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Abstract: Compliant foil gas seal is a non-contact and high-efficiency sealing technology. The dynamic
performance of compliant foil gas seal with different structure parameters was analyzed in this paper.
These parameters include the seal diameter, gas film thickness and the ratio of groove. Compared
with the rigid film, the advantage of compliant film is analyzed. The stability performance and
dynamic performance with the different structures are obtained. The results show that the larger
diameter is a disadvantage for the stability performance. However, the increase of seal length can
decrease the leakage. Otherwise, the increase of gas thickness improves the dynamic characteristics
with the leakage rising and gas force dramatically decreasing. While the groove length ratio is around
0.6, the seal performance and dynamic characteristics are best. The compliant structure benefits the
improvement of the sealing performance.

Keywords: compliant foil gas seal; multi-scale analysis; seal performance; T groove

1. Introduction

To improve the aero-turbine efficiency of turbomachinery, advanced sealing technology
is regarded as one of the important technical methods. This can achieve the goal of
high performance turbomachinery with lower consumption under intricate operation
conditions [1,2]. As an advanced sealing technology, cylindrical gas film seal technology
is one of the important research fields of fluid sealing technology. The proposal and
development of cylindrical gas film seal is mainly to solve the problem of an insufficient
end face gas film adaptive structure. The major direction includes geometric structure,
groove structure, compliant support and orifice static ring. Tae carried out a computational
fluid dynamics simulation analysis on the annular cylindrical gas film seal technology, and
predicted the change of the dynamic coefficient of the annular seal [3]; Childs increased
the sealing efficiency of cylindrical gas film by opening holes on the stationary ring [4];
Ma carried out numerical research on a cylindrical gas film seal. This is based on the
traditional dynamic pressure structure of spiral groove, and they explored the sealing
efficiency and dynamic performance of a cylindrical gas film seal [5–8]. Su studied the
performance of a cylindrical gas film seal. The groove type is the bidirectional characteristics
of T-groove. However, the stiffness and damping coefficient was not analyzed [9]. Lu
analyzed the gas film models of a slotted groove and a spiral groove with the numerical
analysis method, especially in the single groove [10,11]. Jiang analyzed the fluid–structure
interaction of annular seals with transient turbulent methods. However, the effect of groove
on the seal performance was ignored [4,12]. These scholars did not analyze the specific
compliant structures. The main challenge is how to deal with the relationship between
millimeter level compliant structures and micro gas film. This is a multi-scale analysis.
The compliant foil gas seal is one of the compliant structures of cylindrical gas film seal
technology. The compliant structure was proposed by Mohsen. The high temperature
and turbulence performance of the compliant foil gas seal during differential pressure
and structure parameters was discussed [13–15]. These studies show that the compliant

Processes 2022, 10, 1123. https://doi.org/10.3390/pr10061123 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr10061123
https://doi.org/10.3390/pr10061123
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://doi.org/10.3390/pr10061123
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr10061123?type=check_update&version=2


Processes 2022, 10, 1123 2 of 11

structure has an advantage over the rigid film. This structure is based on hydrodynamic air
bearing from the late 1990s. However, the research does not analyze microstructures such
as surface grooves or texture.

As a non-contact radial cylindrical gas film seal technology, compliant foil gas seal
can meet the technical requirements of modern high-end turbomachinery with low power
consumption, low wear and high effective sealing efficiency. Its compliant foil structure
can maintain the stability of system dynamic characteristics while the sealing interface is
subjected to external loading and thermal deformation. At the same time, the compliant foil
gas seal can decrease the influence of vibration suppression and anti-excitation on the rotor
system. Moreover, it can also ensure the stability of the sealing system and improve the
efficiency of turbine machinery. These can meet the performance requirements of advanced
aero-turbine machinery.

Combined with the sealing characteristics of compliant foil gas seal, this paper estab-
lishes the T-groove structure model and numerically analyzes the sealing characteristics
and dynamic performance under different geometric parameters. In addition, the pressure
distribution of a compliant structure with the rigid structure was compared in this paper.

