely on the existence of
delays in the diffusion term.

Subsequent works can be described in the following sections. Section 2 provides some
theoretical necessary stuff. Stability conditions for the linear ISDSs are deeply discussed
in Section 3. Two numerical examples and their simulations validate the effectiveness of
conclusions in Section 4. Finally, we summarize this paper in Section 5.

In this paper, we use (Ω,F ,P) on behalf of a complete probability space with a
filtration {Ft}t≥0, and the filtration satisfies the usual conditions. N = {0, 1, 2, · · · },
N+ = {1, 2, · · · }. Let integers e and h satisfy e < h, and e, h = {e, e + 1, · · · , h}. Matrix
B < 0(B > 0) denotes B is a negative definite (positive definite) matrix with BT = B.
| · | stands for the Euclidean norm operator, and the mathematical expectation oper-
ator is denoted by E(·). Square matrix B ∈ Sn×n

+ means B is a symmetric positive
definite matrix. λmax(A) (λmin(A)) is the maximum (minimum) eigenvalue of matrix
A. For τ > 0, C([−τ, 0];Rn) = {ψ : [−τ, 0] → Rn|ψ(s) is a piecewise right continu-
ous function with the norm ∥ψ∥ = sup

−τ≤s≤0
|ψ(s)|} ; L2

F0
([−τ, 0];Rn) denotes the set of

F0-measurable stochastic variables ψ ∈ C([−τ, 0];Rn) satisfying sup
−τ≤s≤0

E|ψ(s)|2 < ∞. Set

L2
F0
(δ) = {ψ|ψ ∈ L2

F0
([−τ, 0];Rn), sup

−τ≤s≤0
E|ψ(s)|2 < δ}. For B = BT , C = CT , we use(

B D
∗ C

)
=
(

B D
DT C

)
for simplicity.

2. Preliminaries

Consider the following ISDSs with multiple delays:
dx(t) =

m

∑
i=1

Aix(t − τi)dt +
m

∑
i=1

Bix(t − δi)dwi(t), t ̸= tk,

∆x(tk) = Ckx(t−k ), k ∈ N+,
x(t0 + s) = ψ(s), t0 = 0, s ∈ [−τ, 0],

(1)

for each i ∈ 1, m, Ai, Bi ∈ Rn×n, wi(t) is a scalar Brownian motion defined on (Ω,F ,P).
τi ≥ 0 and δi ≥ 0 are the drift term delays and the diffusion term delays, respectively.
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τ = maxi∈1,m{τi, δi}. ψ(s) ∈ L2
F0
([−τ, 0];Rn) is the given initial value. {tk, k ∈ N+}

is a monotone increasing impulsive switching time sequence, and limk→+∞ tk = +∞.
Let x(t+k ) = lims→0+x(s + tk), x(t−k ) = lims→0−x(s + tk), and ∆x(tk) = x(t+k ) − x(t−k ).
∆x(tk) = Ckx(t−k ) is the state jumping at the moment of tk, where Ck ∈ Rn×n is the impulse
gain matrix, k ∈ N+. In addition, for any ψ(s) ∈ L2

F0
([−τ, 0];Rn), we assume there exists a

stochastic process, as the solution of (1), is right-continuous, i.e., x(tk) = x(t+k ).

Definition 1. For any t0 > 0, a stochastic process x(t) ∈ Rn is called to be a solution of (1) on
[t0, T] (t0 < T < ∞) if it satisfies conditions below:

(i) The set of impulses ℧ = {t ∈ (t0, T] | t = tk, k ∈ N+} is finite;
(ii) For t ∈ ℧, x(t) is right-continuous, i.e., x(tk) = x(t+k ). x(t) is continuous for all non-

impulsive times (i.e., t ∈ (t0, T]\℧) and Ft−adapted;
(iii) For any t ∈ (t0, T], ψ ∈ L2

F0
([−τ, 0] , Rn), the following equation:

x(t) =


ψ(t), t ∈ [−τ, 0],

x(t0) +
m

∑
i=1

∫ t

t0

Aix(t − τi)dt +
m

∑
i=1

∫ t

t0

Bix(t − δi)dwi(t), t ∈ (t0, T]\℧,

Ckx(t−k ), t = tk ∈ ℧,

(2)

holds with probability 1.

