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Abstract: This paper considers the constrained inverse problem based on the nonlinear convection-
diffusion equation in the multiphase porous media flow. To solve this problem, a widely convergent
homotopy method is introduced and proposed. To evaluate the performance of the mentioned
method, two numerical examples are presented. This method turns out to have wide convergence
region and strong anti-noise ability.
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1. Introduction

The multiphase flow in porous media is of great importance in biology [1], chem-
istry [2], civil engineering [3], mechanics [4], and geosciences [5]. The porous media flow
in many engineering problems, including reservoir engineering and reservoir simulation
engineering, is often used to simulate the gas and oil flow within the reservoir. The authors
in [6] proposed the fractional flow formulation of the multiphase flow equations in porous
media, which leads to a nonlinear convection-diffusion saturation equation. Recently,
Saeed et al. exactly analyzed the second grade fluid [7] and viscoelastic liquid with single
slip assumption [8], and studied the natural convection flow [9] from in mathematical
perspective. Abdeljawad et al. [10] and Firdous et al. [11], respectively, considered the
MHD Maxwell fluid and Powell-Eyring fluid. Riaz et al. [12,13] mainly researched on the
MHD Oldroyd-B fluid. Nowadays there are many different studies that aim to solve the
inverse problem in multiphase porous media flow. Hazra et al. [14] solved the direct and
inverse modeling in multiphase porous media flow using numerical simulation techniques,
and Wang and Zabaras [15] identified the contamination source in multiphase porous
media flow. Nilssen et al. [16] recovered the diffusion parameters in multiphase porous
media flow with the augmented Lagrangian method. With the development of artificial
intelligence, several recent studies focused on the application of deep learning models to
the inverse problem in multiphase porous media flow [17–20].

This paper considers the identification of space-dependent permeability k for the
nonlinear convection-diffusion equation in the multiphase porous media flow:

ut +∇ · (φ, ϕ)−∇ · (k · N(u)∇u) = f (x, t), (x, t) ∈ Ω× (0, T), (1)

under the boundary and initial conditions

u(x, t) = χ(x, t), (x, t) ∈ ∂Ω× (0, T), (2)

u(x, 0) = ψ(x), x ∈ Ω. (3)
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An additional condition is

u(xs, t) = γ(xs, t), s = 1, 2, . . . , S, t ∈ (0, T), (4)

where φ and ϕ are both S-shaped Buckley–Leverett flux functions, N is a nonlinear diffusion
function, f is a source function that is piecewise smooth, Ω is set to be an unit square for
simplicity, and γ is the measured data (seepage velocity data).

Equation (1) correlates with the multiphase porous media flow. The partial differential
equation (PDE) system describing the immiscible displacement of oil by water in porous
media under no gravity condition is as follows [6]:

∇ ·V = f1(x, t),
V = −k · ς(x, u)(∇p− ϑ(u)∇h),
β(x)ut +∇ · (φ(u)V + k · ϕ(u)∇h)−∇ · (k · N(u)∇u) = f2(x, t),

(5)

where φ = ςra
ς , ςra = kra

µ , ϕ = (ϑ − ρ)φε, and the definitions of model parameters are

listed in Table 1. Units for k, V, p, h, ρ are, respectively, m2, m/s, N, m, kg/m3, and other
parameters are dimensionless.

Table 1. Parameter definitions.

Parameter Definition

k absolute permeability
V total Darcy velocity
ς total mobility of phases
p global pressure
ϑ density of wetting phase
h height
β porosity
f1 injection well
f2 production well

ςra mobility ratio
kra relative permeability
µ viscosity
ρ density
ε phase mobility of nonwetting phase

Equation (1) closely resembles Equation (5) if the time derivative and convection terms
are not considered. The coefficients of time derivative terms in Equations (1) and (5) are
respectively constant 1 and β(x); the convection term in Equation (5) has varying coefficient
and permeability dependence, and the one in Equation (1) does not.

Oil reservoir simulation on the basis of this inverse problem is an effective tool, which
can provide help for petroleum reservoir management, such as the choices of the fluid
production and injection rates, well locations, imaging method (see Figure 1). Gener-
ally, the permeability model has problems with equivalence, non-uniqueness, hidden or
suppressed layers and lack of model resolution, because the measured data are insuffi-
cient, inconsistent and inaccurate [21]. Moreover, the primary difficulties of the traditional
methods (e.g., Levenberg–Marquardt, Gauss–Newton) are the local convergence property
and that the cost function has numerous local minima. To cope with these problems, a
homotopy method is developed associated with the constraints of well logs to identify the
permeability coefficient.
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Figure 1. Practical description of the problem.

The homotopy method has global convergence under certain weak assumptions [22],
and so has been successfully used to solve various nonlinear problems [23–28]. Recently,
some authors also used it to solve inverse problems. For instance, Mallick et al. [29,30]
used this method to estimate the thermal parameters within annular fins. Biswal et al. [31]
applied the homotopy method for the inverse analysis of Jeffery–Hamel flow problem.
Sattari Shajari and Shidfar [32] studied the homotopy solution of the wave equation inverse
source problem. Liu [33,34] combined the homotopy method with multiscale ideas to
develop the hybrid algorithm, and applied it to nonlinear inverse problems. Hu et al. [35]
identified the parameters of a cracked beam using the homotopy algorithm. Courbot
and Colicchio [36] analyzed the solution of the gridless sparse recovery problem using
the homotopy method. The homotopy method has also been applied to the fractional
inverse Stefan problem [37], the backward heat conduction problem [38], the porosity
reconstruction on the basis of Biot elastic model [39], etc.

