
Citation: Liu, J.; Shi, S.; Chen, H.

Experimental Research on Oil–Water

Flow Imaging in Near-Horizontal

Well Using Single-Probe

Multi-Position Measurement Fluid

Imager. Processes 2022, 10, 1051.

https://doi.org/10.3390/

pr10061051

Academic Editors: Sheng Yang and

Haiping Zhu

Received: 27 February 2022

Accepted: 18 May 2022

Published: 25 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

Experimental Research on Oil–Water Flow Imaging in
Near-Horizontal Well Using Single-Probe Multi-Position
Measurement Fluid Imager
Junfeng Liu 1,2,* , Shoubo Shi 1 and Hang Chen 1

1 College of Geophysics and Petroleum Resources, Yangtze University, Wuhan 430100, China;
shishoub@163.com (S.S.); cdkgzych@163.com (H.C.)

2 Key Laboratory of Exploration Technologies for Oil and Gas Resources (Yangtze University),
Ministry of Education, Wuhan 430100, China

* Correspondence: kg2004002@yangtzeu.edu.cn; Tel.: +86-027-6911-1085

Abstract: To obtain local flow velocity and holdup for oil–water in a near-horizontal well, array
probes were adopted in the cross section of the wellbore. In this study, a fluid flow imaging log-
ging tool called the single-probe multi-position measurement fluid imager (SPFI) was developed,
which consisted of only a single turbine flowmeter and a single capacitance holdup probe. Most
importantly, it could collect local velocity and holdup information at different locations along the
vertical direction of the wellbore diameter. Firstly, in the large-diameter multi-phase flow simulation
test loop, the instrument was placed at five different positions along the wellbore cross section to
perform simulated measurements in different wellbore deviation angles and oil–water flowrates.
Secondly, the experiment data was analyzed, and the experiment flow pattern chart, instrument
response coefficient, and rule of the instrument response were obtained. At the same time, the
calculation methods of local holdup and local velocity were derived. Thirdly, by combining the
interpolation algorithm, velocity imaging and holdup imaging were implemented, and the stratified
flow model was used to calculate the flowrate of each phase. Finally, this study provides technology
support for production profile data interpretation using the fluid flow imaging tool for oil–water in a
near-horizontal well.

Keywords: horizontal well; oil–water; stratified flow; single-probe flow imaging; holdup imaging;
velocity imaging; flowrate calculation

1. Introduction

In order to distinguish the complex flow pattern structure of multi-phase flow in
deviated and horizontal wells, such as the stratified flow and dispersed flow, it is necessary
to conduct interventional sampling measurements of the fluid in the cross section of the
wellbore at different locations as much as possible [1–3]. The flow pattern is significant
since by observing the flow pattern in the wellbore, we can understand the oil and water
distribution state in the wellbore and guide the accuracy of the data measured by the
instrument. By counting the flow patterns under different experimental conditions, the
distribution of oil and water in the well can be predicted in the future. Multi-phase flow
has been studied for many years [4–11], and the current commercial multi-phase flow
measurement instruments for horizontal wells mainly use an array of probes consisting
of capacitance probes, resistance probes, and turbines to cover the whole wellbore cross
section for measurement, such as the Schlumberger FloScan Imager (FSI, six Floview probes,
six GHOST probes, five microturbine flowmeters) [12,13], Multiple Array Production
Suite (MAPS) from Sondex UK (Capacitance Array tool (CAT) with 12 capacitance probes,
Resistance Array tool (RAT) with 12 resistance probes, and Spinner Array tool (SAT) with six
microturbine flowmeters) [14–17], Array Fluid Resistivity Meter (AFR, 12 resistance probes),
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and Array Fluid Velocity Meter (AFV, six turbine flowmeters) from Hunter Canada [18]
and other instruments. The above-mentioned array probe combination instruments can
simultaneously measure fluid information at different positions in the wellbore.

