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Abstract: In this study, the primary breakup of a high-speed diesel jet is investigated using a CFD
methodology that combines an LES model with a VOF technique for free surface capture. Inner-nozzle
turbulence and cavitation are simplified as the sinusoidal radial velocity with a given amplitude
and frequency. The ligament and droplet formation process are captured, the liquid jet is disturbed
by the radial velocity, and umbrella-shaped crests are created. Meanwhile, ligaments are formed
from the edges of crests because of shear stress and surface tension. We investigate the effect on the
characteristics of the surface wave and the liquid structure of different disturbance frequencies and
amplitudes. The variation in the disturbance amplitude and frequency facilitates the formation of a
variety of liquid structures, such as waves, upstream/downstream-directed bells, and droplet chains.
Increasing the disturbance frequency reduces the growth rate of the surface waves of the liquid
jet. With an increase in disturbance amplitude, the amplitude of surface waves evidently increases.
Furthermore, as the disturbance frequency and amplitude increase, the thickness and Weber number
of the radial liquid sheet decrease, and this causes the ligament diameter of the primary breakup to
become small. Finally, the primary breakup time is investigated, and the time scale of the liquid jet
primary breakup decreases as the disturbance amplitude increases, which indicates that an increase
in the disturbance amplitude promotes the atomization of a disturbed liquid jet.

Keywords: volume of fluid (VOF); large-eddy simulation (LES); spray; primary breakup; surface
wave; ligament

1. Introduction

Liquid atomization is an important process in direct injection diesel engines. The qual-
ity of spray atomization directly affects fuel combustion, which consequently determines
engine performance, including parameters such as the fuel consumption rate and exhaust
gas cleanness. Liquid atomization is a complicated phenomenon with mechanisms that
have yet to be fully explored; comprehensive studies are therefore needed to facilitate a
good understanding of this process [1].

In high-pressure injection diesel engines, liquid jet atomization is a complicated phe-
nomenon, which is influenced by many factors [2,3]. Normally, the breakup of the liquid
jet does not occur in a single mechanism. The process involves complicated flow mecha-
nisms, including nozzle internal turbulence flow [4–6], cavitation [7–11], and aerodynamic
effects [12–14]. In the liquid core region at the nozzle exit, liquid surface instability occurs
because of disturbance and aerodynamic interaction. Ligaments and droplets are gener-
ated from the liquid core in a process that is called primary breakup. Ligament and large
droplets break up into small droplets because of aerodynamic interaction, and this process
is called secondary breakup. The quality of spray atomization is considerably dependent
on the primary breakup.
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Numerous studies have focused on the mechanism of aerodynamic interaction. How-
ever, primary breakup is facilitated by complicated mechanisms. Schweitzer [15] concluded
that the turbulence inside injector nozzles provides a radial velocity at the exit of the noz-
zles, and this velocity is an important disturbance source for spray atomization. Bague [5]
highlighted that turbulent kinetic energy can provide sufficient energy, and ligaments are
generated at the nozzle exit. Bergwerk [16] attributed primary breakup to the pressure dis-
turbance caused by cavitation inside nozzles. Chaves [17] and Soteriou [18] investigated the
characteristics of nozzle flow, particularly the cavitation phenomenon, inside a transparent
injector and emphasized that cavitation bubbles cause a strong disturbance at the nozzle
exit. This disturbance facilitates atomization near the nozzle exit. The flow transition in the
low-lift zone and the cavitation change in the high-lift stable zone cause a transformation
in the form of pressure fluctuations, which change the near-field spray dynamics [19]

The structure and physics of a disturbed liquid jet have been extensively studied.
McCormack [20] analyzed the formation of a disc structure of a disturbed liquid jet.
Chaves et al. [21] investigated the disintegration of a liquid jet disturbed by sinusoidal
radial velocity and reported different spray structures at various disturbance frequen-
cies and amplitudes. Geschner et al. [22] plotted a nondimensional map for the spray
structures of a disturbed liquid jet. Srinivasan et al. [23,24] applied the volume of fluid
(VOF) methodology to a modulated liquid jet, and simulations exhibited the behavior of
a modulated liquid jet under a given set of nondimensional parameters. In recent work
by Hwang et al. [25], strong amplification of the interface perturbation by a multiphase
Orr mechanism was shown to be a possible pathway to distort the liquid jet. Chenling
Zhou et al. [26] analyzed the evolution process of jet surface waves at different disturbance
frequencies ranging from 0−3000 kHz based on the VOF interface capturing method. In
this study, the effect of disturbance amplitude is not considered.

