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Abstract: Proteases that can remain active under extreme conditions such as high temperature, pH,
and salt concentration are widely applicable in the commercial sector. The majority of the proteases
are rendered useless under harsh conditions in industries. Therefore, there is a need to search for new
proteases that can tolerate and function in harsh conditions, thus improving their commercial value.
In this study, 142 bacterial isolates were isolated from diverse alkaline soil habitats. The two highest
protease-producing bacterial isolates were identified as Bacillus subtilis S1 and Bacillus amyloliquefaciens
KSM12, respectively, based on 16S rRNA sequencing. Optimal protease production was detected
at pH 8, 37 ◦C, 48 h, 5% (w/v) NaCl for Bacillus subtilis S1 (99.8 U/mL) and pH 9, 37 ◦C, 72 h, 10%
(w/v) NaCl for Bacillus amyloliquefaciens KSM12 (94.6 U/mL). The molecular weight of these partially
purified proteases was then assessed on SDS-PAGE (17 kDa for Bacillus subtilis S1 and 65 kDa for
Bacillus amyloliquefaciens KSM12), respectively. The maximum protease activity for Bacillus subtilis S1
was detected at pH 8, 40 ◦C, and for Bacillus amyloliquefaciens KSM12 at pH 9, 60 ◦C. These results
suggest that the proteases secreted by Bacillus subtilis S1 and Bacillus amyloliquefaciens KSM12 are
suitable for industries working in a highly alkaline environment.

Keywords: Bacillus amyloliquefaciens; Bacillus subtilis; proteases; partial purification; optimization;
halotolerant; alkali tolerance

1. Introduction

Proteases hold great commercial value and are involved in the breakdown of large
proteins into smaller peptide fragments and amino acids [1]. Microbial proteases are an
important family of proteases and have an advantage over animal and plant proteases,
as microbes can be cultured on a large scale in less time, and the growth conditions can
easily be optimized in lab conditions. Therefore, high yields with low cost can be achieved
consistently. These microbes can also withstand extreme environmental conditions, thus
making them a suitable tool for producing enzymes with high stability and activity under
extreme conditions [2].

Many proteases, especially the worldwide sales of alkaline proteases, are growing
tremendously. Nearly 60% of the global protease market consists of alkaline proteases.
Alkaline proteinases show optimal enzyme activity at pH 7–11 and are comprised of
metalloproteases and serine proteases [3]. Most proteases available in the market today
are secreted by the genus Bacillus. Other bacterial strains, such as Escherichia coli, Lactococci,
Streptomyces, Pseudomonas, and Vibrio spp. can produce proteases, but Bacillus is preferred
due to its heterotrophic nature, high yield, and ease in growth on a variety of substrates.
Alkaline proteases produced by Bacillus spp. possess great biochemical diversity and
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stability, therefore increasing its commercial value. These proteases are also used for
various applications, including food, medicine, detergents, silver recovery, waste treatment,
etc. Few of the important Bacillus spp. used for protease production, are B. subtilis and
B. licheniformis [4]. A recent study isolated alkaline protease-producing bacterial strains of
Bacillus cereus species from leather industrial effluent [5]. The optimization of microbial
growth media has a significant role in improving product yield. It can affect cultural
growth, which can, in turn, affect the target protein production.

The remarkable industrial and commercial value of high tolerance proteases leads to
the continuous search for new microbial sources with protease production. Furthermore,
the physicochemical characterization of an enzyme indicates its performance and potential
applications in different industries. With this in view, we isolated an alkali-thermotolerant,
B. subtilis S1 and B. amyloliquefaciens KSM12, from dump soil (Islamabad) and salt mines
(Karak), respectively. Furthermore, we optimized the protease production and activity
under different physicochemical factors like pH, temperature, and salinity for possible
industrial applications.

2. Material and Methods
2.1. Sampling and Strain Isolation

Soil samples were collected from Bahadur Khel Salt Mines, Karak (33.1057◦ N, 70.5715◦ E),
and sector I-12 dump area, Islamabad (33.6279◦ N, 72.9991◦ E), at a depth of 5–10 cm.
Various physiological parameters such as temperature and pH were recorded, and samples
were processed on the same day. The samples were serially diluted up to 10−10, and
200 µL solution from each dilution was dispensed onto nutrient agar plates. The plates
were incubated at 37 ◦C for 48 h, and bacterial isolates were purified using a repeated
subculturing technique [6].

2.2. Screening for Protease Production

Preliminary screening for protease production by the bacterial isolates was performed
on casein agar plates under sterile conditions. The purified isolates were then streaked
on skim milk agar plates and incubated at 37 ◦C for 24–48 h; finally, zones of hydrolysis
were measured. The isolates producing larger zones were subsequently subjected to
quantitative assay.