Usually, the measured data have a low signal-to-noise ratio. With the aim of restrain-
ing noise and improving identified model quality, the constraint condition has a wide
application in many inversion fields [40–43]. The reason lies in that the constraint data
are recorded from the interior of the model to be identified, and are less noisy than the
measured data.

In previous works [44,45], we have verified the effectiveness of the homotopy and
multigrid-homotopy methods for the inverse problem of the nonlinear diffusion equation:

ut −∇ · (k · N(u,∇u)∇u) = f (x, t), (6)

which is an intermediate step of permeability identification in multiphase porous media
flow. Different from [44,45], this paper not only considers the permeability identifica-
tion based on the nonlinear convection-diffusion Equation (1), which can more accu-
rately describe the multiphase flow process in porous media than the nonlinear diffusion
Equation (6), but also introduces a well-log constraint to this inverse problem. The resulted
constrained inverse problem can be transformed into a nonlinear constrained optimization
problem. Because of the ill-posedness of problem and the local convergence property
of traditional methods, we first impose Tikhonov regularization, and then use a widely
convergent homotopy method to solve the normal equation of the regularized cost function.
The final part of the paper consists of a report of numerical experiments that demonstrates
the performance of the method.
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2. Discretization

Equations (1)–(4) can be discretized by using the finite-difference scheme as follows:

uk
i,j−uk−1

i,j
ht

+∇ · (φ(uk−1
i,j ), ϕ(uk−1

i,j ))−∇ · (ki,jNk
i,j∇uk

i,j) = f k
i,j,

i = 1, . . . , I − 1; j = 1, . . . , J − 1; k = 1, . . . , K,
uk

0,j = χk
0,j, j = 0, . . . , J; k = 1, . . . , K,

uk
1,j = χk

1,j, j = 0, . . . , J; k = 1, . . . , K,
uk

i,0 = χk
i,0, i = 0, . . . , I; k = 1, . . . , K,

uk
i,1 = χk

i,1, i = 0, . . . , I; k = 1, . . . , K,
u0

i,j = ψi,j, i = 0, . . . , I; j = 0, . . . , J,
uk

xs = γk
xs , s = 1, . . . , S; k = 1, . . . , K,

(7)

where
uk

i,j = u(ihx, jhy, kht), ki,j = k(ihx, jhy), f k
i,j = f (ihx, jhy, kht),

ψi,j = ψ(ihx, jhy), χk
i,j = χ(ihx, jhy, kht), γk

xs = γ(xs, kht),

I = 1/hx, J = 1/hy, K = T/ht,

ht, hx, hy are, respectively, the time and spatial step lengths. ∇ · (φ(uk−1
i,j ), ϕ(uk−1

i,j )) and

∇ · (ki,jNk
i,j∇uk

i,j) are, respectively, the discretizations of convection and diffusion terms,
which will be described in the Appendices A and B.

By Equation (7), this inverse problem can be formulated as the following nonlinear
operator equation:

R(K) = Γ, (8)

where
K> = (k1,1, k1,2, . . . , k1,J , k2,1, k2,2, . . . , k2,J , . . . , kI,1, kI,2, . . . , kI,J),

Γ> = (γ1
x1 , γ1

x2 , . . . , γ1
xS , γ2

x1 , γ2
x2 , . . . , γ2

xS , . . . , γK
x1 , γK

x2 , . . . , γK
xS).

The measured data are denoted by γ̄k
xs , which can form the vector Γ̄ in the same

sequence as Γ:

Γ̄> = (γ̄1
x1 , γ̄1

x2 , . . . , γ̄1
xS , γ̄2

x1 , γ̄2
x2 , . . . , γ̄2

xS , . . . , γ̄K
x1 , γ̄K

x2 , . . . , γ̄K
xS),

and the permeability, known from the well logs of a well located at point i0 in the x-direction,
is denoted by

K̄>i0 = (k̄i0,1, k̄i0,2, . . . , k̄i0,J).

Let Y denote a matrix

Y =


0 0 . . . 0 1 0 . . . 0 0 0 . . . 0
0 0 . . . 0 0 1 . . . 0 0 0 . . . 0
...

...
...

...
...

. . .
...

...
...

...
0 0 . . . 0 0 0 . . . 1 0 0 . . . 0


J×(I×J)

,

such that YK = (ki0,1, ki0,2, . . . , ki0,J), then Equation (8) turns into a nonlinear constrained
optimization problem

min
K
‖R(K)− Γ̄‖2, subject to YK = K̄i0 . (9)

By combining the objective function and constraint into a penalty function, we can
attack Equation (9) by solving an unconstrained problem. For instance, a penalty function
can be defined as

‖R(K)− Γ̄‖2 + ω‖YK− K̄i0‖
2, (10)
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where ω is the penalty parameter. After that, the solution of Equation (9) can be obtained
by minimizing this unconstrained function Equation (10) for a large value of ω.