2. Geometric Model

The model of compliant foil gas seal is shown in Figure 1. The compliant foil gas
seal is composed of seal cavity, bump foil, top foil, and rotor and shaft sleeve. While the
rotor eccentrically runs, the gas film between shaft sleeve and top foil forms a dynamic
pressure distribution. This can reduce gas leakage. The main difference between compliant
foil seal and hydrodynamic air bearing focuses on the design of the top foil. The top foil
on the high-pressure side of the compliant foil seal is formed by bending and slip foil, as
shown in Figure 1b and the top foil is fixed on the sealing cavity by the clamping bolt. The
deformation of the compliant foil will occur to reduce the leakage as the clearance changes
due to the thermal and vibration. The structural parameters of compliant foil gas seal
include seal diameter, gas film thickness and groove length ratio in this paper. The sealing
parameters of compliant foil are shown in Table 1. The T groove is shown in Figure 1c.

Table 1. The parameters of compliant foil gas seal.

Seal Parameter Symbol Value

Seal length L 15 mm
Eccentricity ε 0.5
Thickness C

Groove number N 16
Differential Pressure ∆p 200 kPa

Speed n 10,000 r/min
Density ρ 1.225 kg/m3

Dynamic viscosity µ 1.8 × 10−5 Pa·s
Outlet pressure pa 100 kPa

Material QBe
Modulus of elasticity E 122.6 GPa

2.1. Flow Pattern

In this paper, the flow factor is used to judge the flow pattern Equation (1) [16]:

φ =

√
(

Rec

1600
)

2
+ (

Rep

2300
)

2
. (1)

Rec is Couette Reynolds number and Rep is Poiseuille Reynolds number. It is turbulent as
φ > φt = 1. It is laminar as φ < φl = 900/1600. The flow factor φ in Equation (1) is the
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Reynolds number. It is affected by shear flow and differential pressure flow. This can be
calculated by Equations (2) and (3):

Rec =
πρnCR

30µ
(2)

Rep =
ρVmC

µ
. (3)

In Equation (3), Vm is the axial average velocity. This is determined by Equation (4). In
this paper, it is deduced through the pressure flow integration under the micro gap:

Vm =
C2

12µ

∆p
L

. (4)

The structural parameters used in this paper are variable values, so the Reynolds num-
ber and the estimated axial velocity are the maximum values. After numerical calculation,
the maximum axial velocity is Vm= 24.69 m/s. The Rec ≤ 142.54 and Rep ≤ 33.61 was
obtained. The value φ is lower than 900/1600. Therefore, the gas film–structure model
belongs to the scope of the laminar flow regime in this paper.
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Figure 1. The analysis model of compliant foil gas seal. (a) The three-dimensional model of compliant
foil gas seal; (b) The schematic of compliant foil gas seal; (c) The T groove layout of compliant foil seal.
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2.2. Analysis Method

In this paper, the variation of film pressure in the Y direction is ignored because the
film thickness in this direction is small and the film scale relative to axial and circumferential
directions can be ignored. Therefore, transient Reynolds Equation (5) used in program
analysis in this paper [17]:

∂

∂θ

(
ph

3 ∂p
∂θ

)
+

(
R
L

)2 ∂

∂z

(
ph

3 ∂p
∂z

)
= Λ

∂

∂θ

(
ph
)
+ 2γΛ

∂

∂t

(
ph
)

. (5)

In Equation (5), variables p, h, z and θ represent dimensionless pressure, film thickness,
axial length and circumferential angle respectively. The Λ represents compression number.
This is expressed by Equation (6):

Λ =
6µωR2

paC2 . (6)

In this paper, the finite difference method discrete Equation (5) is used to solve the
sealing performance, including gas leakage, gas force, gas film stiffness and gas film
damping. The changes of inertial force and temperature field are ignored in this paper. The
film thickness is expressed by Equation (7):

h0 = 1 + ε cos θ + α(p0 − 1). (7)

The α is the structure constant of the foil structure. It depends on the material. The
material is beryllium bronze. The difference scheme of pressure is expressed by Equation (8):

∂px
∂θ

=
px(i+1,j) − px(i−1,j)

2∆θ
,

∂px
∂z

=
px(i,j+1)px(i,j−1)

2∆z
,

∂px
′

∂θ
=

p′x(i+1,j) − p′x(i−1,j)