Next, we recall the definitions of mean-square stability and mean-square exponen-
tial stability.

Definition 2 ([25]). The trivial solution of (1) is called mean-square stable if for any ε > 0, there
exists δ > 0, such that E|x(t)|2 ≤ ε (t ≥ 0) for any initial value ψ ∈ L2

F0
(δ).

Definition 3 ([26]). The trivial solution of (1) is called mean-square exponentially stable if there
exist constant Γ ∈ R+, and constant γ ∈ R+, independent of the initial value ψ and time t,
such that

E|x(t; ψ)|2 ≤ ΓE∥ψ∥2e−γt, t ≥ 0, (3)

for any ψ ∈ L2
F0
([−τ, 0];Rn).

Definition 4 ([26]). For simplicity, let xt = x(t + s), s ∈ [−τ, 0], V(t, xt) : [0, ∞)×Rn → R+

is said to belong to the class S if V(t, xt) satisfies the conditions below:

(i) For every moment tk ∈ {tk, k ∈ N+}, limt→t−k
V(t, xt) = V(t−k , xt−k

) and

limt→t+k
V(t, xt) = V(t+k , xt+k

) exist in R+. Moreover, V(t+k , xt+k
) = V(tk, xtk );

(ii) For t ∈ [tk−1, tk)×Rn, V(t, xt) is continuously twice differentiable in xt and once in t.

In order to draw our conclusion more accurately, the following lemma is needed in
the subsequent discussions.

Lemma 1 ([27]). For matrices P = PT , M, and Q with appropriate dimensions, the following LMI:[
P M
MT −Q

]
< 0

is equivalent to Q > 0, P +MQ−1MT < 0.

3. Main Results

In this section, with the help of an appropriate LKF, we will focus our attention on the
stability study of (1) and accordingly give sufficient conditions for exponential stability of
system (1).
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Theorem 1. Suppose that there exist matrices M1 ∈ Rn×n, M2 ∈ Rn×n, Q ∈ Sn×n, P ∈ Sn×n
+ ,

Gi ∈ Sn×n
+ , Wij ∈ Sn×n

+ , i ∈ 1, m, j ∈ 1, m, scalar α and positive constants ξ1, ξ2, σ, γ, β
satisfying β < 1 and

ln(β +
2τξ2

ξ1
) < −(α + γ)σ, (4)

as well as the following LMIs hold:
−Q + Ψ1 Ψ2 MT

1 Aτ MT
1 A

⊗ I
∗ Ψ3 MT

2 Aτ MT
2 A

⊗ I
∗ ∗ −Ψ4 0
∗ ∗ ∗ −Ψ5

 < 0, (5)

ξ1 I < P, (6)

(I + Ck)
T P(I + Ck) < βP, k ∈ N+, (7)

where

Ψ1 =
m

∑
i=1

[MT
1 Ai + AT

i M1 + BT
i PBi + τi

m

∑
j=1

BT
j WijBj],

Ψ2 = P − MT
1 +

m

∑
i=1

AT
i M2, Ψ3 = −M2 − MT

2 +
m

∑
i=1

τiGi,

Ψ4 = diag(G1, · · · , Gm), Ψ5 = diag(W1, · · · ,Wm),

Wi = diag(Wi1, · · · , Wim), Aτ = [
√

τ1 A1, · · · ,
√

τm Am],

A
⊗

I = [A1,A2, · · · ,Am], Ai = [Ai, · · · , Ai]︸ ︷︷ ︸
m

, i = 1, 2, · · · , m.

