
Citation: Yang, J.; Zhu, G.; An, Y.; Li,

N.; Xu, W.; Wan, L.; Jin, R. Integrated

Reservoir Model and Differential

Stimulation Modes of Low

Permeability Porous Carbonate

Reservoir: A Case Study of S Reservoir

in X Oilfield in Iraq. Processes 2022, 10,

1179. https://doi.org/10.3390/

pr10061179

Academic Editor: Blaž Likozar

Received: 25 April 2022

Accepted: 19 May 2022

Published: 12 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

Integrated Reservoir Model and Differential Stimulation
Modes of Low Permeability Porous Carbonate Reservoir: A
Case Study of S Reservoir in X Oilfield in Iraq
Jing Yang 1,*, Guangya Zhu 1, Yichen An 2, Nan Li 1, Wei Xu 1, Li Wan 3 and Rongrong Jin 1

1 Research Institute of Petroleum Exploration & Development, PetroChina, Beijing 100083, China;
zhuguangya69@petrochina.com.cn (G.Z.); linan2017@petrochina.com.cn (N.L.);
xu_wei@petrochina.com.cn (W.X.); jrrjrr@petrochina.com.cn (R.J.)

2 Halfaya Oil Co., PetroChina Halfaya Company, Beijing 100034, China; anyichen@petrochina-hfy.com
3 China Petroleum Engineering, China National Petroleum Corporation, Beijing 100101, China;

wanli@petrochina-hfy.com
* Correspondence: yangjing299@petrochina.com.cn

Abstract: The S reservoir in the X Oilfield in Iraq has great development potential due to its rich
geological reserves. However, the low permeability and strong heterogeneity of the reservoir lead
to great differences in reservoir stimulation performance. In this study, an integrated reservoir
model and differential stimulation mode are put forward to solve the above problems. First, the
feasibility of fracturing is evaluated by laboratory experiments. Second, an integrated reservoir
model is established, which mainly includes a rock mechanics model, fracturing simulation model,
and numerical simulation model, and correct the integrated model by fracturing operation curves
and production dynamic curves. Third, three types of stimulation areas are classified according
to the combination of sweet spot types, and three different stimulation modes are proposed. In
conclusion, a small-scale stimulation mode should be applied in the Type I area to maximize economic
benefits. In the Type II area, the medium-scale stimulation mode should be performed to ensure
certain productivity while achieving certain economic benefits. In the Type III area, the large-scale
stimulation mode should be employed to obtain certain productivity while economic benefits must
be above a limit. The differential stimulation model proposed in this paper has made a great reference
for the efficient development of low-permeability carbonate rocks.

Keywords: low-permeability carbonate rock; fracturing experiments; integrated reservoir model;
sweet spots classification; differential stimulation modes

1. Introduction

Hydraulic fracturing of the horizontal well is of high cost and risk due to poor physical
property and low natural productivity in low permeability and tight reservoirs. In order to
control cost and reduce development risk, the concept of geology-engineering integration
is gradually widely accepted [1–6]. Its related concepts have been carried out in field
practice in tight sandstone, such as the Fuyu oil layer in Daqing Oilfield [7], Yanchang
oil group 7 in Changqing Oilfield [8], and Lucaogou oil group in Jimusar Oilfield [9,10].
However, the same stimulation theories and strategies have very different performances
in different reservoirs. This suggests that we need to apply targeted stimulation methods
and strategies for different reservoirs [11,12]. Even in the same type of reservoirs, such as a
carbonate reservoir, due to its diverse sedimentary environments, complex lithology, and
microscopic pore throat, the effect of reservoir stimulation is varied and uncertain. Thus,
it is critical to carry out related targeted stimulation research [13]. Reservoir characteriza-
tion and evaluation need continuous improvement based on constantly updated data of
experiments, well logging, stimulation, oilfield production, monitoring, and other technical
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methods [14,15]. Geology-engineering integration (GEI) method is an effective way to
characterize and evaluate unconventional reservoirs [16,17]. Jiang et al. [18] proposed a
“double sweet spot” evaluation model to optimize the number and location of fracturing
clusters. Xie et al. [19] carried out the integrated design and practice of geoengineering
integration in the Changning national shale gas demonstration zone. This paper studies the
integrated reservoir model and differential stimulation modes for low permeability carbon-
ate reservoir in X Oilfield, which can make a great reference for the efficient development
of low-permeability carbonate rocks.

