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Abstract: The sealing system performance of a nuclear reactor pressure vessel (RPV) under different
working circumstances is vital to the safe operation of the whole nuclear process; however, the
mechanism, and especially the relationship among highly related variables for it, has remained
unclear. Therefore, a new inconsistent knowledge fused Bayesian network and weighted loss function
(iBWL) method was proposed to identify key variables and estimate the reliability of an RPV sealing
system. In this method, a new inconsistent knowledge fusion method was proposed to make good
use of available priceless field knowledge by considering its reliability and inconsistency seriously.
The key variables identified by the Bayesian network structure were then used by a new weighted
loss function to estimate the reliability of the RPV sealing system by comprehensively quantifying the
deviations of them from their corresponding expected values. It is not only the quantified reliability
of RPV sealing that can provide solid information for its operation status but also the weighted loss
function can provide clues for how to tune the corresponding parameters to make sure RPV operating
has an acceptable status. The application performed on the simulation samples based on the RPV of
Liaoning Hongyanhe Nuclear Power Plant and another two RPV units in service strongly proved the
outstanding performance of this advanced iBWL method.

Keywords: Bayesian network; loss function; nuclear reactor pressure vessel; reliability estimation;
sealing system performance

1. Introduction

A reactor pressure vessel (RPV) is a part of the pressure boundary of a nuclear reactor
coolant system. It is used to support and accommodate the reactor core and prevent the
leakage of radioactive substances. A RPV is mainly composed of a closure–head, a cylinder,
and a sealing system between them. Compared with the high strength of the shell, the
sealing system consisting of a flange connection is the most vulnerable part of the RPV [1].
The fluctuation of the high working pressure and temperature during the service of a RPV,
especially during the start–up and shutdown processes, may cause sealing failure, which
may lead to the leakage of high–pressure radioactive fluid and other serious accidents [2].

Because a RPV is the only main equipment that cannot be replaced in the whole service
life of the nuclear reactor [3]—which highlights the importance of its sealing system—
tremendous efforts have been made to improve its sealing performance. Currently these
studies are mainly based on finite element analysis (FEA) and can be summarized into two
categories: (1) the study of structure parameters under various transient conditions [4] and
(2) the development of the sealing ring and its compression rebound characteristics [5].
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Given the structure parameters (including the number and positions of bolts, the type
of sealing rings, and so on) and working temperature and pressure, FEA is a very powerful
tool that can simulate the operation status of a RPV with a high enough accuracy [6]. Since
there are not any online measurement methods available, FEA is the major method to cal-
culate bolt preload, the axial separation of the gasket, and other status variables. Although
these studies have laid a solid foundation and accumulated priceless knowledge in the
mechanism of the RPV sealing system, there is still significant room for improvements,
for example, (1) most of these studies have been explored using the FEA method, which
means they are univariate analysis. It has not been possible yet to estimate the sealing
performance if one or several parameters deviate from their expected or designed values;
(2) FEA methods can only calculate the structure parameters (i.e., the axial separation of
the flange and so on) of a RPV rather than quantify their influence on sealing performance,
not to mention to quantify their comparative importance; and (3) there has been no stan-
dard quantitative score to evaluate the reliability of a RPV sealing system under certain
circumstances. Using an FEA simulation model as the main method, it is not possible to
realize online monitoring, predicted health management, or any other advanced safety
management. It is of great need to provide a way to estimate the deviations of both the
status variables and structure variables comprehensively not only for reliability estimation
during the service time of a RPV but also for the realization of the intrinsic safety design.

Unlike an unmanned aerial vehicle, pump, turbine or other kinds of disposable
parts or equipment, the cost, time, and danger are too much to afford for an RPV failure
experiment. Consequently, it is a typical unsupervised problem to analyze the relationships
among variables. Such kinds of problems exclude ANN (artificial neural networks), CNN
(convolutional neural networks), SVM (support vector machine), and other black–box or
supervised machine learning methods [7]. It also makes Bayesian network (BN) analysis an
optimal option because it is a DAG (directed acyclic graph) based network and can describe
the relationships among variables very clearly [8]. Most importantly, BN is one of the few
machine learning methods that can integrate expert knowledge to improve accuracy and
speed up the learning procedure [9,10]. Additionally, this expert knowledge can help verify
the causal relationship recovered by the BN. It has been widely applied in the fields of fault
diagnosis and environmental models, reliability estimation, risk assessment, key feature
identification to assist mechanism research, and so on [11,12]. Sun et al. reported a new
PC–PSO algorithm that integrates human knowledge to learn a BN structure [13]. Eunice
et al. incorporated the background knowledge in the form of ancestral constraints into the
BN structuring algorithm [14].