Experimentally investigating the mechanism of primary breakup is difficult because
the study region is small, and the liquid core is surrounded by dense droplets. Linne et al. [27]
obtained 2D images of the near field of a diesel spray, but primary droplets were smaller
than the resolution limit. Blaisot and Yon [28] investigated the distribution of droplet
size with an image analysis technique. Wang et al. [29] used velocity measurements to
examine the spray structure of a dense spray near the nozzle. To investigate the effect of
internal flow on the primary atomization, a high-magnification diffused backlight imaging
technique was used by means of a high-speed light-emitting diode and a long-distance
microscope [30]. The results show that higher turbulence at the nozzle outlet induces
higher variability in the spray shape. Research that investigates the complete mechanisms
of liquid atomization is ongoing.

In numerical simulations, combining multiphase VOF and direct numerical simulation
(DNS) or large-eddy simulation (LES) methodologies [31] is a powerful tool to study the
breakup process of the liquid jet. In DNS, the details of turbulent flow fields in liquid and
gas, as well as the topology of interfaces, are directly calculated by numerical calculations
of Navier–Stokes equations [32]. However, the small length and time scales, as well as
the high velocity in high-speed liquid jets, require submicron computational elements and
picosecond time steps. The computation requirement is large, even on a parallel computer
system. An alternative approach is LES, which aims only to resolve eddies that are large
enough to contain information on the problem geometry and most of the turbulent energy.
It is a powerful tool to investigate the physics of primary breakup.

Computational performance has been steadily increasing, and parallel computing
has been widely applied. Considerable efforts have been exerted to calculate the liquid
jet atomization process and to determine the physical mechanisms of liquid atomization.
Menard et al. [33] investigated the atomization process of a liquid jet injected into still
gas with the use of coupled level set/VOF/ghost methods, but the grid resolution was
coarse for the selected Reynolds and Weber numbers, and the ligaments and droplets
did not exhibit smooth shapes or wave dynamics. Desjardins [34] used a conservative
level set method to compute the primary atomization of a straight liquid jet. Villiers [35]
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applied the LES-VOF method to a round jet and investigated the atomization process
under the influence of the nozzle flow. Pai et al. [36] simulated the primary breakup
of cross flows, and the detail of atomization was well resolved with 100 million grids.
Herrmann [37–39] discussed the effect of grid resolution on droplet size distribution. Shinjo
and Umemura [9,10] characterized the liquid surface instability that results in primary
atomization with the use of a detailed numerical simulation. K. Liu et al. [40] simulated
the process of atomization of a liquid jet by coupling a two-phase large-eddy simulation
and Lagrange spray simulation. Cosan Daskiran et al. [41] also found that the energy
dissipation rate was higher, and its peak values were found to be closer to the jet centerline
with the pipe orifice using the LES-VOF method.

In a high-pressure injection diesel engine, the speed of a liquid jet can exceed 400 m/s.
Compared with a low-speed liquid jet, inner-nozzle turbulence and cavitation are key
factors that affect the atomization process, such that the physical mechanism of primary
breakup becomes more complicated. Therefore, investigating the atomization characteris-
tics and breakup mechanism of a disturbed high-speed liquid jet is important. In doing
so, we simplify the inner-nozzle turbulence and cavitation effects as the sinusoidal radial
velocity, and the VOF method and LES model are used to compute the atomization process
of a disturbed liquid jet.

2. Numerical Methods
2.1. Governing Equations

The mathematical representation describes the simultaneous flow of two immiscible
fluids, each having a constant viscosity and including surface tension. The flow is consid-
ered to be an isothermal Newtonian flow. The mass continuity and momentum equations
are as follows:

∂ui
∂xi

= 0 (1)

ρ
∂ui
∂t

+ ρ
∂
(
uiuj

)
∂xj

= − ∂p
∂xi

+
∂

∂xj

(
µ

∂ui
∂xj

)
+ Fi + Gi (2)

where the upper overbar denotes filtered quantities; i.e., they are the ones directly computed
during the LES simulation.

2.2. Subgrid Turbulence Model

SGS stress can be approximated by the SGS model. The Smargorinsky model [42] is
the most widely used model and can be written as Equation (3). It is based on the eddy
viscosity assumption, which assumes a linear relationship between the SGS stress and the
resolved rate of the strain tensor to model the anisotropic residual-stress tensor.

tij = −2υtSij (3)

where υt = CS∆2(2SijSij
)1/2, Sij =

1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
is the mean strain rate tensor, and the

constant Cs is 0.18.