If t1 ≥ 2τ and supk∈N+{tk+1 − tk} ≤ σ, then system (1) is mean-square exponentially stable.

Proof. Let gi(t) = Bix(t − δi), and y(t) =
m

∑
i=1

Aix(t − τi). First, we introduce a LKF

V(t, xt) ([12]) (see Definition 4) as follows:

V(t, xt) = Va(t, xt) + Vb(t, xt), (8)

where
Va(t, xt) = xT(t)Px(t),

Vb(t, xt) =
m

∑
i=1

∫ t

t−δi

xT(s)(BT
i PBi + τi

m

∑
j=1

BT
j WijBj)x(s)ds

+
m

∑
i=1

∫ 0

−τi

∫ t

t+µ
[yT(s)Giy(s) +

m

∑
j=1

gT
j (s)Wijgj(s)]dsdu.

It infers from Lemma 1 that (5) is equivalent to

Ω1 = Ω −
[

Q 0
0 0

]
< 0, (9)

where

Ω =

[
Ψ1 Ψ2
ΨT

2 Ψ3

]
+

m

∑
i=1

τi MT AiG−1
i AT

i M +
m

∑
i=1

m

∑
j=1

MT AiW−1
ij AT

i M.

Based on Theorem 1 of [12], one can get that for t ∈ [tk, tk+1), k ∈ N+,

ELV(t, xt) ≤ E[ηT(t)Ωη(t)], (10)
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where the operator LV(t, xt) is given in [28] (p. 172). It follows from (9) that

ELV(t, xt) ≤ E[xT(t)Qx(t)]. (11)

Considering the formation of V(t, xt), we assert that there exist ξi ≥ 0, i ∈ 1, 3
satisfying

ξ1|x(t)|2 ≤ V(t, xt) ≤ ξ3|x(t)|2 + ξ2

∫ t

t−2τ
|x(s)|2ds. (12)

Indeed,
ξ1|x(t)|2 ≤ Va(t, xt) ≤ ξ3|x(t)|2, (13)

Vb(t, xt) ≤ ξ2

∫ t

t−2τ
|x(s)|2ds. (14)

Based on (11), there exists α = λmax(Q)/ξ1 such that

ELV(t, xt) ≤ αEV(t, xt), t ∈ [tk, tk+1), k ∈ N. (15)

Further, using Theorem 4.1 of [28] (p. 160), one can find Γ0 > 0 such that

E( sup
−τ≤s≤ t1

2

|x(s)|2) ≤ (β +
2τξ2

ξ1
)Γ0E∥ψ∥2e

αt1
2 . (16)

Since t1 − t0 ≥ 2τ, then t1
2 − 2τ ≥ −τ, recall (12), one can get

EV(
t1

2
, x t1

2
) ≤ξ3E|x(

t1

2
)|2 + ξ2E

∫ t1
2

t1
2 −2τ

|x(s)|2ds

≤ξ3E|x(
t1

2
)|2 + 2τξ2E( sup

s∈[−τ, t1
2 ]

|x(s)|2)

≤ξ1(β +
2τξ2

ξ1
)Γ1E∥ψ∥2e

αt1
2 ,

where Γ1 = ξ3+2τξ2
ξ1

Γ0. Therefore, by (15) and Gronwall inequality, for t ∈ [ t1
2 , t1),

we conclude

EV(t, xt) ≤ EV(
t1

2
, x t1

2
)eα(t− t1

2 ) ≤ ξ1(β +
2τξ2

ξ1
)Γ1E∥ψ∥2eαt, (17)

then from (13) we have

E|x(t)|2 ≤ (β +
2τξ2

ξ1
)Γ1E∥ψ∥2eαt. (18)

Since Γ1 = ξ3+2τξ2
ξ1

Γ0 > Γ0, combine (16) with (18), for t ∈ [−τ, t1), one deduces

E|x(t)|2 ≤ (β +
2τξ2

ξ1
)Γ1E∥ψ∥2eαt1 . (19)