However, these works have not considered the uncertainty of knowledge but rather,
regarded the expert knowledge as a hard constraint. They assume that the knowledge
given by experts can make the causal relationship between nodes in the BN structure clear
and reliable, but actually, most knowledge learned from practice is uncertain. Even for the
same knowledge, in the same domain, there may exist contradicting qualitative statements
on dependency, causality, and parameters over a set of entities [15]. The limitation of the
current research is that mechanism analysis cannot effectively guide safety management.
There are tremendous mechanism analyses on RPV sealing systems, but few of them are
reflected in the practical safety management work. To make good use of this fuzzy and
inconsistent domain knowledge and to fill in the gaps between mechanism analysis, safety
management and a thorough intrinsic safety design, a new iBWL method was proposed in
our study.

There are three contributions of the iBWL method: (1) It emphasizes the uncertainty
in the knowledge provided by several experienced experts and faces the challenge of
quantifying it. Then it fuses the inconsistent knowledge and analyzes the RPV sealing
system using both objective data and subjective knowledge. (2) It identifies key vari-
ables by inferring a Bayesian network providing useful guidance in safety management.
(3) It estimates the reliability of the sealing system of the RPV caused by the deviation of
variables, and this reliability analysis was verified with two sets of real nuclear plant data.
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The rest of the paper is structured as follows: Section 2, a brief introduction of the
background and related existing methods. Section 3, a description of the proposed iBWL
method in detail. Section 4, the results and discussion on the sealing performance of RPV
obtained by the proposed method and Section 5, the conclusion.

2. Preliminaries and Background
2.1. Introduction of the RPV and Its Sealing System

As we mentioned above, RPVs must endure a high internal temperature and strong
radioactivity during their long–term service. Compared with the strength and sealing
performance of the cylinder, the sealing system (mainly composed of a closure–head, a
cylinder and a sealing system arranged between them) at the flange connection is relatively
weak. It is easy to cause flange sealing failure with high–pressure fluid leakage under
certain fluctuations of working pressure and temperature.

The reliability of the sealing system is related to the system stiffness distribution,
deformation, sealing ring performance, surface finish, slot size, transient conditions, heat
transfer and other factors [16]. To obtain the deformation and stress distribution of a RPV,
researchers generally use FEA to simulate the structure and working status [5]. Because
it has not been possible to measure axial separation or other important variables online
yet, continuous efforts have been made with FEA to simulate and calculate values of these
variables with a high enough accuracy if the internal pressure and temperature have been
given.

To analyze the relationships among both the structure and status variables, 699 simu-
lation examples based on the RPV of the Liaoning Hongyanhe Nuclear Power Plant with
different dimension parameters were performed using ANSYS 15.0. The operation process
of the RPV was simulated by the sequential coupling method. Solid70 was used as a
thermal analysis element and Solid185 was used as the structural element for parametric
modeling and meshing, respectively. To ensure accuracy and calculation efficiency, the
model structure was simplified appropriately [17].

The positions of the variables are shown in Figure 1 and all their definitions are
described in Table 1. The structure variables and status variables were all taken into
consideration. The axial separation of the flange, the axial separation of the gasket, the
flange angle, and other units’ displacements in critical positions were chosen as the status
variables.

Table 1. Description of variables.

Variables 1 Description 2 Variables 1 Description 2

FL_ZKL ∆UY1 – ∆UY2. Axial separation of the flange. SR2 The inner diameter of the closure–head.
ZX_IN ∆UY7 – ∆UY8. Axial separation of the inner seal ring. D17 The outer diameter of upper cladding.

ZX_OUT ∆UY5 – ∆UY6. Axial separation of the outer seal ring. D15 The starting point of the ramp.
JX_IN ∆UX7 – ∆UX8. Radial separation of the inner seal ring. D14 The outer diameter of the inner seal groove.

JX_OUT ∆UX5 – ∆UX6. Radial separation of the outer seal ring. D13 The pitch diameter of the inner seal ring.
ZJ_U tan–1

(
∆UY3 – ∆UY1

|∆UX3 + UX3 – UX1 – ∆UX1 |

)
. Upper flange angle.2 D12 The outer diameter of the outer seal groove.