2.3. VOF Scheme

The interface between phases is simultaneously computed with the VOF method [43],
which employs the volume fraction of one of the phases as an indicator function to mark
the different fluids. The liquid volume fraction γ is defined as

γ =

t

cell
γ(x, y, z)dxdydz
t

cell
dxdydz

(4)

The flow field can be divided into three regions, as follows:
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When γ = 0, the computational cell is filled with gas;
When γ = 1, the computational cell is filled with liquid;
When 0 < γ < 1, there is a fluid interface in the computational cell.
The indicator function associated with a particular fluid is propagated with it as a

Lagrangian invariant, which obeys a transport equation of the form

∂γ

∂t
+∇ · (uγ) = 0 (5)

From the definitions of the indicator function, the local density and viscosity in a
computational cell are given in terms of the liquid volume fraction by

ρ = γρl + (1− γ)ρg (6)

µ = γµl + (1− γ)µg (7)

where subscripts l and g represent the liquid and gas phases, respectively. The interface is
treated as a transitional zone, such that its exact shape and location are not explicitly known.
The surface tension force in Equation (2) cannot be directly calculated. Brackbill et al. [44]
addressed this problem with the continuum surface force (CSF) model. Employing the CSF
model, we represent the surface tension force as a continuous volumetric force:

F =
∫

s(t)
σk′n′δ

(
⇀
x −⇀

x
′)

dS ≈ σk∇γ (8)

where the curvature of the interface k is given by

k = ∇ ·
(
∇γ

|∇γ|

)
(9)

2.4. Numerical Methodology

The employed transient multiphase solver of OpenFOAM, a free, open source software
for CFD from the OpenFOAM Foundation in Delaware USA, utilizes a cell-center-based
finite volume method and provides a comprehensive range of discretization schemes that
can be selected for each term in the equations being solved. The Crank–Nicholson method
with second-order accuracy was used for the time discretion of the governing equations.
For general field interpolations, a linear form of the central differencing scheme was
applied. Convective fluxes were discretized with the Gauss linear scheme. Pressure velocity
coupling was addressed with the pressure implicit split operator (PISO) algorithm [45]. An
interface compression scheme was used to obtain a sharp interface. The “snGradSchemes”,
a standard surface-normal gradient scheme in OpenFOAM, sets the discretization for
calculating the normal vector to the surface. In addition, OpenFOAM uses an additional
counter-gradient convection-based term that compresses the interface while maintaining
boundedness and conservativeness. The fluxes were limited and corrected using the
MULES algorithm.

3. Simulation Setup and Boundary Conditions

Figure 1 shows the major computational system with the relevant boundary conditions
expected in the present calculation. The simulations focus on the region downstream of a
0.2 mm diameter nozzle that releases a fully developed turbulent liquid flow into a dense,
initially stationary gas. Boundary conditions include the pressure condition (atmosphere),
no-slip wall condition (wall), and mass flow condition (inlet). The flow conditions are
listed in Table 1 according to the experiment conducted by Blessing et al. [46]. The liquid
is diesel fuel, and the gas is air at a pressure and temperature of approximately 1 bar, as
summarized in Table 1. The inlet velocity distribution was set to a parabolic profile with
the decrease in radial distance to the central point, and the maximum value Umax = 336 m/s
occurs at the central point of the inlet boundary face.
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Table 1. Flow conditions.

Parameters Value

Nozzle diameter (mm) 0.2
Ambient pressure (MPa)
Ambient temperature (K)

0.1
298.15

Gas density (kg/m3) 1.29
Liquid density (kg/m3) 840

Gas dynamic viscosity (Pa·s) 1.79 × 10−5

Liquid kinematic viscosity (m2/s) 2.87 × 10−6

Surface tension coefficient (N/m) 0.026
Injection pressure (MPa)

Injecting velocity of liquid jet (m/s)
80

336

The average grid resolution and the number of cells are 12 µm and 0.84 million,
respectively. The average grid size on the inlet boundary face, i.e., the nozzle exit section,
is about 4 µm, and the cell number on the inlet boundary face is 1652. An adaptive
mesh refinement technique was used at the interface of the liquid and gas. Therefore, the
predicted structure of the spray and the droplet distribution are similar to those predicted
with the use of a fine mesh. The minimum mesh size is 3 µm [47], and the maximum
number of cells is limited to 10 million to avoid memory overflow. The simulation was
run in parallel using multiple threads on a Dell PowerEdge server with dual CPU, Intel
Xeon E6126 (2.6 GHz), and 256 Gb RAM. The module named dynamicRefineFvMesh in
OpenFOAM was used to realize the function of adaptive mesh refinement. In the present
study, the original interFoam solver was modified to interDyMFoam after coupling with
the dynamicRefineFvMesh module. The dynamicRefineFvMesh module does not morph
the mesh shape. Instead, it performs topological refinements to the mesh based on the value
of specified fields. We define the refinement threshold relative to the minimum (0.01) and
maximum (0.09) values of alpha.liquid (i.e., the liquid volume fraction) as the refined field,
which is the liquid–gas surface. The detailed settings of dynamicFvMesh are as follows:

dynamicFvMesh dynamicRefineFvMesh;
dynamicRefineFvMeshCoeffs
{
refineInterval 20;
field alpha.liquid;
lowerRefineLevel 0.01;
upperRefineLevel 0.99;
unrefineLevel 30;
nBufferLayers 1;
maxRefinement 2;
maxCells 20,000,000;
correctFluxes
(



