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Abstract: The present study is carried out to examine the behavior of magnetohydrodynamic
Williamson nanofluid flow and heat transfer over a non-linear stretching sheet embedded in a
porous medium. In the current work, the influence of heat generation and viscous dissipation has
been taken into account. The considered phenomenon in the form of partial differential equations is
transformed into ordinary differential equations by utilizing an appropriate similarity transforma-
tion. The reduced form is solved by using rigorous MATLAB built-in solver bvp4c. The numerical
solutions for the velocity field, temperature field, and mass concentration along with the skin friction
coefficient, Nusselt number, and Sherwood number are computed. The obtained solutions are shown
in graphs and are discussed with physical reasoning. It is noted that by increasing Williamson fluid
parameter W, the velocity decreases and concentration profile increases. It is deduced that increasing
Eckert number Ec leads to a rise in temperature and mass concentration. It has been viewed that
with the increment in heat generation parameter Q, the temperature field increases and concentration
decreases. The results show that an increasing magnetic field parameter M leaves a decreasing trend
in the velocity field and an increasing trend in the temperature field and concentration profile. The
present results are compared with the existing solution which shows good agreement and endorses
the validation of current solutions.

Keywords: Williamson fluid; nanofluid; heat transfer; stretching surface; porous medium; heat
generation; viscous dissipation

1. Introduction

Efficient ultrahigh cooling systems are an indispensable need for technologies of
industries. There are so many limitations of low thermal conductivity when we use ordinary
fluids that do not give ultrahigh cooling. Using modern nanotechnology, nanoparticles of
metal and nonmetals of the size of a nanometer can be produced and they have versatile
thermal, electric, mechanical, magnetic, and fiber characteristics. Nanofluids are made
by suspending the nanosized particles in traditional fluids like water, ethylene, and oil.
Carbides, carbon nanotubes, oxides, and metals are used to make nanoparticles. The major
aim of the development of nanofluids is to obtain the maximum thermal conductivity
of a small concentration of nanoparticles through the uniform distribution and stable
suspension of nanoparticles in the base fluids. The earliest investigations concerning
the variation of thermal conductivity were performed by Masuda et al. [1]. They used
ultrafine particles, Al2O3, SiO2, and TiO2, in water that was used as a base fluid to observe
the thermal performance of the fluid. Choi [2], for the first time, introduced the term
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nanofluid to explain this new type of nanotechnology-based heat transfer fluids, which
have higher thermal conductivities than usual fluids. Experimental investigations in Ref. [3]
have been conducted on nanofluids that need only a five-percent volumetric fraction of
the nanoparticles for effective heat transfer enhancements, and they used nanofluids as
coolants for nuclear powerplants. Buongiorno [4] developed an analytical model for
convective transport in nanofluids in which Brownian motion and the thermophoresis
effect are taken into account. By this model, the effective heat transfer performance of
the fluid can be analyzed theoretically. Sheikholeshlami and Sadoughi [5] addressed
the nanofluid flow and heat transfer numerically under the melting heat transfer impact
with magnetic field influence by using CuO as nanoparticles and water as the base fluid.
Abo-Dahab et al. [6] put the light onto the magnetohydrodynamic Casson fluid flow
past the non-linear stretching surface that was fixed in a porous medium along with
suction/injection effects. They took into account the heat generation and viscous dissipation
effects. Shafiq et al. [7] gave an analysis on the stratification effects of Walter’s B fluid
flow over a Riga surface with radiation impact. Rasool et al. [8] revealed the discussion
on the numerical study of magnetohydrodynamic viscoelastic nanofluid flow along the
non-linear stretching sheet embedded in a porous medium. They analyzed the influence
of Darcy–Forchheimer relation, convective boundary condition, and thermal radiation.
Entropy generation magnetohydrodynamic nanofluid flow in squared geometry with
Darcy–Forchheimer relation effects was discussed by Fares et al. [9]. Shamshuddin and
Mohammad [10] proposed the study of nanofluid flow over a convective elongated surface
under the nth order chemical reaction and Joule heating effects.