3. Identification Method

In the first part of this section, a basic iterative method is given by the successive
linearization technique. Then, in the second part, the strategy used for the development of
a homotopy method is presented.

3.1. Basic Iterative Method

It is common knowledge that the inverse problem is ill-posed, therefore the regulariza-
tion technique has to be used for the improvement of numerical stability of the algorithm:

min
K
{‖R(K)− Γ̄‖2 + ω‖YK− K̄i0‖

2 + v1‖W1K‖2 + v2‖W2K‖2}, (11)

where v1, v2 denote the regularization parameters, W1, W2 denote, respectively, the second-
order smooth matrices in the x- and y-direction.

W1K =



0
k1,1 − 2k2,1 + k3,1
k2,1 − 2k3,1 + k4,1

· · ·
kI−2,1 − 2kI−1,1 + kI,1

0
0

k1,2 − 2k2,2 + k3,2
k2,2 − 2k3,2 + k4,2

· · ·
kI−2,2 − 2kI−1,2 + kI,2

0
· · ·
0

k1,J − 2k2,J + k3,J
k2,J − 2k3,J + k4,J

· · ·
kI−2,J − 2kI−1,J + kI,J

0



, W2K =



0
k1,1 − 2k1,2 + k1,3
k1,2 − 2k1,3 + k1,4

· · ·
k1,J−2 − 2k1,J−1 + k1,J

0
0

k2,1 − 2k2,2 + k2,3
k2,2 − 2k2,3 + k2,4

· · ·
k2,J−2 − 2k2,J−1 + k2,J

0
· · ·
0

kI,1 − 2kI,2 + kI,3
kI,2 − 2kI,3 + kI,4

· · ·
kI,J−2 − 2kI,J−1 + kI,J

0



.

It is easy to show that Equation (11) is equivalent to (its normal equation):

R′(K)>(R(K)− Γ̄) + ωY>(YK− K̄i0) + (v1W>1 W1 + v2W>2 W2)K = 0. (12)

For the sake of avoiding the influence of second derivative, a successive linearization
method can be introduced to construct a basic iterative method.

We first assume that the kth approximation Kk of Equation (12) has been obtained,
and use the linear function

Ek(K) = R′(Kk)(K−Kk) + R(Kk),

instead of R(K) in Equation (12):

R′(Kk)>(R′(Kk)(K−Kk) + R(Kk)− Γ̄) + ωY>(YK− K̄i0)

+ (v1W>1 W1 + v2W>2 W2)K = 0.
(13)
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Then, by denoting the solution of Equation (13) as Kk+1, we obtain the basic itera-
tive scheme: 

Kk+1 = Kk + ∆Kk, k = 0, 1, 2, . . .
[R′(Kk)>R′(Kk) + ωY>Y + v1W>1 W1 + v2W>2 W2]∆Kk =
−[R′(Kk)>(R(Kk)− Γ̄) + ωY>(YKk − K̄i0)
+(v1W>1 W1 + v2W>2 W2)Kk].

(14)

This method is fast and stable, but only has local convergence.

3.2. Homotopy Method

In order to expand the domain of convergence, the homotopy method is introduced to
solve Equation (12) by taking into account the fixed-point homotopy equation

A(K, a) = a[R′(K)>(R(K)− Γ̄) + ωY>(YK− K̄i0)

+ (v1W>1 W1 + v2W>2 W2)K] + (1− a)(K−K0) = 0,
(15)

where a ∈ [0, 1] and K0 are, respectively, the homotopy parameter and arbitrary initial
value. From Equation (15), it is easy to see

A(K, 0) = K−K0,

A(K, 1) = R′(K)>(R(K)− Γ̄) + ωY>(YK− K̄i0)

+ (v1W>1 W1 + v2W>2 W2)K.

(16)

As the homotopy parameter a changed continuously from 0 to 1, the trivial problem
A(K, 0) = 0 is continuously deformed to the original problem A(K, 1) = 0, that is, K is
changed from K0 to the solution of Equation (12). In topology, this is called deformation.

To achieve the specific numerical algorithm, we first divide the interval [0, 1] into
0 = a0 < a1 < · · · < aB = 1, and then solve A(K, ab) = 0 (b = 1, 2, . . . , B) sequentially by
some iterative scheme, whose initial value is chosen as the solution Kb−1 of the previous
equation A(K, ab−1) = 0.

For A(K, ab) = 0, in the same manner as the construction of Equation (14), we have

Kk+1
b = Kk

b + ∆Kk
b, k = 0, 1, . . . , bm,

[abR′(Kk
b)
>R′(Kk

b) + abωY>Y + abv1W>1 W1 + abv2W>2 W2 + (1− ab)I]∆Kk
b =

−[abR′(Kk
b)
>(R(Kk

b)− Γ̄) + abωY>(YKk
b − K̄i0)

+(abv1W>1 W1 + abv2W>2 W2)Kk
b + (1− ab)(Kk

b −K0)],
K0

b = Kb−1, Kb = Kbm+1
b , b = 1, 2, . . . , B,

(17)

where I refers to the unit matrix. After KB is obtained, Equation (14) may be used to make
correction. Therefore, Equations (14) and (17) are combined into a stabilized method which
has a wider domain of convergence for the constrained permeability identification of the
nonlinear convection-diffusion equation.