The novelty of this study is that different from other array instruments, a single-probe
multi-position measurement fluid imager (SPFI) was used, which included only a single
turbine flowmeter and a single capacitance holdup probe. The SPFI has a smaller volume
in the wellbore and has less effect on fluid flow. Since it can measure the local flow velocity
and holdup information at different positions along the vertical direction of the wellbore
diameter, it can also perform real-time monitoring of fluid flow imaging [19,20]. In order
to evaluate the test effect of the SPFI instrument, we used it to conduct the oil–water
simulation measurement experiment in near-horizontal wells at five different heights in the
multi-phase flow loop. After data processing, the flow pattern diagram and tool response
law under different wellbore deviation angles and different oil–water flowrates were
obtained, and velocity imaging and water holdup imaging under different conditions were
also achieved. Finally, the flowrate of each phase of the stratified flow was calculated and
verified. The research results in this study are helpful to realize the accurate interpretation
of the logging data of the oil–water flow profile of the near-horizontal well.

2. Overview of Flow Experiments

As shown in Figure 1, this experiment was performed on the multi-phase flow sim-
ulation device for horizontal and high-angle deviated well of Yangtze University. The
simulated wellbore was 12 m long and had an inner diameter of 124 mm, and the medium
was tap water and white oil. Under room temperature and normal pressure, combined
with the actual production situation of the oil field, we set the total flowrate of oil and water
to 50, 70, 100, 120, 160, 200, 250, and 300 m3/d. The water cut was 0%, 10%, 20%, 40%, 50%,
60%, 70%, 80%, 90%, and 100%, respectively. Wellbore deviations were designed as three
types, namely uphill flow (85◦ and 88◦), horizontal flow (90◦), and downhill flow (92◦ and
95◦), respectively.
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Figure 1. Schematic diagram of multi-phase flow simulation device for horizontal and high-angle
deviated well. 1–2. A simulated wellbore (inner diameter of 124 mm), 3–4. B simulated wellbore
(inner diameter of 159 mm), 5. Experimental observation site, 6. Oil–water four-stage separation
tanks, 7. Oil tank, 8. Oil pump, 9. Oil flow meters, 10. Oil control valves, 11. Water tank, 12. Water
pump, 13. Water flow meters, 14. Water control valves, 15. Oil–water mixer. Yellow represents oil,
and blue represents water.
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Based on the conditions of the known well-deviation angle, total oil, water flowrate,
and water cut, SPFI was used on the cross section of the wellbore (as shown in Figures 2
and 3) to measure the capacitance of the water holdup response calibration and turbine
response calibration at five different positions, measure the rotation angle of the instrument,
and take a video of the experiment process.
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As shown in Figure 2, the SPFI tool consisted of a single turbine, a single capacitance
probe, and support arms attached to the holder and placed in the appropriate position
in the wellbore for intrusive measurements. During the experiment, the turbine and the
capacitance probe could be moved up and down by adjusting the support arms to realize
the measurement of the wellbore section. A total of five measuring points were selected
in this study, two of which were the highest points and lowest points that the measuring
instrument could reach. The other three points were selected according to the average
height, and the five heights were 100 mm, 88 mm, 76 mm, 64 mm, and 48 mm. The
turbine rotation velocity in the experiment could be converted into the fluid flow velocity.
The measurement principle of the capacitance probe is that different fluids have different
dielectric constants. Before the experiment began, a capacitance probe was used to measure
pure oil and pure water to obtain calibration values. The value measured in the experiment
was then compared with the calibration value to determine whether the measured fluid was
water or oil. The values between the measurement points were obtained by interpolation,
and the height of the oil–water interface was finally obtained by combining the change
trend of the measurement values on the height of the wellbore section. The experimental
video was also used as one of the bases for judging whether the holdup result was accurate.
Since the oil and water in the wellbore were partially mixed, the change trend of the values
at the five measurement points and the value measured by the capacitance probe were
used as the basis for judging the properties of the fluid. It is worth noting that since the
dielectric constant of the fluid was related to the fluid properties and temperature, when
the experimental environment or medium changed, the calibration values of pure oil and
pure water needed to be re-measured.
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3. Experimental Flow Pattern and Instrument Response Calibration
3.1. Experimental Flow Pattern