2. Field and Geological Description

The S reservoir is a set of development strata belonging to the X Oilfield. It is vertically
divided into subzones, namely SA and SB. SB is an oil-bearing layer, which can be divided
into three sublayers: B1, B2, and B3. The average porosity is 16.55%, the average perme-
ability is less than 0.1 mD, and the pore throat radius is less than 0.1 µm. It belongs to low
porosity and low permeability carbonate reservoir. There are eight oil wells in production.
The natural productivity is weak, with an average daily production of about 200 BOPD.
Two vertical wells and one horizontal well have been stimulated in the S reservoir, but
the development effect is quite different. The initial daily production of one vertical well
after stimulation is 500 BOPD, but there is no stable production period, and it has now
been shut in. The initial daily production of the other vertical well and horizontal well
after stimulation are 650 BOPD and 1500 BOPD, respectively, and there is a certain stable
production period. Therefore, in view of the large difference in production effect after
stimulation, it is necessary to formulate targeted development strategies aiming at different
reservoir conditions.

3. Improved Integrated Strategy of Reservoir Stimulation

Conventional fracturing optimization is mostly based on a one-dimensional rock
mechanical model to carry out fracturing fitting of existing wells and optimization design
of fracturing parameters [20,21]. This kind of method has the advantages of fast evaluation
speed and timely on-site guidance [22,23]. However, at present, with the proportion of
low permeability, ultra-low permeability, and tight reservoirs accounting for an increasing
proportion, the difficulty and uncertain risk of reservoir stimulation are increasing. The
conventional fracturing optimization without experimental guidance can no longer meet the
current reservoir requirements. In this paper, the feasibility and post-fracturing conductivity
of carbonate rock fracturing are firstly evaluated by conducting laboratory experiments.
Secondly, the rock mechanics model, fracturing simulation model, numerical simulation
model, and sweet spot model are established so as to clarify the distribution of reservoir
stimulation area. Thirdly, the differential stimulation modes for different sweet spot
combinations are then proposed, and the fracturing parameters are optimized by analyzing
the post-fracturing productivity and net present value. This strategy lays a good foundation
for the subsequent overall fracturing design. The specific method of improved reservoir
stimulation is shown in Figure 1.
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Figure 1. The strategy of integrated reservoir model and differential stimulation modes.

4. Stimulation Evaluation by Laboratory Experiment
4.1. Evaluation of Fracturing Feasibility

Acidizing fracturing is the preferred method for carbonate reservoirs because the
rock can chemically react with acid. However, due to the lack of natural fractures in the
S reservoir and the low conductivity of the original reservoir, the acid will be largely
consumed in the near-wellbore area, resulting in the failure of acid fracturing to give full
play to its advantages [24,25]. Therefore, the feasibility of hydraulic fracturing requires
relevant experimental evaluation to reduce the reservoir stimulation risk. In this study,
the field carbonate outcrop similar to the core property of the S reservoir was selected and
processed into massive cores of 300 mm × 300 mm × 300 mm, and casing strings were
drilled to simulate casing completion. The properties of the outcrop core and S reservoir
core are shown in Table 1.

Table 1. Comparison of actual core and outcrop core parameters.

The Average Value of SB2 The Value of Outcrop Core

Gas permeability 0.04 × 10−3 µm2 0.028 × 10−3 µm2

Porosity 18.7% 15.1%
Young’s modulus 14.992 GPa 13.588 GPa

Poisson’s ratio 0.212 0.220
Rock mineral analysis 95% Calcite 89.1% Calcite

The slick water was purchased from the Kemaishi Oil Company (product number:
DR-800), the experimental concentration was 0.07%, and the viscosity was about 1.25 mPa·s
at a shear rate of 170/s. Keeping the injection volume constant, the fracture-forming ability
of slick water under different stress conditions was simulated. The experimental parame-
ters and results are shown in Table 2 and Figure 2, respectively. It can be seen from Figure 2
that under different stress conditions, shear fractures can be formed, and the fracture
morphology is uniform, which is very beneficial to the fracturing of unconventional reser-
voirs, indicating that hydraulic fracturing with sand can be carried out in low permeability
carbonate rocks.
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Table 2. Different parameters in fracturing experiments.