ZJ_D tan–1
(

∆UY4 – ∆UY2
| ∆UX4 + UX4 – UX2 – ∆UX2 ||

)
. Lower flange angle.2 D11 The pitch diameter of the outer seal ring.

LS_YJL Bolt preload. D10 The outer diameter of the flange of the cylinder.
θ Ramp angle. D8 The inner diameter of the cylinder flange.

T2 Wall thickness of the cylinder. D7 The inner diameter of cylinder flange.
T1 Wall thickness of closure–head. D3 The outer diameter of flange of closure–head.
H3 Height of flange of the cylinder. D2 Bolt centerline diameter.
H1 The downward offset of the center of the upper head. D1 The inner diameter of flange of closure–head.

1 Red color: status variables; blue color: structure variables. 2 UY, UX, ∆UY and ∆UX are shown in Figure 1d.
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Figure 1. (a) RPV dimension parameters; (b) partially zoomed figure of dimension parameters in
sealing position; (c) RPV’s FEA model; (d) special location illustration, UYi, UXi are the i-th unit’s
Cartesian coordinate positions. ∆UYi and ∆UXi are the i-th unit’s displacement in Y and X direction.
(i = 1 . . . 8).

2.2. The Introduction of Regular BN Algorithms

A Bayesian network (BN) is a probability graph model based on Bayes theory, which
can be expressed as BN = (G, P), where G = (N, E) represents a direct acyclic graph (DAG), P
is the joint probability distribution, N = {x1, x2, . . . , xn} is the node–set and E is the edge set.
The G structure represents the intensity of causality between the nodes/variables x1, x2, . . . ,
xn (n is the number of nodes/variables). A directed edge set E indicates the dependency
relationship between nodes/variables. In a DAG, if there is a directed edge xi → xj, then xi
is identified as a parent of xj and xj is a child of xi. This means xj is directly affected by xi.
Pa(xi) is used to represent the parent set of xi. The dependence of a node xi on its parent set
Pa(xi) can be quantified by the conditional probability, expressed as P(xi | Pa(xi)), and the
joint probability distribution of all variables in a BN is as [8],

P(x1, x3, . . . , xn) =
n

∏
i=1

P(xi|Pa(xi)) (1)

For a given dataset D, constructing a BN is the task of finding the most suitable
network that can describe the relationships among variables, the structure learning for a
BN inference [18]. There are three kinds of BN structure learning algorithms: (1) constraint–
based algorithms, using conditional independence tests to learn the dependency of variables
from data; [19] (2) score–based algorithms, using score criteria as the objective functions.
And (3) hybrid algorithms, combining the above two kinds of algorithms.

Score–based algorithms use the score function as the objective function, trying to
find the DAG with the highest score (sometimes lowest score) using the search strategy
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algorithm (for example the Max–min Hill–Climb algorithm (MMHC) [20], the hill–climbing
algorithm, or the simulated annealing algorithm [21], genetic algorithm [22] and so on).
There have been well–defined score functions such as Bayesian information criterion (BIC),
Minimum Description Length score [23], and the Bayesian Gaussian equivalent (BGe)
score [24], but because the Bayesian information criterion (BIC) has been one of the most
widely used score–based algorithms and is used as the base algorithm for our method, a
detailed description of it is given below.

Given a training data D, the BIC scoring function can be written as:

BIC(D) =
n

∑
i=1

ri

∑
k=1

qi

∑
j=1

mijk ln
mijk

mij
− 1

2
(ln N)

n

∑
i=1

qi(ri − 1) (2)

where mijk is the number of samples that xi = k and its parents are in their j-th configuration.
Likewise, mij is the number of samples in the dataset that variable is i-th and its parents
are in their j-th configuration. qi is the number of possible configurations for parents of
i-th random variable. ri is the number of different states of i-th random variable. n is the
number of random variables in BN. N is the number of samples. In Equation (2), the first
part is the model likelihood that is used to measure the fit of the DAG structure and data
and the second part is a penalization of model complexity by assuming that every DAG
shared the same probability. Intuitively, BIC selects the simplest model that fits with the
data.

2.3. Loss Functions

Loss functions (LFs) are functions that map the value of a random event or its related
random variable to a non–negative real number to represent the ‘risk’ or ‘loss’ of that
random event [25]. It now has been introduced to engineering fields to estimate the loss
caused by the deviations of variables [26].