Non-Newtonian fluid dynamics are one of the most popular research centers of mod-
ern machinery due to its promising use in the chemical and food processing industries.
Liquids that change the viscosity or flow behavior under pressure are called non-Newtonian
fluids. Ramesh et al. [11] studied Williamson fluid over moving and stationary surfaces
with convective boundary conditions. The analysis of Williamson fluid flow over a stretch-
ing surface has been conducted by Nadeem et al. [12]. The effects of heat transfer on
Williamson fluid flow along the porous surface of an exponentially stretching sheet have
been explored by Nadeem and Hussain [13]. The peristaltic flow of Williamson fluid under
the accomplishment of induced magnetic field through a curved path was explored by
Rashid et al. [14]. A non-Newtonian Williamson boundary layer flow was numerically
tackled by using a homotopy analysis method by Khan and Khan [15]. The magnetohydro-
dynamic flow of Williamson fluid with a generalized heat transfer law over a stretching
sheet that has variable thickness is dealt numerically by Salahuddin [16]. A non-Newtonian
fluid flow model with different flow characteristics and diverse molded conditions has
been presented in Refs. [17–20].

Fluid flow in porous media finds significant use in a variety of areas, such as material
processing, thermal energy, oil detection, fuel cell technology, flow bed chromatography,
etc. The combined effect of heat transfer and temperature across the boundary layer
of nanofluid flows through the porous space in the presence of an external magnetic
field is considered an effective means of improving thermal performance. A number of
research scholars have been engaged in the fluid dynamics of porous media with deferent
problems. Vafai and Tien [21] considered the study of solid boundary and inertial forces
on fluid flow and heat transfer in a porous medium. Jiang and Ren [22] revealed the
study of forced convection in a porous medium employing thermal non-equilibrium model;
they included viscous dissipation, variable properties, particles diameter, and thermal
dispersion effects. Kothandapani and Srinivas [23] presented magnetohydrodynamic
peristaltic transportation and heat transfer under properties of walls action through a
porous medium. A discussion on nanofluid flow and convective heat transfer saturated
with the porous medium was investigated by Mahdi et al. [24]. Gireesha et al. [25] focused
their attention on the magnetohydrodynamic boundary layer flow and heat transmission
past stretching sheets inserted in a porous medium. Oldroyed-B fluid flow equipped
with the Cattaneo–Christov heat flux model under the action of non-linear convection,
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Darcy–Forchheimer relation, and variable thermal conductivity was proposed by Shehzad
et al. [26]. The investigations concentrating on fluid flows and heat transportation in porous
medium are given in Refs. [27–30].

Due to its wide range of applications in various fields of science and industry, fluid
flow problems have become one of the most important areas of research today. Other useful
uses for this type of investigation include the manufacture of plastic and rubber sheets,
the production of glass-fiber, melting spinning, cooling metal plates, etc. Magnetohydro-
dynamic effects on the three-dimensional flow of nanofluid over a non-linear stretching
sheet with non-linear thermal radiation and convective boundary conditions are analyzed
numerically by Mahanthesh et al. [31]. Seth et al. [32] carried out the investigations on an
unsteady magnetohydrodynamic boundary layer flow of optically dense gray and electri-
cally conducting nanofluid over a non-linear stretching sheet inserted in a porous medium;
they encountered the effects of non-linear radiation, convective boundary conditions and
entropy generation, and slip velocity. Fluid flows of Newtonian and non-Newtonian flu-
ids and heat transportation processes over a non-linear stretching sheet are presented in
Refs. [33–36]. Gorla and Sidawi [37] proposed the mechanism of natural convection along
the vertical stretching sheet with the effects of suction and blowing. Megahed [38] gave the
numerical analysis of Williamson fluid flow and heat transfer over a non-linear stretching
sheet under the action of viscous dissipation and thermal radiation. In Refs. [39–45], the
thermo-hydraulic performance of nanofluids theoretically and experimentally through dif-
ferent geometries with diverse flow conditions has been addressed. Avramenko et al. [46]
discussed the symmetry of the properties of boundary layer flows by using the Lie group
theory technique. Avramenko and Shevchuk [47] pro-posed the modeling for convective
heat and mass transfer in nanofluids with and without boiling and condensation.