By choosing ab = b
B and bm = 0, Equation (17) can be simplified as

Kb+1 = Kb + ∆Kb, b = 0, 1, . . . , B− 1,
[ b

B R′(Kb)
>R′(Kb) +

b
B ωY>Y + b

B v1W>1 W1 +
b
B v2W>2 W2 + (1− b

B )I]∆Kb =

−[ b
B R′(Kb)

>(R(Kb)− Γ̄) + b
B ωY>(YKb − K̄i0)

+( b
B v1W>1 W1 +

b
B v2W>2 W2)Kb + (1− b

B )(Kb −K0)].

(18)

To test the necessity of introduction of constraints, we also give the homotopy method
for the ordinary permeability identification for the nonlinear convection-diffusion equa-
tion in the multiphase porous media flow, and compare Equations (14) and (18) with it.
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Specifically, let ω = 0, then Equations (14) and (18) turn into the homotopy method for the
ordinary permeability identification problem

Kb+1 = Kb + ∆Kb, b = 0, 1, . . . , B− 1,
[ b

B R′(Kb)
>R′(Kb) +

b
B v1W>1 W1 +

b
B v2W>2 W2 + (1− b

B )I]∆Kb =

−[ b
B R′(Kb)

>(R(Kb)− Γ̄) + ( b
B v1W>1 W1 +

b
B v2W>2 W2)Kb

+(1− b
B )(Kb −K0)],

(19)

and 
Kk+1 = Kk + ∆Kk, k = 0, 1, 2, . . .
[R′(Kk)>R′(Kk) + v1W>1 W1 + v2W>2 W2]∆Kk =
−[R′(Kk)>(R(Kk)− Γ̄) + (v1W>1 W1 + v2W>2 W2)Kk].

(20)

4. Numerical Experiments

This section tested two synthetic examples to show the performance of our proposed
method. The parameters required in the identification process are given by

φ(u) =
u2(1− 5(1− u2))

u2 + (1− u)2 , ϕ(u) =
u2

u2 + (1− u)2 , N(u) = u2 − u + 1,

ψ(x) = sin(πx)sin(πy), χ(x, t) = 0, ω = 104, v1 = v2 = 10−5,

K0 ≡ 5, hx = hy =
1

24
, i0 =

12
24

, T = 0.06, ht = 0.002, B = 5.

Example 1. The exact permeability k in this example is shown in Figure 2. In order to illustrate
the noise sensitivity, we add Gaussian noise to the measured data Γ̄. With 5%, 10%, 15%, and 20%
Gaussian noises, the identified permeability results by the homotopy method with constraints are
shown in Figures 3–6, respectively.

Example 2. This example selects a model of two anomalous bodies in a homogeneous medium with
a permeability of 4.25, and the anomalous bodies have the permeability of 6.18 and 7.55, see Figure 7.
Figures 8–11, respectively, show the identified permeability results of the homotopy method with
constraints, with 5%, 10%, 15%, and 20% Gaussian noises.
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Figure 2. The exact permeability k in Example 1. (a) Three-dimensional model. (b) Two-
dimensional profile.
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Figure 3. The identified permeability k with 5% Gaussian noise in Example 1. (a) Three-dimensional
model. (b) Two-dimensional profile.
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Figure 4. The identified permeability k with 10% Gaussian noise in Example 1. (a) Three-dimensional
model. (b) Two-dimensional profile.
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Figure 5. The identified permeability k with 15% Gaussian noise in Example 1. (a) Three-dimensional
model. (b) Two-dimensional profile.
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Figure 6. The identified permeability k with 20% Gaussian noise in Example 1. (a) Three-dimensional
model. (b) Two-dimensional profile.
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Figure 7. The exact permeability k in Example 2. (a) Three-dimensional model. (b) Two-
dimensional profile.
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Figure 8. The identified permeability k with 5% Gaussian noise in Example 2. (a) Three-dimensional
model. (b) Two-dimensional profile.
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Figure 9. The identified permeability k with 10% Gaussian noise in Example 2. (a) Three-dimensional
model. (b) Two-dimensional profile.
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Figure 10. The identified permeability k with 15% Gaussian noise in Example 2. (a) Three-
dimensional model. (b) Two-dimensional profile.
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Figure 11. The identified permeability k with 20% Gaussian noise in Example 2. (a) Three-
dimensional model. (b) Two-dimensional profile.

To test the necessity of introduction of constraints and the wide convergence of the
homotopy strategy, the homotopy method without constraints and basic iterative method
with constraints are used for the above measured data, and the relative errors of all the
identified permeability results by the three methods are listed in Table 2, where ×means
that there is no convergent result.