Processes 2022, 10, 1148 6 of 20

(phi U)
);
dumpLevel true;
}
The example of adaptive mesh refinement is shown in Figure 2. The maxRefinement

parameter determines the maximum number of times that a cell can be cut. In this study,
with maxRefinement 2, a hexahedral type of cell can be cut at most twice, thus giving
rise to 23 × 23 (64 cells). The maxCells parameter limits the maximum number of cells
in the model.
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Figure 2. Adaptive mesh refinement of the liquid jet.

A grid independence analysis was carried out using four mesh resolutions: very coarse,
coarse, medium, and fine grid (See Table 2). The same settings of the dynamicFvMesh were
used for all cases. The minimum grid size can be refined down to 3 µm and 1.5 µm in the
primary atomization zone for the medium and fine mesh cases, respectively.

Table 2. Summary of grids and computational parameters. Total calculation time is 200 µs.

Case Initial Average
Grid Size, µm

Cell
Count

Time
Step, ns

CPU (Core
Count)

Wall Clock
Time, h

Final Average
Grid Size, µm

Very coarse 40 0.14 × 106 0.5 ≤ ∆t ≤ 2 72 35 18.9
Coarse 20 0.36 × 106 0.5 ≤ ∆t ≤ 2 72 64 9.7

Medium 12 0.84 × 106 0.5 ≤ ∆t ≤ 2 72 120 5.6
Fine 6 2.35 × 106 0.5 ≤ ∆t ≤ 2 72 282 2.8

Mass-averaged fluid velocities in the overall domain at 100 µs for the different cell
counts (i.e., different grid sizes) are shown in Figure 3. The relative derivations, which
were calculated based on the results of the fine mesh, between the medium and coarse
meshes were in the order of 6.18%, while for the fine and medium meshes, it was 0.77%. To
reduce computation consumption, the medium mesh was considered appropriate for the
present study.
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Disturbance at the Nozzle Exit

The flow inside the nozzle is cavitating and turbulent. Therefore, the fluctuating
kinetic energy provides a fluctuating velocity at the nozzle exit. The disturbance at the
nozzle exit is simplified as the transient radial velocity Urad with a given amplitude Urad,max,
i.e., the maximum radial velocity, and frequency:

Urad = Urad,maxsin(2π f · t) (10)

The amplitude and frequency of the disturbance vary according to the study require-
ments. Martinez et al. [35] stated that the maximum radial velocity of the liquid jet at the
nozzle exit is given by

Urad,max =
√

3/2ktot (11)

The total fluctuating kinetic energy ktot is the sum of the turbulent kinetic energy and
the energy provided by cavitation kcav. Here, we assumed that the mainstream remains
unchanged while the turbulence and cavitation in the nozzle change. The disturbance
velocity was decomposed into x and y components that are perpendicular to jet velocity.
According to the results by Martinez et al. [48], the radial velocity of liquid flow at the
nozzle exit was calculated using Equation (11). The turbulent kinetic and cavitation energy
of the internal flow in the nozzle was calculated (refer to [49–51]).

For the flow conditions in this study, the maximum radial velocity Urad,max is about
50 m/s. An overview of the simulation cases performed is shown in Figure 4. Twenty-eight
cases were calculated to study the primary breakup of disturbed liquid jet sprays. The
simulations cover a wide range of disturbance amplitudes and frequencies. The disturbance
amplitude varies from 50 m/s to 200 m/s, whereas the disturbance frequency varies from
3000 kHz to 9000 kHz. The Strouhal number (Sr) and the nondimensional disturbance
amplitude ε are calculated based on Equations (12) and (13) [21].

Sr =
πD f
Uaxial

(12)

ε =
Urad,max

Uaxial
(13)
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Figure 4. Simulation cases based on the disturbance amplitude and frequency (left), and Strouhal
number (Sr) and the nondimensional disturbance amplitude ε (right).

4. Results and Discussion
4.1. Structure of Disturbed Liquid Jet Sprays

Figure 5 shows four different types of liquid structures. For (a), Sr = 5.6, ε = 0.15, and
surface waves occur on the liquid jet surface. The surface wave’s amplitude increases along
the downstream direction and forms a relatively smooth disc-like liquid sheet. (b) Sr = 5.6,
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ε = 0.30, and the disc-like structure becomes larger and disturbed. Lots of fragments
separate from the periphery of sheets. (c) Sr = 7.5, ε = 0.45, and more fragments are
generated at the rim of the liquid sheets, and the spray cone angle significantly increases.
(d) Sr = 16.8, ε = 0.60, and the fragment size is more uniform and smaller. There is a
slight decrease in the spray cone angle due to the lower penetration kinetic energy of the
fine fragments.
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Figure 5. Generation of waves, discs, downstream-directed bells, and droplet chains. (a) Sr = 5.6,
ε = 0.15; (b) Sr = 5.6, ε = 0.30; (c) Sr = 7.5, ε = 0.45; (d) Sr = 16.8, ε = 0.60.