2∆θ
,

∂p′x
∂z

=
p′x(i,j+1) − p′x(i,j−1)

2∆z
,

∂2 px

∂z2 =
px(i,j+1) − 2px(i,j) + px(i,j−1)

∆z2
∂2 px

′

∂θ2 =
px
′
(i+1,j) − 2px

′
(i.j) + px

′
(i−1,j)

∆θ2 ,

∂2 px

∂z2 =
px(i,j+1) − 2px(i,j) + px(i,j−1)

∆z2
∂2 px

′

∂θ2 =
px
′
(i+1,j) − 2px

′
(i.j) + px

′
(i−1,j)

∆θ2 .

(8)

The leakage and force are expressed by:

Q =
∫ 2π

0
−

h3Rj

12µ

∂p
∂z

dθ (9)

Fx =
∫ L

0

∫ 2π

0
(p− p0)Rj sin θdθdz (10)

Fz =
∫ L

0

∫ 2π

0
(p− p0)Rj cos θdθdz (11)

F =
√

F2
x + F2

z . (12)

Fx and Fz represent the force of circumferential and axial direction.[
Kxx Kxy
Kyx Kyy

]
=

RLpa

C

∫ L

0

∫ 2π

0

[
px cos θ py cos θ

px sin θ py sin θ

]
dθdz (13)

[
Cxx Cxy
Cyx Cyy

]
=

RLpa

ωC

∫ L

0

∫ 2π

0

[
p′x cos θ p′y cos θ

p′x sin θ p′y sin θ

]
dθdz. (14)
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The p′x and p′y of Equation (14) represent the perturbation term. The rotor dynamic
coefficients include direct stiffness (Kxx, Kyy), cross coupled stiffness (Kxy, Kyx), direct
damping (Cxx, Cyy) and cross coupled damping (Cxy, Cyx). Direct coefficients are important
for the stability of the seal system. However, cross coupled coefficients have a negative
influence on the stability of the rotor-seal system.

3. Results and Discussions
3.1. Numerical Analysis for Reliability

Figure 2 shows that the leakage changes with different film thicknesses and pressure
distribution changes with the circumferential position. In Figure 2a, compared with the
calculated results in reference [9,10], the leakage of this paper with the film thickness is
basically consistent with the results. These results are the same order of magnitude. This
verifies the correctness of the calculated leakage in this paper.
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Figure 2. The verification of calculated results. (a) Calculated leakage with Ref. [10]; (b) The pressure
distribution with different Λ.

Figure 2b shows the pressure distribution along different axial positions with different
Λ. The pressure distribution is similar to the trend of the grooved structure in reference [18].
With the increase of the compression number, the position of the highest pressure moves
from 140◦ to the center position near 180◦. As the same time, the pressure peak of the gas
film rises. However, the pressure wave trough gradually disappears with the increase of
compression number. This is caused by the improvement of the dynamic pressure effect
while the speed increases. The compression number Λ only depends on the speed while
the structure parameters and other operation conditions are ensured. This can also verify
the accuracy of the calculated results in this paper.

3.2. The Pressure Distribution with Compliant Structure

In this paper, the compliant structure is analyzed. Figure 3 shows the pressure distri-
bution of the compliant foil gas film and rigid gas film. The curve in Figure 4 represents the
pressure distribution of the compliant gas film and the rigid gas film along the axial length.

As we can see from Figure 3, the influence of compliant foil on the pressure distribution
of gas film is obvious. The increase of compliant coefficient results in the increase of the
pressure dynamic. This is possible to decrease the leakage of gas film and improves the seal
performance of gas film. Otherwise, this is also one of the reasons for designing a compliant
structure. Therefore, the influence of the compliant structure on the seal characteristics on
gas film should be considered in multiscale analysis.
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3.3. The Effect of Seal Diameter on Seal Performance

Considering the initial condition, the equation of leakage, gas force and rotodynamic
coefficients are numerically solved in the multi-scale model. The model includes micro gas
film and millimeter compliant foil.