Taking note of (7) and the continuity of EVb(t, xt) at t = t1, it is verified that

EV(t1, xt1) = EVa(t1, xt1) +EVb(t1, xt1) ≤βEVa(t−1 , xt−1
) +EVb(t−1 , xt−1

)

≤ξ1(β +
2τξ2

ξ1
)2Γ1E∥ψ∥2eαt1 ,

(20)
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indeed, it follows from (17) that βEVa(t−1 , xt−1
) ≤ βEV(t−1 , xt−1

) ≤ ξ1β(β + 2τξ2
ξ1

)Γ1E∥ψ∥2eαt1 ,
moreover, from (14) and (19) we have

EVb(t−1 , xt−1
) ≤ ξ2

∫ t1

t1−2τ
|x(s)|2ds ≤ 2τξ2(β +

2τξ2

ξ1
)Γ1E∥ψ∥2eαt1 .

For t ∈ [tk−1, tk), suppose that EV(t, xt) ≤ ξ1(β + 2τξ2
ξ1

)kΓ1E∥ψ∥2eαt, thus, for

t ∈ [tk−1, tk), one can get E|x(t)|2 ≤ (β + 2τξ2
ξ1

)kΓ1E∥ψ∥2eαt from (12). Then, inspired
by (20), one can obtain

EV(tk, xtk ) ≤ βEVa(t−k , xt−k
) +EVb(t−k , xt−k

) ≤ ξ1(β +
2τξ2

ξ1
)k+1Γ1E∥ψ∥2eαtk .

By Gronwall inequality, for t ∈ [tk, tk+1), we conclude

EV(t, xt) ≤ EV(tk, xtk )e
α(t−tk) ≤ ξ1(β +

2τξ2

ξ1
)k+1Γ1E∥ψ∥2eαt. (21)

According to the mathematical induction method, (21) holds for all t ∈ [tk, tk+1), k ∈ N+,
which leads to

E|x(t)|2 ≤ (β +
2τξ2

ξ1
)k+1Γ1E∥ψ∥2eαt. (22)

On account of (22), condition (4) yields E|x(t)|2 ≤ Γ1E∥ψ∥2e−γt, which implies that (1)
is mean-square exponentially stable, and the desired result is achieved.

Remark 1. The impulses may be viewed as impulsive stabilizing when β < 1. Indeed, ac-
cording to (15), the system may be unstable when α > 0, however, under the restriction of
β < 1, the Lyapunov functional (8) may jump down at the impulse moment tk, moreover,
supk∈N+{tk+1 − tk} ≤ σ means that the impulses should occur frequently. Thus the impulses may
be used to stabilize the original unstable system.

Remark 2. Based on the proof of Theorem 1 one obtain E|x(t)|2 ≤ Γ1E∥ψ∥2e−γt, thus, one can
get limt→+∞ sup 1

t ln(E|x(t)|2) ≤ −γ, the left side of this inequality is called the mean-square
Lyapunov exponent, and γ is restricted by condition (4). According to the above analysis, the larger
the value of γ, the faster the system states may converge to 0. If positive parameters ξ1, ξ2, β < 1 in
Theorem 1 are fixed, the value of γ increases when σ decreases, i.e., The more frequently the impulse
occurs, the faster the system states converge to 0. As we mentioned in Remark 1, the impulse act
as a stabilizing controller. However, the sufficient condition of exponential mean-square stability
for (1) relies on the existence of all matrices and parameters, therefore, further in-depth learning is
needed about how to tune the parameter γ.

Remark 3. In the deterministic case, based on Newton-Leibniz formula, it works well when
we choose a LKF which contains the state derivative to investigate DDS criteria for TDSs (see,
e.g., [1,7,29]). However, it should be noted that the Brownian motion is nowhere differentiable, for
this reason, it doesn’t work for (1) to use the LKF relied on the state derivative. In this paper, we use
LKF (8) to establish DDS conditions for exponential stability of system (1).