In the existing literature, a lot of work on Williamson fluid and nanofluid—separately—
was done along the different geometries by taking different fluid characteristics that have
been documented due to the physical significance in different areas of sciences. After
getting inspiration from the aforementioned fruitful and significant examinations, the
present aim is to expose the features of Williamson nanofluid flow over a non-linearly
stretching sheet embedded in a porous medium. In the present research work, the external
applied magnetic field, heat generation, and viscous dissipation effects on electrically
conducting fluid have been incorporated. A thorough review of earlier published works
disclose that no such effort has been made before, although the richness of views and the
phenomena explained in the present work can be expected to lead to extremely dynamic
interactions across disciplines. In the next section, the mathematical procedure, solution
procedure, and presentation of results are given.

2. Flow Regime

Consider the steady, viscous, incompressible, and two-dimensional Williamson fluid
flow in the region (y > 0) past non-linear stretching sheet with a varying velocity distri-
bution uw = axn and wall temperature distribution Tw = T∞ + Axr is considered where
A > 0, T∞ is the free stream fluid temperature and C∞ is the free nanoparticles concen-
tration. The transverse magnetic field with the magnetic field strength B(x) = B0x

n−1
2 ,

wherein the electrical field is absent and induced magnetic field is ignored. The coordinates
x, y are in the flow direction and normal to the flow direction, respectively. The applied
magnetic field, heat generation, and viscous dissipation effects are encountered. The
schematic diagram of flow is given in Figure 1. By following Refs. [6,38,46], the governing
equations are given below:

∂u
∂x

+
∂v
∂y

= 0 (1)

u
∂u
∂x

+ v
∂u
∂y

= ν
∂2u
∂y2 +

√
2µΓ

∂u
∂y

∂2u
∂y2 + gβT(T − T∞) + gβC(C− C∞)− σ

ρ f
B2(x)u− νu

K∗
(2)
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u ∂T
∂x + v ∂T

∂y = α ∂2T
∂y2 + ν

CP

(
1 + Γ√

2
∂u
∂y

)(
∂u
∂y

)2
+ Q0

ρCP
(T − T∞)

+τ

[
DB

(
∂T
∂y

∂C
∂y

)
+ DT

T∞

(
∂T
∂y

)2
] (3)

u
∂C
∂x

+ v
∂C
∂y

= DB
∂2C
∂y2 +

DT
T∞

(
∂2T
∂y2

)
(4)

Flow conditions are,

u = uw(x) = axn, v = 0 , T = Tw(x) = T∞ + Axr, DB

(
∂C
∂y

)
+ DT

T∞
∂T
∂y = 0 at y = 0

u→ 0 T → T∞ , C → C∞ as y→ ∞.
(5)

where u and v are the velocity components in x and y direction, ρ f is the density of
the fluid, ν is the kinematic viscosity, βT is the thermal expansion coefficient, α is the
thermal diffusivity, CP is the specific heat, DT is the thermophoresis coefficient, βC is the
concentration expansion coefficient, Qo is the dimensional volumetric heat generation, DB

is the Brownian diffusion coefficient, K∗ is the porous medium permeability, and τ =
(ρC)P
(ρC) f

is the effective heat capacity ratio of the nanoparticle material to the effective heat capacity
of the fluid. The symbol Tw is wall temperature, T∞ is ambient temperature, Cw is wall
concentration, C∞ is ambient concentration, n is non-linear stretching sheet index, σ is
electrical conductivity, and B(x) = Box

n−1
2 is the variable magnetic field of strength.

Figure 1. Flow configuration.

Equations (1)–(5) are transformed into ordinary differential equations by employing
the following transformation variables:

u = axn f ′(η), v = −axn−1
√

ν
a

(
n+1

2 f (η) + n−1
2 η f ′(η)

)
, η =

√
ν
a x

n−1
2 y,

θ = T−T∞
T∞−Tw , φ = C−C∞

C−Cw

(6)

By utilizing Equation (6) in Equations (1)–(5), we have the following transformed
equations:

f ′′′ +
n + 1

2
f f ′′ − n f ′2 + W f ′′′ f ′′ −M f ′ − K f ′ + λTθ + λCφ (7)