As shown in Table 1, Trallero et al.’s classification standard of oil–water in a horizontal
small-diameter wellbore (pipe diameter 50.13 mm, length 15.54 m) has been generally
recognized by many scholars [21–26]. They believed that the flow patterns of oil–water
in horizontal wells could be mainly divided into two categories and six types, namely:
stratified flow (smooth stratified flow (ST) and wavy stratified flow (ST&MI)) and dispersed
flow (when the oil phase is the main dispersed flow, including water in oil and oil in water
(Dw/o & Do/w) and water in oil (w/o); and when the water phase is the main dispersed
flow, including oil in water and water (Do/w & w) and oil in water (o/w)). Due to the
different simulation conditions, four flow types according to Trallero et al.’s flow pattern
classification method were mainly observed in this experiment, namely, smooth stratified
flow, wavy stratified flow, water in oil–water and oil in water, respectively. Figure 4 shows
flow patterns for well deviation angles of 85◦, 88◦, 90◦, 92◦, and 95◦, flowrates of 50 to
300 m3⁄d, and water cut of 0% to 100%. In Figure 4, the horizontal coordinate shows
the superficial velocity of the oil phase, and the vertical coordinate shows the superficial
velocity of the water phase.

Table 1. Trallero et al.’s horizontal-pipe oil–water flow pattern classification. OW represents the
oil-water, PD represents the wellbore deviation angle, L represents the total flowrate of oil and water,
and CW represents the water cut.

Flow Pattern Classification Schematic Diagram Experimental Photo
(OW-PD90)

Stratified flow

Smooth stratified flow
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3.2. Instrument Response Calibration

As shown in Figure 5, the turbine response and capacitance water holdup meter response
of the SPFI were measured at five different positions on the wellbore cross-section at specific
well deviation angles. At the same time, SPFI was calibrated under the conditions of pure
oil, pure water, different flowrates, and different water cuts. Next, the local holdup and local
velocity information at five different locations for different conditions were collected.
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As shown in Figure 6, there was a linear relationship between the turbine response
f5 and the total flowrate Qm at the first measuring point position (height was 48 mm) and
three different wellbore deviation angles in pure water. All three were satisfied:

f5= C5w × Qm+Vtw5 (1)
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Figure 6. Single-phase (pure water) turbine response (different wellbore deviation angles, same
measuring point height).

In the formula, C5w is the turbine response coefficient at the fifth position in pure
water. Vtw5 is the turbine threshold velocity at the fifth position in pure water. The turbine
threshold velocity here refers to the minimum fluid velocity at which the turbine begins to
rotate against frictional resistance.

When the wellbore deviation angle is 85◦, f5= 0.0182 × Qm − 0.8789.
When the wellbore deviation angle is 88◦, f5 = 0.0174 × Qm − 0.8158.
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When the wellbore deviation angle is 90◦, f5 = 0.0179 × Qm − 0.8471.
In the same way, the turbine response coefficients Ciw and Cio and turbine threshold

velocities Vtwi and Vtoi at the i-th position in pure oil and pure water can be obtained.

4. Calculation of Local Holdup, Local Velocity, and Flowrate of Each Phase
4.1. Local Holdup Calculation

The local water holdup at five different positions [1] can be represented as follows:

Hwi =
CPSi − CPSo

CPSw − CPSo
(2)

In the formula, CPSi is the i-th measuring point or the count rate of oil–water mixed
fluid; CPSw is the counting calibration value in pure water; CPSo is the counting calibration
value in pure oil.

Table 2 shows the local water holdup for a horizontal well of 90◦, a total flowrate of
50 m3/d, and 20% water cut. It was clear that the local water holdup at position 5 was
0.901, indicating that this position was the water phase. The local water holdup at positions
1–4 was around 0.08, indicating that these positions were oil phases.

Table 2. Local water holdup at different positions (OW-PD90L50CW20).