Remark 4. Compared with the mean square exponential stability criterion for stochastic time delay
systems presented in [12], our conclusions fully take into account the effect of impulses, and obtain
a criterion for the exponential mean-square stability of system (1). In particular, as a special case of
system (1), if Ck = I, k ∈ N+, (1) degenerates to the stochastic systems with multiple delays. Set
Q = 0, removing conditions (4), (6) and (7) makes Theorem 1 coincident with Theorem 1 of [12].

In Theorem 1, one can find that the constraint (4) leads to exponential stability depend-
ing on the size of τ = maxi∈1,m{τi, δi}. Next, Theorem 2 puts forward a new mean-square
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stability criterion, which states that mean-square stability of (1) relies on τi but does not
depend on δi, i = 1, 2, · · · , m.

Theorem 2. Suppose that there exist matrices M1 ∈ Rn×n, M2 ∈ Rn×n, P ∈ Sn×n
+ , Gi ∈ Sn×n

+
and Wij ∈ Sn×n

+ , i ∈ 1, m, j ∈ 1, m satisfying LMI (5) with Q = 0, t1 ≥ 2τ, and the
following LMI:

(I + Ck)
T P(I + Ck) < P, k ∈ N+, (23)

then the trivial solution of (1) is mean-square stable.

Proof. If LMI (5) holds with Q = 0, from Lemma 1 we get

Ω =

[
Ψ1 Ψ2
ΨT

2 Ψ3

]
+

m

∑
i=1

τi MT AiG−1
i AT

i M +
m

∑
i=1

m

∑
j=1

MT AiW−1
ij AT

i M < 0.

By the proof of Theorem 1, based on (10), one gets

ELV(t, xt) ≤ E[ηT(t)Ωη(t)] ≤ −λ1E|x(t)|2 ≤ 0, t ∈ [tk−1, tk), k ∈ N+, (24)

where λ1 = λmin(−Ω) > 0. In addition, there exists Γ0 > 0 such that

E( sup
−τ≤s≤ t1

2

|x(s)|2) ≤ Γ2E∥ψ∥2.

Therefore, for ε > 0, choosing δ0 = ε/Γ2, if E∥ψ∥2 < δ0 is satisfied, one can
testify E|x(t)|2 < ε, t ∈ [0, t1

2 ]. Besides, by the formation of (8), there exist ξi ≥ 0,
i = 1, 2, 3 satisfying

ξ1|x(t)|2 ≤ V(t, xt) ≤ ξ3|x(t)|2 + ξ2

∫ t

t−2τ
|x(s)|2ds. (25)

Hence, we deduce

EV(
t1

2
, x t1

2
) ≤ ξ3E|x(

t1

2
)|2 + ξ2E

∫ t1
2

−τ
|x(s)|2ds ≤ Γ3E∥ψ∥2, (26)

where Γ3 = 2ξ3+(t1+2τ)ξ2
2 Γ2. For t ∈ ( t1

2 , t1), in view of (24) and applying Itô’s formula, it is
implied that

EV(t, xt)−EV(
t1

2
, x t1

2
) = E

∫ t

t1
2

LV(s, xs)ds. (27)

Consequently, for t ∈ ( t1
2 , t1), EV(t, xt) ≤ Γ3E∥ψ∥2 is immediately set up. Then,

for ε > 0, choosing δ1 = 2ξ1ε
[2ξ3+(t1+2τ)ξ2]Γ2

, if E∥ψ∥2 < δ is fulfilled, according to the first

inequality in (25), one concludes that E|x(t)|2 ≤ ε, t ∈ ( t1
2 , t1). It can be computed by (23)

and the truth of EVb(t, xt) is continuous at t = t1 that

EV(t1, xt1)−EV(t−1 , xt−1
)

=EVa(t1, xt1) +EVb(t1, xt1)−EVa(t−1 , xt−1
)−EVb(t−1 , xt−1

)

=xT(t−1 )[(C
T
1 + I)P(C1 + I)− P]x(t−1 ) < 0.