Inverted normal loss function (INLF), shown in Equation (3) has been a widely used
LF at present. The characteristic of INLF is that the loss will not increase indefinitely. When
it reaches the predetermined threshold, the loss will reach the estimated maximum value
and stop rising. Additionally, the value of INLF will not drop to a negative value [27]:

INLF : L(x) = EML×
[
1− exp

(
−(x− T)2/2γ2

)]
(3)

where EML is the estimated maximum loss, which is determined by historical data or
expert knowledge. x is a variable whose deviation will cause some kind of loss, T is its
target value given by designing, γ is the shape parameter and needs to be determined from
additional information, i.e., expert knowledge.

3. A New Knowledge Guided iBWL Method
3.1. A New Inconsistent Knowledge Fusion Guided Score Function for BN Structure Learning

Generally, finding the optimal DAG with the highest score is NP–hard [28]. To tackle
this problem, most existing approaches rely on heuristics to get the solution. In order to
support the heuristic algorithm in obtaining better results, adding expert knowledge can
greatly improve the performance of the algorithm [29].

However, expert knowledge reflects human understanding about a domain and the
accuracy of the knowledge depends on how much the expert knows about the domain.
Then, the major limitations of the existing approaches are two–fold: (1) the inconsistency
among knowledge provided by different experts about the same issue has not been con-
sidered; and (2) the accuracy of the knowledge provided by a given expert has not been
considered either. Therefore, in this paper, a new inconsistent knowledge fusion guided
score function for BN structure learning was proposed based on the abovementioned BIC
scoring method. In our approach, expert knowledge is no longer regarded as 100% definite
nor 100% accurate but with probabilities. In addition, prior knowledge provided by more
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than one expert was synchronously taken into account. Correspondingly, a fusion strategy
of background knowledge provided by different experts was proposed.

There are n variables in a dataset, denoted as N = { x1, x2, x3, . . . , xn}. In our case, xi
(i = 1, 2, 3, . . . , n) are listed in Table 1. For any xi, xj ∈ N, there are three different types of
expert knowledge about the relationship between xi and xj, denoted as:

p(xi ∼ xj) =


p(xi → xj)
p(xi ← xj)
p(xi
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xj) = 0.3, then p(xi←xj) = 1 – 0.4 – 0.3 = 0.3;
5. Since every type of knowledge is mutually exclusive, the relationship between xi

and xj with direct knowledge is quantified with p(xi → xj) + p(xi ← xj). For example,
if an expert believes that the probability of xi and xj having a direct relation is 0.6,
thus p(xi → xj) = 0.6/2, p(xi ← xj) = 0.6/2.

After consulting the k-th expert (k = 1, 2, . . . , m. m is the number of experts), his/her
knowledge is placed into one matrix, called the knowledge matrix of the k-th expert, noted
as εk. The i-th row and j-th column element in εk represents p(xi→xj) and the diagonal
elements in the matrix are set as 0 since there is no relationship between the variable and
itself. Figure 2a is an example of a knowledge matrix. In this matrix, the p(x1→x2) = 0.5,
and p(x2→x1) = 0.1.

To deal with the inconsistency of the knowledge among different experts, the informa-
tion fusion strategy based on expert confidence was proposed. For the knowledge given by
the k-th expert, a confidence coefficient ck is assigned according to the reliability of his/her
experience (comprehensively considering the working years, educational experience, de-
votional years on an issue and so on). Indeed, the quantification of experience is difficult,
and there has not been a widely accepted way to perform it. It is a big challenge worthy of
more attention and research.

The corresponding knowledge matrix εk is obtained by consulting the k-th expert, then
a fused knowledge matrix given by m experts is denoted as ε, and it can be expressed as:

ε =
m

∑
k=1

ckεk
/ m

∑
k=1

ck (5)

After the fused matrix is obtained through the above description, the next step is to
formulate the score function.
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Figure 2. (a) Expert knowledge matrix, the value at i-th row, j-th column refers p(xi→xj) the probability
of the i-th variable having a direct impact on the j-th variable. (b) Activation function, an example
of cubic interpolation function, in which positive infinity is replaced by the real number 1 × 1010.
(c) The flow chart demonstrates how to obtain the fused knowledge matrix. In the first step, several
experts are invited to give their personal opinions on the relationships of each variable pair, then
they are assigned a confidence coefficient according to their experience. In the second step, serval
knowledge matrixes are fused together to obtain one fused knowledge matrix according to the fusion
function.