1
Pr

θ′′ +
n + 1

2
f θ′ − n f ′θ + Qθ + Nbθ′φ′ + Ntθ′2 + Ec

(
1 +

W
2

f ′′
)

f ′′ 2 (8)
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1
Sc

φ′′ +
n + 1

2
f φ′ +

Nb
Nt

θ′′ = 0 (9)

Subjected boundary conditions

f = 0, f ′ = 1, θ = 1, Nbφ′ + Ntθ′ = 0 at η = 0
f ′ → 0, θ → 0, φ→ 0 as η → ∞

(10)

The parameters appearing in Equations (7)–(10) are defined as the Prandtl number
Pr = ν

α , Schmidt number Sc = ν
DB

, thermophoresis parameter Nt = (ρC)PDT(Tw−T∞)
(ρC) f T∞ν

, mixed

convection parameter λT = GrT
Re2 , magnetic field parameter M = σB2

o
ρ f a , porous medium

parameter K = ν
aK∗ , Eckert number Ec = u2

w
CP(Tw−T∞)

= a2x2n−r

ACP
, Williamson parameter

W =
√

2 x
3n−1

2 a
3
2 Γ

ν1/2 , a non-linear stretching index n, and r is a constant. Also, there is the

Brownian motion parameter Nb =
(ρC)PDB(Cw−C∞)

(ρC) f ν
, heat generation parameter Q = Qo

uwρCP
,

and modified mixed convection parameter λC = GrC
Re2 . After analyzing, we observed that

both the W and Ec parameters are functions of x. To overcome this situation that gives a
non-similar solution for our present problem, we should take r = 2n = 2/3. Given this,

these parameters take the form W =
√

2a
3
2√

ν
Γ, which is the Williamson fluid parameter, and

Ec = uw
CP(Tw−T∞)

= a2

ACP
, which is the Eckert number. This assumption ensures a similar

solution to the current problem.
The quantities of practical interest in this study are the skin friction coefficient C f and

the Nusselt number Nu and Sherwood number Sh which are defined as:

C f =
τw

ρu2
w

, Nu = xqw
k(Tw−T∞)

, Sh = xqm
DB(Cw−C∞)

.

where τw = µ
((

∂u
∂y

)
+ Γ√

2
∂u
∂y

)∣∣∣
y=0

, qw = −k
(

∂T
∂y

)∣∣∣
y=0

, qm = −DB

(
∂C
∂y

)∣∣∣
y=0

(11)

By using variables defined in Equation (6), we have the following:

Re1/2C f = f ′′ (0) +
W
2

f ′′ (0), Re−1/2Nu = −θ′(0), Re−1/2Sh = −φ′(0), (12)

3. Solution Methodology

The determination of the solution for Equations (7)–(10) is analytically cumbersome, so
the numerical evaluation is done for several parameter values, namely the Prandtl number
Pr, Schmidt number Sc, thermophoresis parameter Nt, mixed convection parameter λT ,
Magnetic field parameter M, porous medium parameter K, Eckert number Ec, Williamson
parameter W, a non-linear stretching index n, Brownian motion parameter Nb, heat genera-
tion parameter Q, and modified mixed convection parameter λC. A set of solutions for the
flow model is computed by employing bvp4c, a MATLAB built-in function. An algorithm
for this solver utilizes a three-stage Labato formula and has the basis of a finite difference
code called the collocation formula. A collocation polynomial is C1-continuous and has
fourth-order accuracy. To substitute Equations (7)–(10) into this solver’s algorithm, first we
have to convert them into first-order ordinary differential equations. The current results for
f ′, θ, and φ at η = 3 (say) are given with boundary conditions f ′(3) = 1, θ(3) = 1, and
Nbφ′(3) + Ntθ′(3) = 0, then we apply the MATLAB built-in numerical solver bp4c with
step size ∆η = 0.1. By adjusting the ηmax and ∆η, we obtain the converged results within
a tolerance limit of 10−6. The computed results satisfy the given boundary conditions
asymptotically, which indicates the accuracy of the obtained solutions.
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4. Results and Discussion