Figure 4 shows the effect of seal diameter on steady performance. The speed is
10,000 r/min and the eccentricity is 0.5. As we can see in Figure 4, the leakage and gas
force show an increasing trend as the seal diameter increases. The variation of leakage is
more obvious than the gas force. It can be seen from Figure 4 that the leakage gradually
increases exponentially while the seal diameter rises to 72 mm. However, the changing
trend of leakage is not obvious while the seal diameter is small. This means that the seal
performance is relatively good. The gas force increases gradually with the increment of
seal diameter, but the magnitude of gas force varies little. The multiscale analysis shows
that the effect of the seal diameter on dynamic pressure is obvious with the same speed
and eccentricity. Therefore, the linear velocity of compliant gas film obviously rises with
the increase of seal diameter. This results in the increase of dynamic pressure and gas force.
Therefore, the seal clearance and seal width should be adjusted appropriately to ensure the
seal effectiveness while the seal diameter is large.

Table 2 shows that the changes of leakage in different seal diameters and widths. It
can be seen from Table 2 that the leakage is almost the same after increasing the seal width
with different seal diameters. This means that the same seal diameter to seal width ratio
presents almost the same dynamic pressure effect.
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Table 2. The leakage with different seal diameter and width.

Seal Diameter/mm Seal Width/mm Leakage/(kg/s)

36 18 0.0187
72 36 0.0175

Figure 5 presents the effect of seal diameter on the rotodynamic coefficients. Figure 5a
shows the variation in the relationship between the gas stiffness and the seal diameter. It
can be seen from Figure 5 that the direct stiffness coefficient and cross coupled stiffness
increase with the raise of the seal diameter. The cross stiffness is lower than the direct
stiffness. However, the increment of the cross stiffness is significantly higher than the
direct stiffness. The sharp increase of the cross stiffness coefficient is negative for the
stability of the compliant foil gas seal during operation. The influence of cross stiffness
should be minimized during the operation of the seal system. Therefore, the increase of
seal diameter is not positive for the stability of the compliant foil gas seal system as the
operation conditions are same. Moreover, the direct stiffness Kxx and Kyy is symmetry
about Y = 1,000,000 N/m as the seal diameter is larger than 108 mm and the cross coupled
stiffness Kxy and Kyx is symmetry about Y = 0 N/m.
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Figure 5. The effect of seal diameter on the rotodynamic coefficients. (a) The effect of seal diameter
on gas stiffness; (b) The effect of seal diameter on gas damping.

Figure 5 shows the variation in the relationship between gas damping and seal diame-
ter. It can also be seen from Figure 5b that the direct damping and cross coupled damping
increase with the increase of seal diameter. The changing trend of the direct damping with
the increase of the seal diameter gradually weakens. The increasing trend is significantly
lower than that of the cross damping. This increases the instability of the seal system. It is a
benefit for the seal system to control the seal diameter. As we can see from Figure 5, the
rotodynamic coefficients are positive for the stability of the seal system as the seal diameter
is around 108 mm.

3.4. The Effect of Film Thickness on Seal Performance

Figure 6 shows the effect of film thickness on steady performance. The leakage
increases dramatically with the increase of film thickness. The increase rate shows an
accelerating trend. On the contrary, the gas force decreases and then gradually tends to
be flat with the increase of gas film thickness. It is considered that the reason is that the
increase of gas film thickness increases the seal clearance. The seal clearance makes the
dynamic pressure effect and the pressure distribution decrease. This leads to a decrease of
the gas force. Similarly, this causes the increase of the gas leakage.
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Figure 6. The effect of gas film thickness on leakage and force.

Figure 7 presents the variation in the relationship of rotodynamic coefficients with
gas film thickness, respectively. It can be seen from Figure 7 that gas film stiffness and gas
film damping gradually weaken and trend to zero with the increase of gas film thickness.
This is caused by the increase of leakage and the decrease of the gas force. This leads to the
weakening of the dynamic pressure effect. The decrease of the pressure distribution of gas
film means a lack of the conditions necessary for the increase of the dynamic characteristic
coefficient. The direct stiffness Kxx and Kyy is symmetry about zero.
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Figure 7. The effect of film thickness on the rotodynamic coefficients. (a) The effect of film thickness
on gas stiffness; (b) The effect of film thickness on gas damping.