2.3. Quantitative Assay for Protease Activity

Overnight culture of selected protease-producing bacterial isolates were transferred to
a 500 mL nutrient broth flask, supplemented with casein (1% w/v), at pH 7. The culture was
incubated for 24–48 h at 37 ◦C with continuous shaking at 120 rpm. Afterward, the bacterial
culture was centrifuged for 15 min at 10,000 rpm, and 4 ◦C. The cell-free supernatant was
collected, taken as crude proteinase extract, and examined for proteinase activity [7].

2.4. Protease Specific Activity Assay

Protease-specific activity assay was performed according to the method of Cupp-
Enyard and Aldrich [8]. Briefly, 5 mL of 0.65% casein dissolved in 50 mM potassium
phosphate buffer (pH 7.5) was added to both sample and blank tubes and incubated at
37 ◦C for 5 min. Subsequently, 1 mL of crude protease extract was added to only the sample
tube and incubated for 10 min at 37 ◦C. The reaction was stopped with the addition of
5 mL of 110 mM trichloroacetic acid (TCA) solution in both the sample and blank tubes.
After the incubation was completed, protease extract was also added to the blank tube,
and the mixture was filtered using a 0.45 µm syringe filter. Finally, 5 mL of 500 mM
sodium carbonate was added to both the tubes, followed by the addition of 1 mL of 0.5 mM
Folin–Ciolcaltea Reagent. The mixture was then incubated for 30 min at 37 ◦C. UV-Vis
spectrophotometer (UV-6100A) was used to determine the absorbance value at 660 nm. The
standard curve was generated, and enzyme activity in units/mL was calculated. The unit
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of enzyme activity is defined as “the amount of enzyme that catalyzes the conversion of one
micromole substrate per minute under the specified conditions of the assay method” [9].

Total protein estimation: The crude extract was measured for the total protein content
using Bradford’s method [10]. For this purpose, standard solutions were prepared using
bovine serum albumin (BSA), ranging from 0–1 mg/mL.

2.5. Identification of Highest Protease Producers

The highest protease-producing bacteria (n = 2) were identified based on 16S rRNA
gene sequence analysis. The 16S rRNA sequencing reaction was performed by Macrogen
Inc. Seoul, South Korea (https://dna.macrogen.com/ accessed on 12 December 2021), us-
ing universal primers: 785F (GGATTAGATACCCTGGTA) and 907R (CCGTCAATTCMTT-
TRAGTTT). The sequenced gene was analyzed via BioEdit software v. 7.2 [11], and chimera
sequences were removed using DECIPHER software [12]. A gene homology search was
performed on the BLASTn search engine [13], and sequence data of closely related strains
were retrieved from the NCBI database. The alignment was performed by the Clustal X
program [14] and the phylogenetic tree was constructed by the neighbor-joining method,
based on the Kimura 2-parameter model [15] using the MEGA 7 software [16]. All positions
containing gaps and missing data were eliminated, and there were a total of 1371 positions
in the final dataset. To validate the reproducibility of the branching pattern, a bootstrap
value of 1000 was taken and shown on each branch.

2.6. Optimization of Protease Production

Optimum physicochemical conditions required for maximum bacterial growth and
protease secretion by both strains were determined by subjecting them to different condi-
tions, such as pH, incubation time, incubation temperature, and salt (NaCl) concentration,
in the presence of casein modified nutrient broth (casein (1% w/v) at pH 7). The pH ranged
from 5 to 11, with an interval of 1 unit. The temperature varied from 22 to 47 ◦C with
an interval of 5 ◦C. The optimal incubation time was determined by inoculating bacte-
rial cultures for 24–96 h with 24 h intervals. Salt (NaCl) concentration was optimized by
inoculating the bacteria in casein-modified nutrient broth with 5–40% NaCl. All other
conditions were kept constant. After incubation, OD600 was measured for bacterial growth,
and protease secretion was estimated using the assay described earlier.

2.7. Partial Purification of Proteases

The crude protease obtained was then subjected to partial purification through am-
monium sulfate precipitation [17]. To obtain cell-free supernatant, the bacterial culture
was centrifuged at 15,000 rpm for 10 min at 4 ◦C. Ammonium sulfate was added slowly
to the chilled cell-free proteinase extract along with gentle stirring. Ammonium sulfate
fractions were then collected at 0–80% saturation and 4 ◦C for 2 h. The precipitate was
obtained through centrifugation at 15,000 rpm for 15 min at 4 ◦C. The protein precipitate
was re-suspended into 20 mM Tris-HCl at pH 8.