The current section reveals the physics that occurred in the flow regime for computa-
tions of the velocity field f ′(η), temperature field θ(η), and mass concentration φ(η) for
numerous values of flow parameters, which specify the flow features. The skin friction
coefficient Re1/2C f , Nusselt number Re−1/2Nu, and Sherwood number Re−1/2Sh are also
calculated. All of the results are graphed under the flow parameters: Prandtl number
Pr, Schmidt number Sc, thermophoresis parameter Nt, mixed convection parameter λT ,
magnetic field parameter M, porous medium parameter K, Eckert number Ec, Williamson
parameter W, a non-linear stretching index n, Brownian motion parameter Nb, heat gener-
ation parameter Q, and modified mixed convection parameter λC.

4.1. Influence of Regulatory Flow Parameters on Velocity Field f ′(η), Temperature Field θ(η), and
Mass Concentration φ(η)

Figures 2–4 are sketched for velocity field f ′(η), temperature field θ(η), and mass
concentration φ(η), respectively, against numerous values of λT while other parameters
values are preset. Graphs reveal that intensification in λT lead to increase in f ′(η) in
Figure 2, and decrease in θ(η) and φ(η) in Figures 3 and 4, respectively. The impact of
non-linear stretching sheet index n on f ′(η), θ(η), and φ(η) is displayed in Figures 5–7.
Graphical attitude fleshes out that augmentation in n causes to decline f ′(η), θ(η), and
φ(η). An effect of Williamson fluid parameter W on velocity and concentration profiles is
shown in Figures 8 and 9. From sketches, W enhancement in f ′(η) gives a decline in φ(η)
and rise to φ(η). As W increases, the viscosity of the fluid is recued so that the nanoparticles
move freely and the mass concentration increases rapidly. Influence of porous medium
parameter K on already mentioned properties is reported in Figures 10–12. It is viewed
that increasing K leaves the decreasing trend in f ′(η), and increasing trend in θ(η), and
increasing trend in φ(η) and in Figures 10–12. As K is increased porosity of the medium
decreased and viscous forces are enhanced, due to which temperature and concentration
are enhanced. Figures 13 and 14, is due to Pr the cation of f ′(η) on θ(η), and graphs
indicate that increasing Pr reductes the velocity and temperature. This trend, as seen
in Figures 13 and 14, is due to fact that an augmentation in Pr is because of an increase
in the viscosity and a decrease in thermal conductance, due to which the velocity of the
fluid—but not the temperature of the fluid—decline remarkably. The momentum and
thermal boundary layer thickness is thickened. Control of thermophoresis parameter Nt
on f ′(η), θ(η), and φ(η) is demonstrated in Figures 15–17, respectively. We can note that
rising Nt causes to reduce f ′(η), θ(η), and φ(η). An action of Brownian motion parameter
Nb on fields of velocity, temperature, and concentration is portrayed in Figures 18–20,
respectively. Sketches show that as Nb is raised, all f ′(η), θ(η), and φ(η) get stronger
rapidly. The parameter M on f ′(η), θ(η), and φ(η) are shown in Figures 21–23, respectively.
It is noted that for increasing M, a decreasing trend in f ′(η), and enhancing trend in θ(η),
and φ(η) is observed. It is due to the fact that θ is enhanced that a strong Lorentz force is
generated that compels the fluid flow to slow down due to the generation of resistance
temperature, which is augmented. Physical behavior of θ and φ against Ec is portrayed in
Figures 24 and 25, respectively. Increasing Ec is leaving the increasing behavior for θ(η),
and φ(η). For viscous dissipation thermal energy is converted to mechanical energy. By
increasing Ec more forces act to dissipate the viscosity so more work has to be done by
the fluid on them due to which temperature of the fluid rise and consequently more mass
concentration is noted. Heat generation parameter Q effect on θ(η) and φ(η) is given in
Figures 26 and 27, respectively. It is noted that as Q is enhanced θ(η) increase and φ(η)
decreases with reasonable difference.
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Figure 2. Influence of λT on f ′(η).

Figure 3. Influence of λT on θ(η).
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Figure 4. Influence of λT on φ(η).

Figure 5. Influence of n on f ′(η).
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Figure 6. Influence of n on θ(η).