To validate the results of the present simulations, we compared the simulation result
with that of the experiment by Blessing et al. [33] (Figure 6). According to Blessing’s
experiment [46], the fuel injection and ambient pressures were set to 80 MPa and 0.1 MPa.
The conical shape factor K and the diameter and length of the nozzle were 0.0, 0.2 mm,
and 1.0 mm, respectively. We estimated the turbulence and cavitation kinetic energy of the
internal flow using Huh’s model based on the mean flow velocity and nozzle configuration
parameters (nozzle length and diameter). As shown in Figure 6, the simulation spray
angles (approx. 14.5◦) were approximately equal to the experimental results under three
conditions, as follows: Sr = 5.61 and ε = 0.15, Sr = 11.21 and ε = 0.45, and Sr = 5.61 and
ε = 0.30; these values represent the structures of droplet chains, downstream-directed bells,
and discs, respectively. To quantitatively validate which condition’s simulation results
are closer to reality, we compared the overall simulated mean droplet size with Jian Gao’s
experiment [52]. He carried out the spray experiment with similar conditions. In this
study, the overall simulated mean droplet sizes for the values of Sr 14.95, 11.21, and 5.61 at
200 µs are 14.2 µm, 19.5 µm, and 23.1 µm, respectively. Jian Gao’s experimental result is
approximately 12.5 µm, which is in good agreement with the predicted results at an Sr of
14.95 and ε of 0.60 (Figure 6b).

Figure 6. Shape of sprays obtained by Blessing et al. [46] and the simulation results. (a) Experimental
image. Injection pressure Pinj = 80 MPa, i.e., injection spray velocity Uinj,l ≈ 336 m/s, ambient
air pressure and temperature Pg = 0.1 MPa and Tg = 298.15 K, nozzle diameter D = 0.2 mm [46];
(b) Sr = 14.95, ε = 0.60; (c) Sr = 11.21, ε = 0.45; (d) Sr = 5.61, ε = 0.30.
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A detailed view of the liquid–gas interface is shown in Figure 7. Surface waves are
generated from the nozzle exit. Moving towards the downstream direction, the amplitude
increases, and the surface waves break up into droplets. The wavelength of the surface
wave becomes small with the increase in the disturbance frequency, and this phenomenon
results in a difference in the droplet distribution. Figure 8 shows the distribution plot of the
droplet size for the three cases. Droplet formation from wave sheets is observed. As the
disturbance frequency increases, the wavelength and thickness of the wave sheet decrease,
and the wave easily breaks up into droplets. The quantity of droplets increases, whereas
the droplet size decreases with the increase in the disturbance frequency.
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Figure 8. Droplet size distribution for (a) Sr = 14.95 and ε = 0.61, (b) Sr = 11.21 and ε = 0.45, and
(c) Sr = 5.61 and ε = 0.30.

4.2. Ligament Formation from the Surface Wave

In this section, the breakup of the surface wave and ligament formation are analyzed
with the results of the case where ε = 0.45 and f = 5000 kHz. Figure 9 shows the liquid
surface shape for the chosen case. The liquid jet is disturbed by the radial velocity, such
that surface waves occur from the liquid core, and the amplitude of the surface wave
grows over time. The outer flow velocity is lower than the liquid core axial velocity due
to the viscous stress on the liquid–gas interface, the crest of the surface waves is sheared
by the aerodynamic force, and the strong shear deforms the surface wave. Therefore,
umbrella-shaped crests are created. Finally, the most sheared part breaks up, and ligaments
are formed from the edges of the crests. Ligament breakup is attributed to aerodynamic
interaction, and satellite droplets are simultaneously created.

Figure 10 shows the time sequence of ligament formation from the edges of the crests.
The blue arrow indicates an example of crest development and ligament breakup. Under
the strong shear of aerodynamic force, a flat liquid sheet forms at the edges of the crest.
Over time, the central part of the flat liquid sheet becomes thin because the rim is rounder
and thicker than the central part because of surface tension. Flow shear results in the
creation of a hole in the central region of the flat liquid sheet, and a doughnut-like shape
is formed. The hole grows rapidly because of the contracting motion induced by surface
tension. Finally, a ligament is produced at the edge of the crest.
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Figure 9. Liquid surface shape for a case where ε = 0.45 and f = 5000 kHz (Sr = 9.35).
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Figure 10. (a–f) Ligament formation from the liquid core (case ε = 0.45 and f = 5000 kHz (Sr = 9.35)).
The results are presented with a time step difference (T) of 1 × 10−7 s.