Fracturing Fluid Displacement
Rate, mL/min

Vertical Stress,
MPa

Horizontal Maximum
Principal Stress, MPa

Horizontal Minimum
Principal Stress, MPa

1# slick water 60 15 12 2
2# slick water 60 20 15 10
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4.2. Evaluation of Conductivity

The purpose of hydraulic fracturing is to provide low permeability reservoirs with
certain conductivity, while the main factors affecting conductivity are the closure pressure
and proppant particle size [26]. Therefore, laboratory experiments are carried out to analyze
the influence of proppant particle size and closure pressure on rock conductivity. In this
process, sand is firstly laid on the core wall and put into the diversion groove after splitting
the actual full-size core. Next, the conductivity is calculated based on the pressure values
and then fits the experimental results by the mathematical model so as to realize rapid
conductivity evaluation. The mathematical model of conductivity fitting is shown in
Equations (1)–(4), and the experimental and fitting results are shown in Figure 3.

CD = Ae−0.001Bσ (1)

A = Xdmax − Ydmin (2)

B = Pm2 − Qm + R (3)

m = (dmax + dmin)/2 (4)

Where CD denotes conductivity, µm2 · cm; σ denotes effective closing pressure, Mpa; dmax,
dmin denote the maximum and minimum particle size of proppant, respectively, µm; A,
B are intermediate variables; X and Y are coefficients indicating mesh influence degree,
dimensionless; P, Q, R are coefficients, dimensionless.
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5. Differential Stimulation Modes Based on Sweet Spot Type
5.1. Evaluation of Conductivity

Integrated reservoir models mainly include the rock mechanics model, fracturing
simulation model, and numerical simulation model [27]. The establishment of a one-
dimensional rock mechanics model is to calculate key rock mechanics parameters such as
Young’s modulus, Poisson’s ratio, maximum and minimum horizontal principal stress, and
vertical stress [28]. The calculation formulas are shown in Equations (5)–(9).

Ed = 929 · 105 · ρ

∆ts2 ·
3∆ts

2 − 4∆tp
2

∆ts2 − ∆tp2 (5)

µd =
0.5∆ts

2 − ∆tp
2

∆ts2 − ∆tp2 (6)

σH =
µs

1 − µs

(
σv − αPp

)
+ β2

(
σv − αPp

)
+ αPp (7)

σh =
µs

1 − µs

(
σv − αPp

)
+ β1

(
σv − αPp

)
+ αPp (8)

σz = 106
∫ H

0
ρr(h)gdh (9)

The calculation results of Equations (5) and (6) are dynamic Young’s modulus and
Poisson’s ratio, but the subsequent fracturing simulation uses static data. Therefore, it is
necessary to convert dynamic and static data based on experimental results, namely, regress
the dynamic and static experimental data of the same sample or the one that comes from
the same depth. In this process, the static data comes from the triaxial stress test results,
and the dynamic data is taken from the acoustic characteristics test results, as shown in
Figure 4.

For the calculation of maximum and minimum horizontal principal stress, it is neces-
sary to know the horizontal stress tectonic coefficient. According to the fracturing data in
the field, the stress coefficients are calculated to be 0.2604 and 0.4154, respectively, based on
Equations (7) and (8). Typical rock mechanical parameter curves are shown in Figure 5.
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Figure 4. Dynamic and static conversion of Poisson’s ratio and Young’s modulus.