Figure 7. Influence of n on φ(η).
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Figure 8. Influence of W on f ′(η).

Figure 9. Influence of W on φ(η).
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Figure 10. Influence of K on f ′(η).

Figure 11. Influence of K on θ(η).



Processes 2022, 10, 1221 12 of 25

Figure 12. Influence of K on φ(η).

Figure 13. Influence of Pr on f ′(η).
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Figure 14. Influence of Pr on θ(η).

Figure 15. Influence of Nt on f ′(η).
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Figure 16. Influence of Nt on θ(η).

Figure 17. Influence of Nt on φ(η).
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Figure 18. Influence of Nb on f ′(η).

Figure 19. Influence of Nb on θ(η).
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Figure 20. Influence of Nb on φ(η).

Figure 21. Influence of M on f ′(η).
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Figure 22. Influence of M on θ(η).

Figure 23. Influence of M on φ(η).
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Figure 24. Influence of Ec on θ(η).

Figure 25. Influence of Ec on φ(η).
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Figure 26. Influence of Q on θ(η).

Figure 27. Influence of Q on φ(η).

4.2. Influence of Regulatory Flow Parameters on Skin Friction Coefficient Re1/2C f , Nusselt
Number Re−1/2Nu, and Sherwood Number Re−1/2Sh

Figures 28–30 depict the action of Williamson fluid parameter W on the skin friction
coefficient Re1/2C f , Nusselt number Re−1/2Nu, and Sherwood number Re−1/2Sh, respec-
tively. The results indicate that with increasing increments of W Re1/2C f and Re−1/2Sh
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increases but Re−1/2Nu is attenuated. The influence of Schmidt number Sc on skin fric-
tion coefficient Re1/2C f , Nusselt number Re−1/2Nu, and Sherwood number Re−1/2Sh is
illustrated in Figures 31–33. Graphs show that increasing Sc leads to decrease Re1/2C f ,
and Re−1/2Nu and increases Re−1/2Sh. In Table 1, the present study is compared with the
already published results for the validation of the current numerical solution. It is noted
that there is good agreement between the current and existing results. Due to this strong
agreement between the results, the validation of the current results is ensured.

Figure 28. Influence of W on Re1/2C f .

Figure 29. Influence of W on Re−1/2Nu.
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Figure 30. Influence of W on Re−1/2Sh.

Figure 31. Influence of Sc on Re1/2C f .
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Figure 32. Influence of Sc on Re−1/2Nu.

Figure 33. Influence of Sc on Re−1/2Sh.
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Table 1. Comparison of Nusselt number
(

NuRe−1/2
)

for various values of Pr when λT = λC =

W = M = Nt = Nb = Ec = Q = Sc = 0 and n = 1.

Pr Gorla and Sidawi [37] Megahed [38] Present

0.07 0.06562 0.065531 0.065542

0.20 0.16912 0.169117 0.169128

2.0 0.91142 0.911358 0.911368

7.0 1.89546 1.895453 1.895462

20.0 3.35391 3.353902 3.353911

5. Conclusions

The current study deals with magnetohydrodynamic Williamson nanofluid flow and
heat transfer past a non-linear stretching sheet fixed in a porous medium by incorporating
heat generation and viscous dissipation influences. The transformed equation in forms of
ODEs is solved with a bp4c solver and the results are shown in a graphical way. The main
outcomes of the displayed results are summarized below:

• It is noted that increasing λT and Nb boosts f ′(η), but make weaker the increasing
values of n, W, K, Pr, Nt, and M.

• The results show that there is an augmentation in θ(η) against increasing values of
K, Nb, M, Ec, and Q but reverse scenario is seen for rising λT , n, Pr and Nt.

• It is noted that φ increases as W, K, Nb, M, and Ec increase, but the opposite trend is
observed for augmenting λT , n, Nt, and Q.

• The graphical results indicate that Re1/2C f increases for increasing W and decreases
for increasing Sc.

• It has been viewed that enhancing W and Sc led to a decline in Re−1/2Nu.
• It has been observed that Re−1/2Sh rises for increasing W and Sc.
• The present results are compared with existing results that show good agreement and

endorse the validation of the current solution.
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