Figure 11 shows the ligament formation process on a selected cross-section. The
fluctuation on the windward side of the surface wave and the process of ligament formation
can be observed. On the windward side of the surface wave, the fluctuation is mainly
generated by aerodynamic force. Instability waves on the liquid surface propagate from
the liquid core to the rim of the disc sheet, and the wave amplitude grows and results in
ligament formation.
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4.3. Characteristics of the Surface Wave
4.3.1. Analysis of Surface Wave Characteristics for Different Disturbance Frequencies

The simulation results of the liquid volume fraction for the conditions f = 3000 kHz to
9000 kHz and ε = 0.45 are presented in Figure 12. The sinusoidal radial velocity at the nozzle
exit creates surface waves along the axis of the liquid jet. As the perturbation of surface
waves grows along the flow direction, the thickness of the radial liquid sheet decreases as
it is sheared, and surface tension breaks up the liquid sheet into ligaments. This process
is called primary breakup. After primary breakup, ligaments may break up into small
droplets, and this process is called secondary breakup. In this section, the characteristics of
the surface wave and primary breakup are analyzed.
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Figure 12. (1–7) Contour of the liquid volume fraction for f = 3000 kHz (Sr = 5.61) to 9000 kHz
(Sr = 16.82) and ε = 0.45. The flow direction is from left to right.

To analyze the development of surface waves along the axis of the liquid jet, surface
wave structures along the direction of jet development are counted and analyzed. The wave
sequence number increases in degrees. Figure 13 shows the dimensionless amplitudes, η/R,
of the surface waves corresponding to the different surface wave sequences at a disturbance
amplitude of ε = 0.45 and the disturbance frequencies ranging from f = 3000 kHz to
9000 kHz. The surface wave sequence number closest to the nozzle exit is set to 1, and then
the sequence number gradually increases along the downstream direction. For the seven
disturbance frequencies, the amplitude of the surface waves increases nonlinearly along the
flow direction. At the same surface wave amplitude, the higher the perturbation frequency
the higher the number of surface waves. This indicates that increasing the perturbation
frequency reduces the surface wave wavelength, which will facilitate the reduction of the
droplet size. Figure 14 shows that the growth rate of the surface wave amplitude decreases
with an increase in distance from the nozzle exit. The decay of the growth rate should be
related to the viscous dissipation of the fluid.

To investigate the radial kinetic energy of surface waves, the radial kinetic energy of a
surface wave can be estimated as

E =
1
2

ρlηhv2 (14)
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where ρl is the liquid density, η is the amplitude of the surface wave, h is the mean
thickness of the surface wave sheet, and v is the mean radial velocity of the surface wave.
The kinetic energies of the surface waves at ε = 0.45 and different perturbation frequencies
are presented in Figure 15. The radial kinetic energy of the surface waves decreases along
the downstream direction and also with the increase of the disturbance frequency. As we
all know, air resistance causes a reduction in the radial kinetic energy of surface waves.

Processes 2022, 10, x FOR PEER REVIEW 12 of 21 
 

 

 
Figure 12. Contour of the liquid volume fraction for f = 3000 kHz (Sr = 5.61) to 9000 kHz (Sr = 16.82) 
and ε = 0.45. The flow direction is from left to right. 

To analyze the development of surface waves along the axis of the liquid jet, surface 
wave structures along the direction of jet development are counted and analyzed. The 
wave sequence number increases in degrees. Figure 13 shows the dimensionless ampli-
tudes, η/R, of the surface waves corresponding to the different surface wave sequences at 
a disturbance amplitude of ε = 0.45 and the disturbance frequencies ranging from f = 3000 
kHz to 9000 kHz. The surface wave sequence number closest to the nozzle exit is set to 1, 
and then the sequence number gradually increases along the downstream direction. For 
the seven disturbance frequencies, the amplitude of the surface waves increases nonline-
arly along the flow direction. At the same surface wave amplitude, the higher the pertur-
bation frequency the higher the number of surface waves. This indicates that increasing 
the perturbation frequency reduces the surface wave wavelength, which will facilitate the 
reduction of the droplet size. Figure 14 shows that the growth rate of the surface wave 
amplitude decreases with an increase in distance from the nozzle exit. The decay of the 
growth rate should be related to the viscous dissipation of the fluid. 

 
Figure 13. Amplitude of the surface waves at varying disturbance frequencies at ε = 0.45. 