Bayesian information criterion (BIC) is the most commonly used score function and
is also known as the Minimum Description Length, which is expressed as Equation (2).
The first part of it is the likelihood, and the second part is a prior assuming every DAG
shares the uniform probability. In order to integrate knowledge, the second part should be
modified and based on this, a new inconsistent knowledge fusion guided score function
(Scoreikf) is written as:

Scoreik f =
n

∑
i=1

ri

∑
k=1

qi

∑
j=1

mijkln
mijk

mij
+ logP(G) (6)

The first part of Scoreikf is the same as a BIC score function, namely, it is the likelihood,
and our method of integrating expert information is to estimate logP(G). Because the first
summation symbol of the likelihood is summing over each node of the G, thus it can be
decomposed into every node. The prior also has this characteristic. For one node xi in G,
the prior is defined as:

log P(xi) = f

[
n

∑
j=1

εij

]
(7)

where f is the activation function.
To make sure the algorithm is robust to noise but sensitive to expert most confident

knowledge (especially to the 100% confident knowledge), the activation function f should
have the following characteristics:
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1. For a given threshold value τ, if
n

∏
j=1,j 6=i

εij ≤ τ, this means no useful expert knowledge

about the i-th variable is available, then logP(xi) = f [τ] = 1.
2. The activation function should be as smooth as possible under the threshold value τ to

ensure that slight random noise will not cause drastic changes in the scoring function
to enhance the robustness of the algorithm. τ can be set according to the knowledge
or be optimized by genetic algorithms and so on. In our case, τ = (1/3)n−1.

3. If all experts are 100% confident about the relationship between xi and xj, which

means
n

∏
j=1,j 6=i

εij = 1, then f [1] = ∞ (or a very big positive number) to make sure the

relationship learned from the data makes no difference.

There are many options for activation functions. Figure 2b is an example of using the
cubic spline interpolation as the activation function and the interpolation conditions are
based on the information entropy. The interpolation conditions of it are expressed in (8).

[
P(xi) ≤ (1/3)n−1

]
= 0

f ′
[

P(xi) ≤ (1/3)n−1
]
= 0

f [1] = ∞
f ′[1] = ∞

(8)

where f′ [·] is the first derivative of f [·].
In summary, given a certain dataset D and the fused knowledge matrix, ε, the incon-

sistent knowledge fusion guided function score of the Bayesian network algorithm should
be:

log P(G|D) =
n
∑

i=1
logP(D|xi) +

n
∑

i=1
log P(xi)

=
n
∑

i=1

ri
∑

k=1

qi
∑

j=1
mijkln

mijk
mij

+
n
∑

i=1
f

[
n
∑

j=1
εij

] (9)

This score is applied in the theoretical framework based on a scoring search algorithm.
The scoring search algorithm we selected was a hill–climbing algorithm whose pseudo
code is shown in Algorithm 1.

Algorithm 1 Hill–climbing algorithm.

1: Input Observed data D; score function f; maximum iteration times NumIter; restart times NumStart;
2: G is an empty DAG,
3: ResultG = G;
4: for r from 1 to NumStart:
5: for n from 1 to NumIter:
6: legal operation is one of the operations that adding, deleting, or flipping edge on DAG at the same

time the DAG remains acyclic;
7: find a legal operation that maximizes f(G*, D, K) – f(G, D, K), where G* is G after one legal

operation;
8: if f(G*, D) – f(G, D) > 0:
9: G = G*;
10: else:
11: break;
12: if f(G, D) – f(ResultG, D) > 0:
13: ResultG = G;
14: return ResultG;

3.2. Weighted Loss Function Model for Reliability Evaluation

As we mentioned above, loss function (LF) is a kind of function that estimates the ‘risk’
or ‘loss’ caused by the deviations of variables from the corresponding expected values. It also
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can be used to estimate the loss of the reliability caused by the deviations of variables from
the corresponding expected values in industrial fields if it is described as Equation (10):

R(x) = 100× exp

(
−

n

∑
i=1

(xi − Ti)
2/2γ2

i

)
(10)

where xi (i = 1, . . . , n) is the i-th variable whose fluctuation affects the system reliability, Ti
is its expected value, and γi is its shape parameter.