At the same time, it can be seen from Figure 7a that the rotodynamic coefficient
fluctuates greatly as the gas film thickness is relatively smaller than 10 µm. The cross
coupled stiffness is significantly lower than the direct stiffness while the gas film thickness
is lower than 10 µm. However, the cross coupled damping is significantly higher than the
direct damping from Figure 7b. On the one hand, it may be possible that the dynamic
pressure effect is intense while the gas film thickness is too small. This causes the non-
uniformity pressure distribution of compliant gas film and the instability of the seal system.
On the other hand, it may be possible that it results in fluid discontinuity as the gas film
thickness is too small. Comprehensively, the seal performance and stability of the sealing
system are best while the gas film thickness is about 10 µm.
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3.5. The Effect of Groove Length Ratio on Seal Performance

Figure 8 is the effect of the groove length ratio on steady performance. It can be
expressed in equation:

βg =
Lg

L
. (15)

Figure 8 shows that the leakage increases significantly while the groove length ratio is
greater than 0.8. The exponential change of gas leakage occurs. Moreover, the gas force
decreases sharply. These are caused by the rises of the leakage channel with the increase of
groove length. The leakage channel has an influence on the differential pressure flow. The
differential pressure flow has a negative effect on the dynamic pressure effect caused by
the shear flow. As a result, the gas force decreases and the leakage increases.

Figure 9 shows the effect of groove length ratio on the rotodynamic coefficients. As
we can see from Figure 9, the cross coupled stiffness and the cross coupled damping are
lower than the direct stiffness and direct damping as the groove length ratio is lower than
0.6. This benefits the stability of the seal system.
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Figure 8. The effect of groove length ratio on leakage and force.
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Figure 9. The effect of groove length ratio on the rotodynamic coefficients. (a) The effect of groove
length ratio on gas stiffness; (b) The effect of groove length ratio on gas damping.

4. Conclusions

In this paper, the main structure parameters of compliant foil gas seal are studied
while the compliant structures are subjected to multiscale analysis, including seal diameter,
gas film thickness and groove length ratio. The compliant gas film and rigid gas film are
compared with the pressure distribution. The numerical results are compared with the
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reference. This verifies the accuracy of the multiscale analysis in this paper. The following
are concluded:

(1) Compared with the rigid gas film, the compliant foil improves the seal performance
of the gas seal. The pressure distribution of the compliant gas film is obviously higher
than that of rigid gas film. Therefore, the influence of compliant foil structure on seal
performance should be considered in numerical analysis;

(2) With the increase of seal diameter and gas film thickness, the leakage and cross
coupled coefficients of the gas film seal dramatically increase. The cross coupled
stiffness and damping are negative for the stability of the seal system. Therefore,
the seal performance is improved as the seal diameter is lower than 108 mm and
the gas film thickness is around 10µm. With the variation of the seal diameter and
gas film thickness groove length ratio, the direct stiffness Kxx and Kyy is around the
Y = 1,000,000 N/m and zero respectively;

(3) Moreover, the cross stiffness and cross damping are lower than the direct coeffi-
cients as the groove length ratio is around 0.6. It benefits the stability of the seal
system. The variation of the gas force is more obvious and decreases sharply. This
means that the dynamic pressure effect is weakened. In sum, the multiscale analysis
shows that it is positive for the stability of the seal system by choosing the compliant
structure parameters.
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Nomenclature

L Seal length, mm
ε eccentricity
C mean thickness, µm
N groove number
ρ density, kg/m3

µ dynamic viscosity, Pa·s
n speed, rpm
E modulus of elasticity, GPa
φ flow factor
Rec Couette Reynolds number
Rep Poiseuille Reynolds number
∆p differential pressure, Pa
Vm axial average velocity, m/s
p dimensionless pressure
h film thickness
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z axial length
θ circumferential angle
Λ compression number
α structure constant of foil structure
Q leakage, kg/s
Fx the force of circumferential direction, N
Fz the force of axial direction, N
p′x, p′y the perturbation term
Kxx, Kyy direct stiffness, N/m
Kxy, Kyx cross coupled stiffness, N/m
Cxx, Cyy direct damping, N·s/m2

Cxy, Cyx cross coupled damping, N·s/m2

βg groove length ratio
Lg groove length
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