Position of
Measuring Points

Height of
Measuring Points

(mm)

Capacitance Water
Holdup Response

(CPS)

Pure Oil
Response

(CPS)

Pure Water
Response

(CPS)

Calculated Local
Water Holdup

1 100 34,367.48

36,349.73 12,927.91

0.085
2 88 34,428.84 0.082
3 76 34,390.53 0.084
4 64 34,259.53 0.089
5 48 15,250.64 0.901

4.2. Local Velocity Calculation

The local velocity at five different positions can be represented as follows:

Vi= Ci × fi+Vti (3)

Ci= Hwi × Ciw+(1 − H wi) × Cio (4)

Vti= Hwi × Vtwi+(1 − H wi) × Vtoi (5)

In the formula, Vi is the local flow velocity at the i-th position; Ci is the turbine
response coefficient at the i-th position; fi is the turbine response at the i-th position; Vti
is the turbine threshold velocity at the i-th position; Hwi is the water holdup of the i-th
position; Ciw is the turbine response coefficient at the i-th position in pure water; Cio is the
turbine response coefficient at the i-th position in pure oil; Vtwi is the turbine threshold
velocity at the i-th position in pure water; Vtoi is the turbine threshold velocity at the i-th
position in pure oil.

4.3. Flowrate of Each Phase Calculation

Figure 7 shows the oil–water stratified flow in the near-horizontal well. The wellbore
profile is divided into n small profiles of equal height. The cross-sectional area Ai, the water
holdup Hwi, and the flow velocity vi in the area where each measurement position was
located were obtained for each small profile. The water phase flowrate Qw and oil phase
flowrate Qo were also obtained [27].

Qw = ∑n
i=1 Ai×Hwi×vi (6)

Qo = ∑n
i=1 Ai×(1 − H wi)× vi (7)
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5. Design of Flow Imaging and Flowrate Interpretation Software

The program in this study was based on the MATLAB environment and used MAT-
LAB’s graphical user interface (GUI), which is a visual software platform. After the program
has been designed and completed, the user does not need to modify the design part of the
program but only needs to enter the set parameters in the GUI interface. Figure 8 shows
the design idea of this program.
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As shown in Figure 9, the first GUI program designed contained five modules. The
first module was the tool structure module, which was used to display the position of the
turbine and capacitance water holdup meter in the cross section of the wellbore. These
values needed to be entered manually based on the measurement data, as these parameters
varied for each experimental condition. The second module was the holdup parameters
module, which included both the calibration values for the capacitance probe in pure oil
and pure water and the capacitance probe response values to be input. When considering
the calibration value measured in pure oil and pure water, it was possible to judge whether
the fluid was oil or water based on the data measured by the capacitance probe. The
third module was the fluid velocity parameters module, which included both the response
coefficient and threshold velocity of the turbine in pure oil and pure water, calculated
from the above input data, and the actual turbine rotation velocity to be input. The
fourth module showed the results of the holdup and flowrate calculations, which was
automatically generated based on the above data. The fifth module was the oil–water
boundary, which was used to determine oil and water in the holdup profile imaging and
needed to be manually input according to the experimental situation.
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Figure 9. The GUI program and calculation results.

As shown in Figure 10, the second GUI program was used for the calculation of the
holdup profile imaging, flow velocity profile imaging, and flowrate of each phase, and
the data used in this interface came from the first GUI program. We simply selected the
appropriate algorithm, and the image and calculation results were automatically generated.

Overall, the data to be entered were the well deviation angle, angle of rotation of the
instrument, height of the turbine center, water holdup meter response value, and rotation
velocity of the turbine. The program then calculated the local water holdup, local velocity,
and flowrate of each phase, as well as imaging the turbine’s position in the wellbore, the
holdup profile, and the flow velocity profile.
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6. Discussion of Experimental Data Flow Imaging Results
6.1. Holdup Imaging

As shown in Figure 11, the local holdup information at five different positions was
combined with three interpolation algorithms (inverse distance weight interpolation, radial
basis function interpolation, and Kriging interpolation) to obtain the holdup imaging for
the specific well deviation angle, flowrate, and water cut conditions [28,29]. By comparing
with the experimental flow pattern, it could be judged whether the capacitance holdup
imaging effect was consistent with the experiment. It can be seen that when the well
deviation angle was 88 degrees, the total oil-water flowrate was 50 m3/d, and the water
cut was 20%, the imaging effect of the inverse distance weight interpolation method was
consistent with the experimental photos.
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As shown in Figure 12, by using one-dimensional segmented cubic interpolation, the
flow velocity profile imaging could be obtained for a horizontal well at 90◦, total flowrate
of 120 m3/d, and water cut of 40%. The local velocities at five different positions (i = 1–5)
were 3.235, 2.669, 2.44, 2.661, and 5.382 m/min.
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Figure 12. Velocity profile imaging (PD90L120CW40).