However, according to engineering experience and knowledge, different variables
have different importance to the system reliability. For example, in our case, the Bolt
preload (LS_YJL) has a much bigger influence on the sealing performance than the inner
diameter of the head (SR2) does. Therefore, it is more reasonable to take the importance of
variables into account. Correspondingly, a new weighted reliability score was proposed as:

R(D) = 100× exp

(
−

n

∑
i=1

ki(xi − Ti)
2/2γ2

i

)
(11)

where ki is the quantified important index of xi.
There are many ways to quantify the importance of a variable [30]. In our case, the

degree centrality was used because it can describe how many other variables are affecting
or being affected by a given variable.

Degree centrality is defined as the number of links incidents upon a node/variable [31].
In a directed network (where edges have direction), it is usually defined as the sum of
the indegree and the outdegree. Indegree is a count of the number of edges directed to
the node/variable and outdegree is the number of edges that the node/variable directs to
others. Hence the importance index of xi is defined as:

ki = deg(xi)/
j=n

∑
j=1

deg
(

xj
)

(12)

where deg (xi) is the degree centrality of xi, m is the amount of selected key nodes, and ki
describes the importance of xi in the whole network.

4. Results and Discussion

Five experienced experts (one professor, two associate professors and two engineers)
were invited to provide background knowledge about the relationships among variables of
the RPV sealing system. All these experts had been working on RPV design or analysis
for at least three years. The confidence coefficients of knowledge provided by the experts
are assigned in Table 2. Compared with professional title, working experience is more
important. In our case, because of the speciality of RPV, it was not possible to have a
plentiful number of professionals available. The number of experts in our study was only
five, and their confidence coefficients were only divided into five levels. For other cases, a
different ranking method may be better.

Table 2. The confidence coefficients for the knowledge provided by experts.

Expert Professional Title Working Years in the
Related Area

Working Years in RPV
Design and Analysis

Confidence
Coefficient

E1 Professor 25 10 5
E2 Associate professor A 10 8 4
E3 Associate professor B 8 8 4
E4 Engineer A 6 3 2
E5 Engineer B 5 3 2
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The fused expert knowledge matrix using the fusion strategy mentioned before is
shown in Figure 3. Based on the fused expert knowledge, a BN was obtained by the iBWL
method. To verify the effectiveness of expert knowledge, the regular BIC learning algorithm
was also performed on the same data. The BNs obtained by both methods are shown in
Figure 4. Figure 4a shows the BN obtained by our iBWL method. It is obvious to see that:

1. Bolt preload (LS_YJL) affects the compression of the gasket. It is an important variable
to ensure sealing performance, which will affect JX_IN, JX_ OUT, ZJ_ U, ZJ_ D, FL_
ZKL and other variables [3,32], but it is independent with the structure variables. For
a FEA simulation model, LS_YJL is an input variable. FEA could not calculate the
values of it nor the influence of it to the RPV sealing system. This is the reason that
BN or other machine learning methods are needed for this issue.

2. Displacement variables (ZX_IN, ZX_OUT, ZJ_D, ZJ_U, FL_ZKL) play important roles
in the sealing system [33]. They are mainly affected by LS_YJL. In the network
topology structure, there is no displacement variable point to the structure variables,
which is completely consistent with the physics.

3. The radial separation of the gasket is harmful and will lead to a bending moment
or shear force. The too–big radial separation will result in gasket premature failure,
but compared to the axial separation, the radial separation is less important. The
sealing performance will seriously descend while the axial separation of the gasket
would be larger than expected [33], with the axial separation represented by ZX_IN,
ZX_OUT. According to Figure 4a, only the ramp angle has a direct effect on the radial
displacement, while other parameters do not affect it. This represents a less important
role of the radial displacement variable than other displacement variables, which is
consistent with expert knowledge.

4. The size variables in the sealing area (D11, D12, D13, D14, D15, θ), shown in Figure 1,
interact with each other and are related to some of the other dimension variables. D11,
D14, D15 are prominent in such variables

Figure 3. The fused expert knowledge matrix for RPV sealing system.
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Figure 4. Bayesian network structures are learned by two different methods. According to (15), the
nodes/variables are marked in orange, if ki > 4. (a) The Bayesian network is learned by the iBWL
method. (b) The Bayesian network is learned by the regular BIC learning algorithm.

According to the network learned by the regular BIC score which is shown in Figure 4b,
there were several inconsistencies with the physical mechanism or expert knowledge:

1. According to the mechanism knowledge, LS_YJL is independent of SR2, the size of
the spherical head, but the LS_YJL has a direct edge to SR2 in Figure 4b.