Surrounding rock of overlying and underlying strata and model boundary conditions
are constructed. Based on a one-dimensional rock mechanics model, mechanical values are
assigned to corresponding rocks. By using rock failure criterion and yield condition, finite
element stress-strain simulation is applied to obtain a three-dimensional rock mechanics
model of the S reservoir (Figure 6).
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Based on actual well trajectory, fracturing operation data, the geological model, the
rock mechanics model, and boundary element theory, the fracture simulation model is
established, which considers the influence of stress shadow on fracture propagation. The
fracturing parameters of typical well V5S are shown in Table 3.

Table 3. Actual fracturing parameters of typical well V5S.

Index Design Parameters Fracturing Parameters

Fluid volume (m3) 426.1 463.6
Pre-liquid ratio (%) 45 45.3

Sand amount 57.2 62.0
Average sand ratio (%) 24.3 24.4

Maximum sand ratio (%) 41.4 41.4
Average sand concentration (kg/m3) 352.9 353.8

Maximum sand concentration (kg/m3) 600 600
Pump injection speed (m3/min) 5.5 5–5.5

Mesh number of proppants 30/50 30/50
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The reservoir numerical simulation model mainly includes unstructured grids, the
relative permeability zoning of fracturing and non-fracturing regions, the assignment of
fluid high-pressure physical properties, and the formulation of historical or predicted
production plans [29]. The purpose of using the unstructured grid is to describe the
geometry of the hydraulic fracture network in detail and to calculate the grid permeability
according to conductivity and the proppant distribution in the fracture network. The
relative permeability zoning and production schedule formulation are consistent with the
conventional numerical simulation.

5.2. Correction of Integrated Stimulation Model

Due to the uncertain factors of the geological model, rock mechanics model, and
fracture simulation model, further correction is needed to ensure the accuracy of simu-
lation results. The correction of the integrated reservoir model is realized by fitting the
fracturing operation curve and production performance curve, which aims to correct the
main parameters such as rock mechanical parameters, fracturing fluid filtration coefficient,
and proppant friction. Partial fitting results are shown in Figures 7 and 8.
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The fitting results show that the in situ stress value is about 0.9 times the predicted one,
the friction resistance between the proppant and perforation hole is about 1.2–1.5 times the
conventional value, the fitting value of fracturing fluid filtration degree is 0.8–0.9 times
of actual reservoir, and the Young’s modulus of rock is 1.1–1.3 times the predicted one.
The other main parameters, such as the shielding layer of the stress profile, Poisson’s
ratio, vertical stress, fracturing fluid viscosity, and proppant density, are consistent with
calculation results and conventional understanding.

5.3. Establishment of Sweet Spot Models

The reservoir sweet spot mainly refers to the region which is most favorable to oil
production, and is generally considered to be the region with good physical properties
and high oil saturation, which is often referred to as the geological sweet spot. The four
evaluation indexes of this kind of sweet spot are porosity, permeability, oil saturation,
and effective thickness. For low permeability reservoirs, especially reservoirs that need
to be stimulated by hydraulic fracturing, engineering sweet spots should also be consid-
ered, which characterize the fracturing feasibility. At present, the main three types of rock
mechanics parameters that characterize engineering sweet spots are brittleness index, bidi-
rectional stress difference, and fracture toughness [30]. Generally, the larger the brittleness
index, the smaller the bi-directional stress difference and the fracture toughness, the higher
the fracturing feasibility, and the better the stimulation effect. Comprehensively considering
the classification criteria of sweet spots and the actual production of the S reservoir, the
classification result of the S reservoir is shown in Tables 4 and 5. The property of sweet spots
decreases from A to E. Based on the classification standard, the engineering and geological
sweet spot model of the S reservoir are obtained, respectively, as shown in Figure 9.

Table 4. Parameter range of different engineering sweet spot.

Level

Brittleness Index, Decimal Minimum
Horizontal

Stress (MPa)

Fracture
Toughness

(MPa·m−0.5)Poisson’s Ratio Young’s Modulus
(GPa)

A
>0.9

<37 <60<0.14 >20

B
0.8–0.9

37–40 60–1000.14–0.18 18–20

C
0.65–0.8

40–43 100–1400.18–0.22 16–18

D
0.55–0.65

43–46 140–1800.22–0.26 14–16

E
<0.55

>46 >180>0.26 <14

Table 5. Parameter range of different physical sweet spots.