0 1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
 f  = 3,000 kHz
 f  = 4,000 kHz
 f  = 5,000 kHz
 f  = 6,000 kHz
 f  = 7,000 kHz
 f  = 8,000 kHz
 f  = 9,000 kHz

η 
/ R

Wave Sequence Number

 

Figure 13. Amplitude of the surface waves at varying disturbance frequencies at ε = 0.45.
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Figure 14. Growth rate of the surface wave amplitude for varying disturbance frequencies at ε = 0.45.
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Figure 15. Radial Kinetic energy of surface waves with different disturbance frequencies at ε = 0.45.
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4.3.2. Analysis of the Surface Wave Characteristics for Different Disturbance Amplitudes

As shown in Figure 16, the liquid volume fraction for the conditions of ε = 0.15, 0.30,
0.45, and 0.60 at f = 5000 kHz (Sr = 9.35). Notably, a change in disturbance amplitude
has a negligible effect on the surface wavelength, but it evidently affects the surface
wave amplitude.
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The amplitude of surface waves and the growth rate of the surface wave amplitudes for
varying disturbance amplitudes at Sr = 9.35 are presented in Figures 17 and 18, respectively.
The results show that increasing the disturbance amplitude significantly increases the
dimensionless surface wave amplitude of the jet (See Figure 17) and also increases the
growth rate of the surface wave amplitude (See Figure 18).
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To demonstrate the effect of perturbation amplitude on radial kinetic energy of surface
waves, the radial kinetic energies of different surface wave sequences at Sr = 9.35 are
calculated (See Figure 19). The larger disturbance amplitude promotes radial kinetic energy,
which facilitates the fragmentation of liquid filaments and the formation of liquid droplets.
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4.4. Length and Time Scales of Liquid Jet Primary Breakup

For a disturbed liquid jet, ligament formation initially occurs from the edge of the
surface wave sheet. The breakup of the surface wave sheet is considered the liquid jet
primary breakup process. The length scale of primary breakup is determined by the size
of the ligament formed from the surface wave sheet. The breakup of the surface wave
sheet is affected by factors such as the radial velocity of the liquid sheet, viscous force,
surface tension, and liquid gas density [53,54]. For the scaling analysis, the following set of
dimensionless parameters is derived:

We =
ρlU2h

σ
; Re =

ρlUh
µ

; Q =
ρg

ρl
(15)

These parameters affect liquid sheet disintegration because, under different flow con-
ditions, the liquid sheet exhibits different appearances with the change in the mechanisms
that govern the liquid sheet.

To characterize the effect of surface tension, we identify a characteristic length [35] as

b =
σ

ρgU2
local

(16)
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We assume that the size of the ligament formed from the liquid sheet is proportionate
to the wavelength of the liquid sheet instability wave, whereas the latter is proportionate
to the characteristic length (b). Therefore, the ligament diameter d is linear with b. We
can characterize the breakup mode of the liquid sheet based on the ratio of b to the mean
thickness of the surface wave sheet h:

b
h
=

σ

ρgU2
localh

=
σ

ρlU2
localh

ρl
ρg

=
We
Q

(17)

When We > Q, the ligament diameter is larger than the liquid sheet thickness. The
surface tension is the driving force for the breakup of the liquid sheet, and it shows a
Rayleigh-type mechanism. When We < Q, the liquid sheet breakup is in atomization mode,
and the sizes of the drops formed from the liquid sheet are significantly smaller than the
sheet thickness.

Under the flow conditions in this paper, the local liquid Weber number We = 0.001 to 0.003,
whereas the gas–liquid density ratio Q = 0.0015, both of which are in the same order of
magnitude. The ligament diameter is in the same order of magnitude as the liquid sheet
thickness. According to the regulation of the liquid sheet breakup mechanism, the breakup
of liquid sheets in the present paper occurs in the first wind-induced regime [55]. The
liquid sheet breakup occurs because of the relative motion between the liquid sheet and
the gas, and as a result, the effect of surface tension is enhanced. The change in surface
curvature results in an uneven static pressure distribution inside the liquid sheet. Therefore,
the pressure gradient accelerates the breakup of the liquid sheet. Aerodynamics, pressure
pulsation, and surface tension are the factors that jointly result in the breakup of the
liquid sheet.

Equation (10) and the relations of the ligament diameter d and the characteristic length
b indicate that the following formula can be derived:

d ∝ b ∝ h
We
Q

(18)

The ligament diameter of the primary breakup is positively correlated with the local
Weber number and the thickness of the liquid sheet, whereas the thickness of the liquid
sheet is positively correlated with the wavelength of the surface wave. Figure 20 shows the
plots of the primary breakup ligament diameter variation with the surface wavelength for
different disturbance amplitudes (ε = 0.30, 0.45, and 0.60). A detailed view of the contour of
the liquid volume fraction and the ligament formation features on a selected cross-section is
shown in Figure 21. Figure 20 indicates that the ligament diameter of the primary breakup
increases with an increase in the surface wavelength. From a detailed view of Figure 21,
the wavelength of the surface wave and the thickness of the radial liquid sheet are reduced
with an increase in disturbance frequency, a condition that reduces the primary breakup
ligament diameter.