2. According to design drawings in Figure 1b, D15 and D13 determine the sealing rings
position simultaneously, thus D15 should be very sensitive to D13, but there is no
direct nor indirect connection between D15 and D13 in Figure 4b.

3. D13 determines the assembly position of the gasket. The gasket should be at the
position shown in Figure 1b, with three sides in contact with the surface, so that the
sealing ring has a higher constraint to ensure the sealing performance. D12 and D14
determine the position of the sealing groove while reasonable positions of sealing
grooves ensure the sealing ring has good sealing performance. If the distance between
the two sealing grooves is too close, the sealing performance of a single sealing ring
will be weakened. And the sealing performance will deteriorate when the distance is
too long [34]. All in all, D11, D12, D13, and D14 are also important variables affecting
the displacement parameters, which were not learned by the BIC method.

4. ZX_IN and ZX_OUT are two interrelated displacement parameters, thus, they should
have similar connections, while in Figure 4b, there are more directed edges pointed to
ZX_IN than ZX_OUT. This is not consistent with the experts’ expectations.

By comparison, it can be found that the relationships among the variables captured by
the network topology structure using our inconsistent knowledge fusion method is more
accurate according to physical cognition. The expert knowledge integrated BN not only
excavates the influence relationship between the variables from the data but also effectively
considers the priceless knowledge accumulated by experts. More importantly, it considers
the inconsistency and reliability of the knowledge provided by different experts. This is
an effective method to describe the dependence among variables to identify key features,
especially when the project requires high reliability and experimental data is scarce.

According to Equation (12), we obtain the centrality degree ki of each variable and
identified D14, D15, D11, D12, θ, D13, ZX_OUT, ZJ_D, ZJ_U, ZX_IN, FL_ZKL, LS_YJL as
key variables (their ki are shown in Table 3).
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Table 3. Importance index of key variables.

Node/Variable Centrality Degree ki Node/Variable Centrality Degree ki

D14 12 0.136 ZX_OUT 6 0.068
D15 10 0.114 ZJ_D 6 0.068
D11 10 0.114 ZJ_U 6 0.068
D12 8 0.091 ZX_IN 6 0.068
θ 8 0.091 FL_ZKL 5 0.057

D13 6 0.068 LS_YJL 5 0.057

Then, using the weighted loss function shown in Equation (11), the reliabilities of all
samples were quantified and shown in Figure 5a. For the reliability function, γ = 1 since
samples were preprocessed with mean normalization. The designed parameter values of
the RPV of the Liaoning Hongyanhe Nuclear Power Plant were used as the target values.

Figure 5. (a) Reliability scatter diagram of 699 samples. (b) Pie chart of reliability of 699 samples.
(c) The normalized variable values of three typical samples with different reliabilities.

To active the generalization, robustness of the BN model and to test the performance of
our iBWL method, several simulation samples were designed with unacceptable structure
values or status values on purpose. Figure 5a,b also shows the distribution of reliabilities of
them. It is obvious that as what we expected, the samples whose designed variables’ value
have big variations by us on purpose, did not have good enough reliability scores.

There were almost no deviations of the variables of samples whose reliability scores
were higher than 99.00%. Therefore, three typical samples, whose reliabilities were 99.6%,
91.2% and 88.0%, respectively, were chosen as examples. Figure 5c shows the variations of
their variables. From Figure 5c we can see that:

1. For the green sample, H3 has the biggest deviation from its target value and the
deviations of other variables are comparatively small, close to 0. According to Table 3,
H3 is not a key variable, therefore the deviation of it did not change the sealing
performance very much. The reliability of it is still 99.6%.

2. For the blue sample with 91.2% reliability, although the deviations of D14, D15, ZX_IN,
ZX_OUT, ZJ_D, FL_ZKL, LS_YJL are not as big as that of H3 in the green sample, they
are more important variables according to Table 3. Consequently, the blue sample has
lower reliability than the green sample does.
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3. For the red sample with 88.0% reliability, D10, D11, T2, and θ have the highest
deviations. They are important structure variables and their deviations from their
corresponding expected values led to a dramatic decline in sealing reliability.

These three samples proved that not only the deviations of variables but also their
importance is taken into consideration in our new iBWL method.