Level Permeability
(mD)

Porosity
(%)

Oil Saturation
(%)

Effective
Thickness (m)

A >3 >23 >80 >30
B 2–3 20–23 75–80 25–30
C 1–2 17–20 70–75 20–25
D 0.1–1 14–17 65–70 15–20
E <0.1 <14 <65 <15
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sweet spots.

5.4. Differential Stimulation Modes

For S reservoir, technical feasibility and economic benefits are taken as objectives in the
fracturing design of one horizontal well. In this process, the distribution of both geological
sweet spots and engineering sweet spots are taken into consideration, and three types of
stimulation areas are divided. By optimizing the fracturing scale of the three, differential
simulation modes were formed to obtain the best development performance. Among them,
Type I is a combination of geological sweet spot A and engineering sweet spot A. Type II is
a combination of geological sweet spot A and non-engineering sweet spot B. And Type III
is composed of non- geological sweet spot B and engineering sweet spot A. The numerical
simulation results are shown in Figures 10 and 11.
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Figure 11. NPV of reservoir stimulation in (a) Type I, (b) Type II, (c) Type III.

Figures 10 and 11 show that the cumulative oil production increases with the number
of fracturing segments. In Type I, when fracturing segments exceed six, the annual NPV
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decreases. Although the NPV is still increasing in the 3-year period, the increasing extent is
decreasing. Therefore, considering the economic benefits and post-fracturing productivity,
the reasonable number of fracturing segments for the horizontal well is six, that is, the better
fracturing effect can be achieved with fewer segments. In Type II, when the number of
fracturing segments exceeds eight, the increase of cumulative oil production and economic
benefit slows down. Thus, the number of fracturing segments is eight. In Type III, due
to the poor physical property, the advantage of engineering the sweet spot should be
fully used, namely, producing as many fractures as possible to connect reservoir internal
channels. When the number of fracturing segments reaches 12, the increase in cumulative
oil production and economic benefit slows down. Therefore, the reasonable number of
fracturing segments is 12.

By analyzing the numerical simulation results, differential stimulation modes for
different areas are proposed. In Type I, the small-scale stimulation mode can achieve a
certain scale of production and maximum economic benefits. In Type II, the medium-scale
stimulation mode should be employed to obtain a reasonable production, but the economic
benefit is lower than that of Type I. In Type III, the large-scale stimulation mode is required
to achieve higher production. This mode is not intended to maximize the economic benefit,
but the economic benefit should be above a limit.

6. Field Application

A horizontal well H5S with a lateral length of 800 m in Type I was deployed in 2019.
According to the optimization results obtained in this study, the reasonable parameter of
dimensionless fracture density is one. Thus, the simulation scheme of eight fracturing
segments with the same fracturing fluid and proppant was selected. When H5S was put
into production, the test output was 1997 BOPD (Figure 12). The initial test production was
three times higher than that of fractured vertical wells. The cumulative oil production for
one year was about 400 MB. It is expected to obtain economic benefits of USD 242,500 at a
USD 60 oil price after deducting the investment.
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7. Conclusions

Aiming at the problem of the huge difference in the stimulation effect of the low
permeability carbonate reservoir in the S reservoir, the feasibility of hydraulic fracturing is
demonstrated by laboratory experiments. By establishing the integrated reservoir model,
the differential stimulation modes are proposed.

1. The target reservoir can be stimulated by hydraulic fracturing. The larger the proppant
particle size, the better the fracture conductivity after fracturing.
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2. Through the fitting of the fracturing operation curve and production dynamic curve,
the integrated reservoir model is corrected, and differential stimulation modes are
proposed, targeted for the three types of stimulation areas.

3. For Type I, a better economic benefit can be achieved with the small-scale stimula-
tion mode. Type II needs the medium-scale stimulation mode to obtain reasonable
productivity, and its economic benefit is lower than that of Type I. Type III requires
the large-scale stimulation mode, but the economic benefits should be above the
economic limit.
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