Table 2 shows that



Processes 2022, 10, 1143 11 of 14

(1) The stability of the homotopy method with constraints is better than the homotopy
method without constraints;

(2) The region of convergence of the homotopy strategy is wider than the basic iterative
method with constraints;

(3) The homotopy method with constraints has wide convergence region and strong
anti-noise ability.

Table 2. Relative errors of identified permeability k by three different methods. HM—homotopy
method with constraints, HM—homotopy method without constraints, BIMC—basic iterative method
with constraints.

Example Number Noise Level HMC HM BIMC

4.1 5% 6.22% 6.90% ×
10% 6.38% 7.40% ×
15% 7.13% × ×
20% 7.44% × ×

4.2 5% 5.71% 6.47% ×
10% 5.81% 7.39% ×
15% 6.06% × ×
20% 7.19% × ×

5. Conclusions

To restrain the noise and improve identified model quality, the constraint condition is
introduced to the inverse problem of the nonlinear convection-diffusion equation in the
multiphase porous media flow. Then, Tikhonov regularization is applied to the constrained
optimization problem obtained by the discretization to overcome the ill-posed property. We
developed a homotopy method that is widely convergent. The results from the numerical
experiments show that this method is feasible and effective. Compared with the homotopy
method without constraints, our approach has better stability; compared with the basic
iterative method with constraints, our approach has a wider convergence region. So far,
there is no literature on the use of fractional operators for constraint inverse problems,
which will be an interesting future work.

Author Contributions: Conceptualization, T.L. and Y.Z.; methodology, T.L. and Y.Z.; software, T.L.
and K.X.; validation, T.L. and K.X.; formal analysis, T.L. and K.X.; investigation, T.L. and K.X.;
resources, Y.Y., R.Q. and Y.Q.; data curation, T.L.; writing—original draft preparation, T.L., K.X. and
Y.Z.; writing—review and editing, T.L., K.X. and Y.Z.; visualization, T.L.; supervision, Y.Z.; project
administration, T.L., Y.Q. and C.L.; funding acquisition, T.L., Y.Q. and C.L. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the Natural Science Foundation of He-bei Province of
China (A2020501005, A2020501007), the Fundamental Research Funds for the Central Universities
(N2123015).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: On behalf of my co-authors, we would like to express our great appreciation to
the editor and reviewers.

Conflicts of Interest: The authors declare no conflict of interest.



Processes 2022, 10, 1143 12 of 14

Appendix A. Discretization of the Diffusion Term

Let

Dx
−uk

i,j =
uk

i,j − uk
i−1,j

hx
, Dx

+uk
i,j =

uk
i+1,j − uk

i,j

hx
,

be the discrete derivatives of x, and a corresponding notation is used for the the discrete
derivatives of y.

The mean values for the discretized permeability are defined as

k
x
i,j+ 1

2
=

1
2
(ki+ 1

2 ,j+ 1
2
+ ki− 1

2 ,j+ 1
2
), k

y
i+ 1

2 ,j =
1
2
(ki+ 1

2 ,j+ 1
2
+ ki+ 1

2 ,j− 1
2
),

and the mean values for the nonlinear diffusion function are defined as

(Nx
)k

i+ 1
2 ,j =

1
2
(Nk

i+1,j + Nk
i,j), (Ny

)k
i,j+ 1

2
=

1
2
(Nk

i,j+1 + Nk
i,j),

where Nk
i,j = N(uk

i,j).
Then, the diffusion term can be discretizated as

∇ · (ki,jNk
i,j∇uk

i,j) = Dx
−(k

y
i+ 1

2 ,j(Nx
)k

i+ 1
2 ,jD

x
+uk

i,j) + Dy
−(k

x
i,j+ 1

2
(Ny

)k
i,j+ 1

2
Dy
+uk

i,j).

Appendix B. Discretization of the Convection Term

The convection term can be discretizated by the Engquist–Osher upwind scheme [46]
as follows:

∇ · (φ(uk−1
i,j ), ϕ(uk−1

i,j )) = Dx
−φEO(uk−1

i,j , uk−1
i+1,j) + Dy

−ϕEO(uk−1
i,j , uk−1

i,j+1),

where the Engquist–Osher numerical flux functions φEO(uk−1
i,j , uk−1

i+1,j) and ϕEO(uk−1
i,j , uk−1

i,j+1)

are defined by

φEO(uk−1
i,j , uk−1

i+1,j) =
1
2
(φ(uk−1

i,j ) + φ(uk−1
i+1,j))−

1
2

∫ uk−1
i+1,j

uk−1
i,j

|φ′(ξ)|dξ,

ϕEO(uk−1
i,j , uk−1

i,j+1) =
1
2
(ϕ(uk−1

i,j ) + ϕ(uk−1
i,j+1))−

1
2

∫ uk−1
i,j+1

uk−1
i,j

|ϕ′(ξ)|dξ.

Finally, we give the explicit formulas for φEO and ϕEO, for examples of φ(u) =
u2(1−5(1−u2))

u2+(1−u)2 and ϕ(u) = u2

u2+(1−u)2 . For the sake of simplicity, the following calculations
only use one subscript index.