For a FEA simulation model, LS_YJL is an input variable. FEA could not calculate the
values of it nor the influence of it to the RPV sealing system. For the displacement variables
(ZX_IN, ZX_OUT, ZJ_D, ZJ_U, FL_ZKL) that play important roles in the sealing system,
FEA can only calculate the values of them under certain circumstances but cannot evaluate
their influence on the RPV sealing system either.

For the reliability analysis model of a nuclear reactor pressure vessel, it is difficult to
use statistical methods for verification, because it is impossible to obtain a large number of
design schemes and real reactor reliability data. To verify the accuracy of the iBWL method,
we applied it on two RPVs that are serving in China. The data of these two RPVs did not
participate in the previous model learning.

The Fuqing nuclear power plant is located in Fuqing City, Fujian Province, China.
The planned installed capacity is 6 million KW PWR nuclear power units. Units 1 to 4
use CNNC’s cpr–1000 reactor, and units 5 and 6 use CNNC’s Hualong 1 (formerly known
as ACP–1000) reactor. Using the hydraulic pressure test data of Fuqing 4 and 5 units, the
reliability of the equipment was analyzed. The reactor pressure vessel hydraulic pressure
test mainly included a strain test, main bolt load test and deformation test. The strain test
and deformation test related to the sealing performance of reactor pressure vessel and
mainly included the strain at the head flange and vessel flange, the corner of the head
flange and vessel flange, and the axial and radial displacement between the head and vessel
flange. Through the above tests, the values of key variables were obtained and are listed in
Table 4.

Table 4. Key variable values after normalization of Fuqing 4, 5 units.

Node/Variable Fuqing 4 Unit Fuqing 5 Unit Node/Variable Fuqing 4 Unit Fuqing 5 Unit

D14 0.565022422 0.538116592 ZX_OUT 0.71517225 0.654898238
D15 0.372469636 0.331983806 ZJ_D 0.58882819 0.753666217
D11 0.393382353 0.797794118 ZJ_U 0.79986268 0.537599129
D12 0.250996016 0.398406375 ZX_IN 0.700518179 0.623336078
θ 0.665236052 0.25751073 FL_ZKL 0.705600748 0.675037485

D13 0.398104265 0.44549763 LS_YJL 0.823301528 0.830323161

The values of the key variables were input into the weighted loss function shown in
Equation (11), which is the second part of the iBWL method. The reliability of these two
RPVs can therefore be obtained. The reliability scores of Fuqing 4 and 5 units were 99.310%
and 99.661%, respectively. The RPVs of Fuqing 4 and 5 units both obtained ‘high reliability’
results, which are in line with expectations because they were running safely. These two
real data verify that the iBWL method proposed in this paper can correctly evaluate the
reliability of a RPV sealing system. Of course, we also admit that this verification method
is arbitrary, as it is limited by the scarcity of data and the lack of fault data.

5. Conclusions

A new iBWL reliability estimation method was proposed for RPV sealing performance.
To overcome the inherent shortcomings of Bayesian network structure learning, we pro-
posed a novel knowledge integrated BN learning algorithm to fuse the information from
data and inconsistent knowledge from multi–experts. The fusion strategy and activation
function were proposed to overcome the inconsistency, to consider the reliability of the
knowledge provided by different experts, and to improve the accuracy and the robustness
of the algorithm. Based on the analysis of the learned BN topology structure, the key
variables are identified. The weighted loss function model, then took key variables as input
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to quantify the loss of sealing performance reliability caused by the deviations of these
variables from their expected values. The case studies on simulated samples based on the
RPV of Liaoning Hongyanhe Nuclear Power Plant and real data on other RPV in service in
China are conducted to verify our method. The comparisons between the results obtained
by our method and the regular BN method strongly proved the iBWL method’s advantage
in integrating both data and expert knowledge.

By comprehensively considering both the structure variables and status variables
under different internal temperatures and pressures of a given RPV, our method is a
powerful method to estimate the reliability of RPV sealing performance under different
internal temperatures and pressures, thus, it can help with daily operation and maintenance.
It also laid a valuable foundation for the realization of safety online monitoring and
management if the corresponding measure methods are available. In addition, the key
variables identified by the iBWL method are also helpful with the designing, analyzing
and maintenance of RPV intrinsic safety. Future work should therefore include follow–up
work designed to integrate more knowledge including literature and design cases to the
BN learning algorithm and should be designed to optimize the quantification method of
the confidence coefficient of experts.
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