6.2. Analysis of Flow Imaging Effect

Figure 13 shows the comparison and analysis results of holdup imaging, velocity
imaging, and experimental photos under the same total oil–water flowrate, same water cut,
and different wellbore deviation angles. It can be seen that light-phase oil and heavy-phase
water were distributed at the top and bottom of the wellbore, respectively. However,
when the well deviation was on an uphill flow (85◦ and 88◦) due to the large weight of
heavy-phase water in the direction of gravity, water accounted for a large proportion of
the wellbore cross section, and the water holdup value was too large, greater than 40%
of the cross-sectional area of the wellbore. When the well deviation was on a downhill
flow (92◦ and 95◦) due to the large weight of heavy-phase water in the direction of gravity,
water accounted for a small proportion of the wellbore cross section, and the water holdup
value was too small, less than 40% of the cross-sectional area of the wellbore. Since the first
measuring point of the lowest height was relatively high in vertical height, it was still in
the oil when the wellbore deviation angle was 95◦. It could measure the signal of the oil
but could not identify the water at the wellbore bottom. Therefore, the SPFI instrument lost
its ability to identify water in this case.
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7. Discussion of Experimental Data Flow Imaging Results

When the wellbore deviation angles were 85◦, 88◦, and 90◦, the oil–water total flowrate
was 50 m3/d, and only the water cut changed. The above-mentioned stratified flow
flowrate calculation model (Equations (6) and (7)) was used to calculate the oil flowrate,
water flowrate, and oil–water total flowrate. Figure 14 shows that the flowrates of each
phase calculated by the model were in good agreement with the flowrates of each phase
designed in the experiment. At the same time, Table 3 shows that oil–water total flowrate
calculated by the model was also in good agreement with the experimental design, and
the relative error was within ±6%, indicating that the stratified flow flowrate calculation
model has good applicability.
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Table 3. Comparison between experimental and model-calculated total flowrate.

Wellbore Deviation
Angle

Experiment Total
Flowrate

(m3/d)

Water Cut
(%)

Calculated Total
Flowrate

(m3/d)

Relative Error
(%)

PD85

50 20 49.584 −0.83
50 40 47.851 −4.3
50 50 47.847 −4.3
50 60 51.817 +3.6
50 70 51.304 +2.6
50 80 48.695 −2.6
50 90 52.213 +4.4

PD88

50 20 52.635 +5.3
50 40 48.025 −4.0
50 50 47.649 −4.7
50 60 49.336 −1.3
50 70 49.082 −1.8
50 80 48.434 −3.1
50 90 52.892 +5.8

PD90

50 20 47.982 −4.2
50 40 47.014 −6.0
50 50 47.664 −4.6
50 60 47.630 −4.7
50 70 50.734 +1.5
50 80 50.653 +1.3
50 90 51.744 +3.5

8. Conclusions and Recommendations

(1) On the multi-phase flow simulation device, a single-probe multi-position measurement
fluid imager was used to conduct five kinds of simulation experiments with different wellbore
deviation angles. The experimental flow patterns under the oil–water flow in near-horizontal
wells in this study were mainly smooth stratified flow and wavy stratified flow.

(2) The calculation of local water holdup was carried out based on the collected
experimental data combined with the calibration values of pure oil and pure water. At
the same time, the calculation of the local velocity was carried out and combined with
the response coefficients of turbine instruments for pure oil and pure water. Using the
MATLAB language, a processing program was written to realize two-dimensional holdup
imaging and velocity imaging.

(3) Based on the calculation model of the flowrate of each phase of the stratified flow,
the total flowrate of oil and water was calculated in the case of low-flow stratified flow and
compared with the total flow set in the experiment. The results indicated that the relative
error was relatively small.

(4) In this paper, an SPFI instrument was used to conduct oil–water flow experiments, and
algorithms were used to calculate and process the collected data. The calculation and imaging
of velocity and holdup were realized, as well as the flowrate calculation, and the corresponding
program was designed in MATLAB. The instrument and software can be applied to field
logging in the future to obtain well production and oil–water distribution information.
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