Thus, we arrive at EV(t1, xt1) ≤ Γ3E∥ψ∥2. Similarly, for t ∈ (t1, t2), we reach

EV(t, xt)−EV(t1, xt1) = E
∫ t

t1

LV(s, xs)ds,
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which implies EV(t, xt) ≤ Γ3E∥ψ∥2, t ∈ [t1, t2). Now, make the assumption that
EV(t, xt) ≤ Γ3E∥ψ∥2, t ∈ [tk, tk+1), k ∈ N+. In the light of (23), and combining with
the fact that EVb(t, xt) is continuous at t = tk+1, it can be proved that

EV(tk+1, xtk+1)−EV(t−k+1, xt−k+1
) = xT(t−k+1)[(C

T
k+1 + I)P(Ck+1 + I)− P]x(t−k+1) < 0.

We gain EV(tk+1, xtk+1) ≤ Γ3E∥ψ∥2. Next, for t ∈ (tk+1, tk+2), one derives

EV(t, xt)−EV(tk+1, xtk+1) = E
∫ t

tk+1

LV(s, xs)ds.

In conclusion, for t ∈ [tk+1, tk+2), we have EV(t, xt) ≤ Γ3E∥ψ∥2. By the mathematical
induction, it can be seen that EV(t, xt) ≤ Γ3E∥ψ∥2, t ≥ t1. Therefore, for any ε > 0,
choosing δ = 2ξ1ε

[2ξ3+(t1+2τ)ξ2]Γ2
, E|x(t)|2 < ε (t ≥ 0) is then established when E∥ψ∥2 < δ,

which explains that (1) is mean-square stable, and the desired result is achieved.

Remark 5. The sufficient conditions about mean-square stability of (1) are maintained in Theorem 2.
The clever twist here is that, leaving the restriction of (4), we obtain the drift-delay-dependent/
diffusion-delay-independent conditions for the mean square stability of (1). Therefore, one concludes
that the value of the diffusion term delay does not affect the mean-square stability of (1) as long as
the conditions of Theorem 2 are satisfied.

4. Examples

This section focuses on two numerical cases, which demonstrate the effectiveness of
the obtained conclusions by simulations.

Example 1. Consider the following linear ISDS:{
dx(t) = A1x(t − τ1)dt + B1x(t − δ1)dw(t), t ̸= tk,
∆x(tk) = Cx(t−k ), t0 = 0, k ∈ N+ (28)

with

A1 =

[
−0.9 0
0.1 −0.47

]
, B1 =

[
0.39 0.19
0.36 −0.45

]
, C = −0.1I.

In (28), x(t) = [xT
1 (t) xT

2 (t)]
T , τ1 = 0.17, δ1 = 0.15 and the impulsive switching time

sequence meets tk+1 = 0.6 + tk, t0 = 0, k ∈ N+. By using the Matlab toolbox, it is clear that (28)
satisfies the conditions of Theorem 1 with the feasible solutions below:

P =

[
21.6495 −0.1601
−0.1601 21.8271

]
, G1 =

[
3.6932 1.7912
1.7912 8.0269

]
, W11 =

[
26.1435 −6.7963
−6.7963 8.8955

]
,

Q =

[
6.1923 0.5685
0.5685 4.2735

]
, M1 =

[
11.255 −0.4153
−0.2828 18.0384

]
, M2 =

[
12.1046 1.509
−0.9563 11.2162

]
,

ξ1 = 21.516, ξ2 = 12.6316, α = 0.295, β = 0.5, γ = 0.08, σ = 0.6.