We also investigated the relationship between the disturbance amplitude and the
primary breakup ligament diameter, as shown in Figure 22. For cases with the same
disturbance frequency, the ligament diameter decreases as the disturbance amplitude
increases. In this section, we define the Weber number as the ratio of the surface tension
to the inertial force. This ratio varies inversely with the radial velocity squared. As the
disturbance amplitude increases, the Weber number of the radial liquid sheet decreases
and thus causes the inertial force to become the primary factor against surface tension. The
inertial force promotes the breakup of the radial liquid sheet and decreases the length scale
of the primary breakup. From another perspective, the increase in disturbance amplitude
increases the radial kinetic energy of the liquid sheet and thus promotes radial expansion
and reduces the thickness of the liquid sheet. This condition can also contribute to the
decrease in the primary breakup ligament diameter.
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We define the primary breakup time t_b as the period from the start of injection to
the time when ligament formation first occurs. Figure 22 presents the plot of primary
breakup time variation with an increase in surface wavelength for different disturbance
amplitudes (ε = 0.30, 0.45, and 0.60). Figure 22 shows that for the cases of ε = 0.30, 0.45, and
0.60, the breakup time increases as the surface wavelength increases. This condition can be
attributed to the increase in surface wavelength, which in turn increases the thickness of
the liquid sheet. This condition is unfavorable for the breakup of the liquid sheet and thus
increases the primary breakup time.

From another perspective, as the disturbance amplitude increases while the surface
wavelengths remain the same, the primary breakup time decreases. This trend indicates that
the increasing disturbance amplitude promotes the atomization of a disturbed liquid jet.

5. Conclusions

In this study, a CFD methodology that combines the LES model with a VOF technique
for free surface capture was successfully applied to simulate the primary breakup of a high-
speed diesel jet. By simplifying inner-nozzle turbulence and cavitation as the sinusoidal
radial velocity, we computed the primary atomization of a disturbed liquid jet. We mainly
focused on the atomization characteristics and physical mechanism of primary breakup.
The following results were obtained:

The variation in the disturbance amplitude and frequency facilitates the formation of
a variety of liquid structures, such as waves, upstream/downstream-directed bells, and
droplet chains.

Ligament formation occurs from the edge of the surface wave crest. As the liquid jet is
disturbed by the radial velocity, surface waves occur from the liquid core, and umbrella-
shaped crests are created. We note from the simulations that the amplitude of surface
waves increases along the flow direction, and the growth rate of the amplitude decreases
with distance from the nozzle exit. The variation in disturbance frequency evidently affects
the surface wave amplitude. Increasing the disturbance frequency reduces the growth rate
of the surface waves of the liquid jet and thus decreases the surface wave amplitude. With
an increase in disturbance amplitude, the amplitude of surface waves evidently increases.

The ligament diameter of primary breakup is positively correlated with the local Weber
number and the thickness of the radial liquid sheet. Therefore, as the disturbance frequency
and amplitude increase, the thickness and Weber number of the radial liquid sheet decrease,
and this causes the ligament diameter of the primary breakup to become small. The time
scale of the liquid jet primary breakup decreases as the disturbance amplitude increases,
which indicates that an increase in the disturbance amplitude promotes the atomization of
a disturbed liquid jet.
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Nomenclature

b Characteristic length (m)
d Liquid ligament diameter (m)
D Nozzle diameter (m)
E Kinetic energy (J)
f Disturbance frequency (1/s)
Fs Surface tension force (N)
h Mean thickness of the surface wave sheet (m)
k Turbulent kinetic energy (m2/s2)
⇀
n Normal vector
p Pressure (Pa)
tb Primary breakup time (s)
t Time (s)
T Temperature (K)
u Velocity (m/s)
U Axial velocity of liquid jet (m/s)
x, y, z Coordinate (m)
ρ Density (kg/m3)
µ Dynamic viscosity (Pa·s)
τij Subgrid scale (SGS) stress (m2/s2)
υt SGS viscosity (N/m2)
Sij Mean strain rate tensor (s−1)
γ Volume fraction
σ Surface tension of the liquid (N/m)
κ Curvature (1/m)
η Amplitude (m)
ε Disturbance amplitude ratio
Sr Strouhal number
Re Reynolds number
Q Liquid–gas density ratio
We Weber number
Subscripts
Axial Axial direction
cav Cavitation
g Gas
inj Injection
i, j, k Unit vectors in the x-, y-, and z-directions
l Liquid
local Local
max Maximum
rad Radial direction
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