Appendix B.1. Buckley–Leverett Flux Function

ϕ(u) is an S-shaped flux function of Buckley–Leverett type, and

ϕ′(u) ≥ 0, u ∈ (0, 1),

therefore
ϕEO(ui, ui+1) = ϕ(ui).

Appendix B.2. Buckley–Leverett Flux Function with Gravitational Effects

φ(u) is an S-shaped flux function of Buckley–Leverett type under gravity effects, and
for the calculation of

∫ ui+1
ui
|φ′(ξ)|dξ, we first discuss the sign of φ′ in (0, 1). Actually, φ′ has

only one zero point in (0, 1), that is

xzero ≈ 0.37.
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Therefore, we can get

φ′(ξ)


< 0, ξ ∈ (0, xzero),
= 0, ξ = xzero,
> 0, ξ ∈ (xzero, 1).

Additionally, we have the formula of the integral

∫ ui+1

ui

|φ′(ξ)|dξ =


φ(ui+1)− φ(ui), ui, ui+1 ≥ xzero,
φ(ui)− φ(ui+1), ui, ui+1 < xzero,
φ(ui) + φ(ui+1)− 2φ(xzero), ui < xzero, ui+1 ≥ xzero,
2φ(xzero)− φ(ui)− φ(ui+1), ui ≥ xzero, ui+1 < xzero,

and according to the definition of φEO, then we have

φEO(ui, ui+1) =


φ(ui), ui, ui+1 ≥ xzero,
φ(ui+1), ui, ui+1 < xzero,
φ(xzero), ui < xzero, ui+1 ≥ xzero,
φ(ui) + φ(ui+1)− φ(xzero), ui ≥ xzero, ui+1 < xzero.

References
1. Rana, B.M.J.; Arifuzzaman, S.M.; Islam, S.; Reza-E-Rabbi, S.; Al-Mamun, A.; Mazumder, M.; Roy, K.C.; Khan, M.S. Swimming of

microbes in blood flow of nano-bioconvective Williamson fluid. Therm. Sci. Eng. Progr. 2021, 25, 101018. [CrossRef]
2. Reza-E-Rabbi, S.; Ahmmed, S.F.; Arifuzzaman, S.M.; Sarkar, T.; Khan, M.S. Computational modelling of multiphase fluid flow

behaviour over a stretching sheet in the presence of nanoparticles. Eng. Sci. Technol. Int. J. 2020, 23, 605–617. [CrossRef]
3. Moosavian, N. Pipe network modeling for analysis of flow in porous media. Can. J. Civil Eng. 2019, 46, 1151–1159. [CrossRef]
4. Shapiro, A.A. Mechanics of the separating surface for a two-phase co-current flow in a porous medium. Transp. Porous Med. 2016,

112, 489–517. [CrossRef]
5. Hunt, A.G.; Sahimi, M. Flow, transport, and reaction in porous media: Percolation scaling, critical-path analysis, and effective

medium approximation. Rev. Geoph. 2017, 55, 993–1078. [CrossRef]
6. Espedal, M.S.; Karlsen, K.H. Numerical solution of reservoir flow models based on large time step operator splitting algorithm.

In Filtration in Porous Media and Industrial Applications: Lecture Notes in Mathematics; Fasano, A., Ed.; Springer: Berlin/Heidelberg,
Germany, 2000; Volume 1734, pp. 9–77.

7. Saeed, S.T.; Riaz, M.B.; Baleanu, D.; Akgul, A.; Husnine, S.M. Exact analysis of second grade fluid with generalized boundary
conditions. Intell. Autom. Soft Comput. 2021, 28, 547–559. [CrossRef]

8. Saeed, S.T.; Abro, K.A.; Almani, S. Role of single slip assumption on the viscoelastic liquid subject to non-integer differentiable
operators. Math. Meth. Appl. Sci. 2021, 44, 6005–6020. [CrossRef]

9. Saeed, S.T.; Riaz, M.B.; Baleanu, D.; Abro, K.A. A mathematical study of natural convection flow through a channel with
non-singular kernels: An application to transport phenomena. Alex. Eng. J. 2020, 59, 2269–2281. [CrossRef]

10. Abdeljawad, T.; Riaz, M.B.; Saeed, S.T.; Iftikhar, N.I. MHD Maxwell fluid with heat transfer analysis under ramp velocity and
ramp temperature subject to non-integer differentiable operators. Comput. Model. Eng. Sci. 2021, 126, 821–841. [CrossRef]

11. Firdous, H.; Saeed, S.T.; Ahmad, H.; Askar, S. Using non-Fourier’s heat flux and non-Fick’s mass flux theory in the radiative and
chemically reactive flow of Powell-Eyring fluid. Energies 2021, 14, 6882. [CrossRef]

12. Riaz, M.B.; Siddique, I.; Saeed, S.T.; Atangana, A. MHD Oldroyd-B fluid with slip condition in view of local and nonlocal kernels.
J. Appl. Comput. Mech. 2021, 7, 116–127.