According to the above analysis, (28) satisfies the conditions of Theorem 1. Then, based on
Euler-Maruyama method, Figures 1 and 2 are plotted by MATLAB. Specifically, Figure 1 simulates
the states trajectories of (28) with the initial function ϕ(θ) = [1.5 − 1]T , θ ∈ [−0.17, 0]. And
Figure 2 pictures the response of the mean square value of the system states (for the requirement
of simulation, we let E|x(t)|2 = 1

1000 ∑1000
s=1 [|xs

1(t)|2 + |xs
2(t)|2], in which xs

k(t) is the sth sample
path of xk(t), that is, the mean square value of the system states at each moment is obtained by
taking the average of the values of 1000 sample paths). Obviously, in this numerical example, the
simulation results show that the system is exponentially stable in the mean square sense, which
verifies the validity of Theorem 1.
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Figure 1. State trajectories of Example 1.
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Figure 2. The curve of mean-square of 1000 paths with impulses.

Example 2. Consider (28) with the following parameters:

A1 =

[
−1 1.6
0.2 −0.7

]
, B1 =

[
0.4 0.3
0.4 −0.45

]
,

C = −0.04I, tk+1 = 1.6 + tk, k ∈ N+.
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Based on Theorem 2, one obtains that the maximum value of τ1 which ensures the stability is
τ1 = 0.6. Taking τ1 = 0.6, by using the Matlab toolbox, it is clear that (28) satisfies the conditions
of Theorem 2 with the feasible solutions below:

P = 103 ×
[

0.5150 −0.8018
−0.8018 2.8934

]
, G1 = 103 ×

[
0.6224 −0.8332
−0.8332 3.7489

]
,

W11 = 103 ×
[

0.2612 −0.5438
−0.5438 1.2359

]
, M1 = 103 ×

[
0.5473 −0.7114
−0.7866 2.9352

]
,

M2 = 103 ×
[

0.5765 0.2234
−0.4054 2.5864

]
.

Letting δ1 = 0, 0.1, 0.9, 1.1, 1.5, the curves of E|x(t)|2 with the corresponding δ1 are drew
in Figure 3 under the same initial condition ϕ(θ) = [1 − 1]T , θ ∈ [−τ, 0], τ = max{τ1, δ1}.
That is, the trajectories of the mean square value of the system states with the same drift term delay
but different diffusion term delay are plotted in Figure 3. By comparing the trajectories, one obtains
that although the systems with different diffusion term delays converge to 0 at different rates, it is
seen that the systems are all mean-square stable, which verifies the feasibility of Theorem 2.

0 5 10 15 20 25 30

Time t

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

E
|x

(t
)|

2

0

0.1

0.9

1.1

1.5

Figure 3. The curve of mean-square for different δ1.

5. Conclusions

In this paper, an appropriate LKF is displayed under the stochastic framework to set up
the delay-dependent stability criterion for ISDSs. The sufficient conditions of exponential
mean-square stability are presented in terms of LMIs. Meanwhile, in Example 1, when
the system satisfies the conditions of Theorem 1, the trajectory of the mean square values
of the system states plotted in Figure 2 shows the stability of the system. In particular,
when mean-square stability is considered, we obtain the draft-delay-dependent/diffusion-
delay-independent stability conditions, and such a conclusion is useful for systems with
difficulties in measuring the time-delays of the diffusion term. Moreover, in Example 2,
Figure 3 plots the corresponding trajectories of the system with different diffusion term
delays, showing that diffusion term delays do not affect the mean-square stability of the
system when the condition of Theorem 2 is satisfied, which verifies the validity of the
theoretical results. In the future, we would like to apply the obtained stability theory to
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real systems. In addition, inspired by [30,31], we will further investigate the problems of
estimation of system states and the design of controllers with multiple uncertainties using
metaheuristic learning algorithms.

Author Contributions: Methodology, T.H.; writing—original draft, C.X. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China under Grant
No. 62073204.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gu, K.; Kharitonov, V.L.; Chen, J. Stability of Time-Delay Systems; Birkhäuser: Boston, MA, USA, 2003.
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