13. Riaz, M.B.; Saeed, S.T. Comprehensive analysis of integer order, Caputo-Fabrizio and Atangana-Baleanu fractional time derivative
for MHD Oldroyd-B fluid with slip effect and time dependent bounday conditions. Discr. Contin. Dynam. Syst. 2021, 14,
3719–3746. [CrossRef]

14. Hazra, S.; Class, H.; Helmig, R.; Schulz, V. Forward and inverse problems in modeling of multiphase flow and transport through
porous media. Computat. Geosci. 2004, 8, 21–47. [CrossRef]

15. Wang, J.; Zabaras, N. A Markov random field model of contamination source identification in porous media flow. Int. J. Heat
Mass Transf. 2006, 49, 939–950. [CrossRef]

16. Nilssen, T.K.; Karlsen, K.H.; Mannseth, T.; Tai, X.C. Identification of diffusion parameters in a nonlinear convection-diffusion
equation using the augmented lagrangian method. Comput. Geosci. 2009, 13, 317–329. [CrossRef]

17. Yan, B.; Harp, D.R.; Chen, B.; Pawar, R. A physics-constrained deep learning model for simulating multiphase flow in 3D
heterogeneous porous media. Fuel 2022, 313, 122693. [CrossRef]

18. Yan, B.; Chen, B.; Harp, D.R.; Jia, W.; Pawar, R.J. A robust deep learning workflow to predict multiphase flow behavior during
geological CO2 sequestration injection and Post-Injection periods. J. Hydrol. 2022, 607, 127542. [CrossRef]

http://doi.org/10.1016/j.tsep.2021.101018
http://dx.doi.org/10.1016/j.jestch.2019.07.006
http://dx.doi.org/10.1139/cjce-2018-0786
http://dx.doi.org/10.1007/s11242-016-0662-6
http://dx.doi.org/10.1002/2017RG000558
http://dx.doi.org/10.32604/iasc.2021.015982
http://dx.doi.org/10.1002/mma.7164
http://dx.doi.org/10.1016/j.aej.2020.02.012
http://dx.doi.org/10.32604/cmes.2021.012529
http://dx.doi.org/10.3390/en14216882
http://dx.doi.org/10.3934/dcdss.2020430
http://dx.doi.org/10.1023/B:COMG.0000024445.39048.21
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2005.09.016
http://dx.doi.org/10.1007/s10596-008-9120-z
http://dx.doi.org/10.1016/j.fuel.2021.122693
http://dx.doi.org/10.1016/j.jhydrol.2022.127542


Processes 2022, 10, 1143 14 of 14

19. Magzymov, D.; Ratnakar, R.R.; Dindoruk, B.; Johns, R.T. Evaluation of machine learning methodologies using simple physics
based conceptual models for flow in porous media. In Proceedings of the SPE Annual Technical Conference and Exhibition,
Dubai, United Arab Emirates, 21–23 September 2021.

20. Almajid, M.M.; Abu-Al-Saud, M.O. Prediction of porous media fluid flow using physics informed neural networks. J. Petrol. Sci.
Eng. 2022, 208, 109205. [CrossRef]

21. Jackson, D.D. Interpretation of inaccurate, insufficient and inconsistent data. Geophys. J. R. Astron. Soc. 1972, 28, 97–109. [CrossRef]
22. Watson, L.T. Globally convergent homotopy methods: A tutorial. Appl. Math. Comput. 1989, 31, 369–396.
23. Mousa, M.M.; Alsharari, F. Convergence and error estimation of a new formulation of homotopy perturbation method for classes

of nonlinear integral/integro-differential equations. Mathematics 2021, 9, 2244. [CrossRef]
24. Agarwal, P.; Akbar, M.; Nawaz, R.; Jleli, M. Solutions of system of Volterra integro-differential equations using optimal homotopy

asymptotic method. Math. Meth. Appl. Sci. 2021, 44, 2671–2681. [CrossRef]
25. Mousa, M.M.; Kaltayev, A. Homotopy perturbation method for solving nonlinear differential-difference equations. Z. Naturforsch.

A 2010, 65, 511–517. [CrossRef]
26. Hammad, H.A.; Agarwal, P.; Guirao, J.L.G. Applications to boundary value problems and homotopy theory via tripled fixed

point techniques in partially metric spaces. Mathematics 2021, 9, 2012. [CrossRef]
27. Mousa, M.M.; Kaltayev, A. Application of the homotopy perturbation method to a magneto-elastico-viscous fluid along a

semi-infinite plate. Int. J. Nonlinear Sci. Numer. Simul. 2009, 10, 1113–1120. [CrossRef]
28. Saad, K.M.; Iyiola, O.S.; Agarwal, P. An effective homotopy analysis method to solve the cubic isothermal auto-catalytic chemical

system. AIMS Math. 2018, 3, 183–194. [CrossRef]
29. Mallick, A.; Ranjan, R.; Das, R. Application of homotopy perturbation method and inverse prediction of thermal parameters for

an annular fin subjected to thermal load. J. Therm. Stress. 2016, 39, 298–313. [CrossRef]
30. Mallick, A.; Ranjan, R.; Prasad, D.K.; Das, R. Inverse prediction and application of homotopy perturbation method for efficient

design of an annular fin with variable thermal conductivity and heat generation. Math. Model. Anal. 2016, 21, 699–717. [CrossRef]
31. Biswal, U.; Chakraverty, S.; Ojha, B.K. Application of homotopy perturbation method in inverse analysis of Jeffery-Hamel flow

problem. Eur. J. Mech. B Fluid. 2021, 86, 107–112. [CrossRef]
32. Sattari Shajari, P.; Shidfar, A. Application of weighted homotopy analysis method to solve an inverse source problem for wave

equation. Inverse Probl. Sci. Eng. 2019, 27, 61–88. [CrossRef]
33. Liu, T. A multigrid-homotopy method for nonlinear inverse problems. Comput. Math. Appl. 2020, 79, 1706–1717. [CrossRef]
34. Liu, T. A wavelet multiscale-homotopy method for the parameter identification problem of partial differential equations. Comput.

Math. Appl. 2016, 71, 1519–1523. [CrossRef]
35. Hu, L.; Huang, L.; Lu, Z.R. Crack identification of beam structures using homotopy continuation algorithm. Inverse Probl. Sci.

Eng. 2017, 25, 169–187. [CrossRef]
36. Courbot, J.B.; Colicchio, B. A fast homotopy algorithm for gridless sparse recovery. Inverse Probl. 2021, 37, 025002. [CrossRef]
37. Słota, D.; Chmielowska, A.; Brociek, R.; Szczygieł, M. Application of the homotopy method for fractional inverse Stefan problem.

Energies 2020, 13, 5474. [CrossRef]
38. Liu, J.; Wang, B. Solving the backward heat conduction problem by homotopy analysis method. Appl. Numer. Math. 2018, 128,

84–97. [CrossRef]
39. Liu, T. Porosity reconstruction based on Biot elastic model of porous media by homotopy perturbation method. Chaos Soliton.

Fract. 2022, 158, 112007. [CrossRef]
40. Enting, I.G.; Pearman, G.I. Description of a one-dimensional carbon cycle model calibrated using techniques of constrained

inversion. Tellus B 1987, 39, 459–476. [CrossRef]
41. Lambert, M.; Lesselier, D. Binary-constrained inversion of a buried cylindrical obstacle from complete and phaseless magnetic

fields. Inverse Probl. 2000, 16, 563–576. [CrossRef]
42. Atzberger, C.; Richter, K. Spatially constrained inversion of radiative transfer models for improved LAI mapping from future

Sentinel-2 imagery. Remote Sens. Environ. 2012, 120, 208–218. [CrossRef]
43. Auken, E.; Christiansen, A.V. Layered and laterally constrained 2D inversion of resistivity data. Geophysics 2004, 69, 752–761.

[CrossRef]
44. Zhao, J.; Liu, T.; Liu, S. An adaptive homotopy method for permeability estimation of a nonlinear diffusion equation. Inverse

Probl. Sci. Eng. 2013, 21, 585–604. [CrossRef]
45. Liu, T. Parameter estimation with the multigrid-homotopy method for a nonlinear diffusion equation. J. Comput. Appl. Math.

2022, 413, 114393. [CrossRef]
46. Engquist, B.; Osher, S. One-sided difference approximations for nonlinear conservation laws. Math. Comp. 1981, 36, 321–351.

[CrossRef]

http://dx.doi.org/10.1016/j.petrol.2021.109205
http://dx.doi.org/10.1111/j.1365-246X.1972.tb06115.x
http://dx.doi.org/10.3390/math9182244
http://dx.doi.org/10.1002/mma.6783
http://dx.doi.org/10.1515/zna-2010-6-705
http://dx.doi.org/10.3390/math9162012
http://dx.doi.org/10.1515/IJNSNS.2009.10.9.1113
http://dx.doi.org/10.3934/Math.2018.1.183
http://dx.doi.org/10.1080/01495739.2015.1125196
http://dx.doi.org/10.3846/13926292.2016.1225606
http://dx.doi.org/10.1016/j.euromechflu.2020.12.004
http://dx.doi.org/10.1080/17415977.2018.1442447
http://dx.doi.org/10.1016/j.camwa.2019.09.023
http://dx.doi.org/10.1016/j.camwa.2016.02.036
http://dx.doi.org/10.1080/17415977.2016.1141206
http://dx.doi.org/10.1088/1361-6420/abd29c
http://dx.doi.org/10.3390/en13205474
http://dx.doi.org/10.1016/j.apnum.2018.02.002
http://dx.doi.org/10.1016/j.chaos.2022.112007
http://dx.doi.org/10.3402/tellusb.v39i5.15362
http://dx.doi.org/10.1088/0266-5611/16/3/302
http://dx.doi.org/10.1016/j.rse.2011.10.035
http://dx.doi.org/10.1190/1.1759461
http://dx.doi.org/10.1080/17415977.2012.712524
http://dx.doi.org/10.1016/j.cam.2022.114393
http://dx.doi.org/10.1090/S0025-5718-1981-0606500-X

	Introduction
	Discretization
	Identification Method
	Basic Iterative Method
	Homotopy Method

	Numerical Experiments
	Conclusions
	Appendix A
	Appendix B
	Appendix B.1
	Appendix B.2

	References