2.8. Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE)

SDS-PAGE (12%) was used to determine the purity and molecular weight of the
partially purified proteases under denaturing conditions as described by Laemmli [18].
A ladder of 10–180 kDa (PageRulerPrestained Protein Ladder) was used as a standard
marker, and the gel was allowed to run at 80 V constantly for 2–2.5 h. The gel was then
washed and stained with Coomassie Brilliant Blue staining solution and kept overnight
at room temperature. The gel was finally de-stained using a de-staining solution (10%
glacial acetic acid, 40% methanol, 50% distilled water) until bands were visualized on a
transparent background.

https://dna.macrogen.com/
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2.9. Zymography

Zymography was performed as described by Lantz and Ciborowski [19]. Separating
gel (8%) was prepared according to the standard procedure. Gelatin (1 mg/mL) was added
as a substrate in the separating gel. Sample buffer (2X) was added and mixed well with
the samples and kept at room temperature for 10 min without heating. The samples were
then loaded on the gel under standard conditions, and the gel was allowed to run at 80 V
constantly for 2–2.5 h. The gel was finally stained and de-stained until clear bands were
visualized against a dark background, indicating proteolytic activity.

The standard marker of 10–180 kDa (PageRuler Prestained Protein Ladder) was used,
and molecular weights of the protein bands were determined using a logarithmic curve of
Rf value versus the molecular weight.

2.10. Characterization of Partially Purified Protease

A pH range of 6–11 was selected to study the effect of pH on partially purified protease
activity, using different buffers such as phosphate buffer (pH 6–7), Tris buffer (pH 8–9),
Glycine-NaOH buffer (pH 9–10), and dilute NaOH for pH 11. The buffers and proteases
were mixed in an equal ratio. pH values were adjusted at 25 ◦C. A temperature range of
20 ◦C to 70 ◦C was used to study the effect of temperature on protease activity. The effect
of surfactants (1%) on proteinase activity was observed using ionic (SDS) and non-ionic
(Tween 80 and Triton X-100) surfactants. The previously described assay was used to
determine the protease-specific activity and relative activity. The formula used was:

[Relative Activity of Enzyme (%) = (activity of sample of interest/activity of control) × 100]

2.11. Statistical Analysis

All reactions were performed in triplicates, and their means and standard deviations
were calculated by Microsoft Excel (2016). Statistical analysis was performed by one-way
analysis of variance (ANOVA).

3. Results
3.1. Geographical Location and Physiological Parameter of Soil Samples

Bacterial strains (n = 142) were isolated from four different sites in Islamabad and
Karak (Pakistan). The pH and temperature at the dump area (I-12, Islamabad, Pakistan)
were 8.3 and 22 ◦C and at the salt mine (Karak, Khyber Pakhtunkhwa, Pakistan) (Figure 1)
was 8.7 and 24 ◦C.
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3.2. Preliminary Screening for Protease Production

Out of 142 isolated strains, 80 (56.3%) exhibited halo zones around bacterial colonies on
skim milk agar plates. Out of these 80 bacterial isolates, B. subtilis S1 and B. amyloliquefaciens
KSM12 produced larger zones of hydrolysis, i.e., 22 mm and 19 mm, respectively (Figure 2).
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(B) B. amyloliquefaciens KSM12. Representative halo zone produced by the rest protease producers (1).
Bacterial strains with no protease production (2).

3.3. Protease Assay

In preliminary screening, 14 best protease-producing bacterial isolates were selected
based on the halo zones produced on skim milk agar plates. These selected isolates were
then subjected to protease assay, which was performed after 72 h of incubation with casein
as a substrate.

The results show varying levels of protease activity (Table 1). Two strains were finally
selected based on maximum proteinase production, i.e., B. subtilis S1 (34.3 U/mL) and
B. amyloliquefaciens KSM12 (27.9 U/mL). Proteases produced from Bacillus spp. are known
to be widely used in the enzyme industry.

Table 1. Quantitative assay for protease production by the 14 selected isolates. The highest protease-
producing strains (bold) were selected for further analysis.

Sr. No. Enzyme Producers The Activity of
Enzyme (U/mL)

Total Protein
Content µg/mL)

1. S1 34.3 948.2

2. S3 11.8 314.1

3. S13 17.1 513.1

4. S18(3) 6.9 208.8

5. S19(1) 22.6 641.7

6. KSM2 9.4 255.5

7. KSM12 27.9 713.5

8. KSM20 8.5 243.4

9. KSM24 11.5 317.7

10. G1 8.7 237.4
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Table 1. Cont.

Sr. No. Enzyme Producers The Activity of
Enzyme (U/mL)

Total Protein
Content µg/mL)

11. G7 10.4 306.3

12. G18 12.8 423.9

13. G20 7.9 233.6

14. G23 19.4 589.9

3.4. Bacterial Strains Identification

Molecular identification of the two highest protease producers was carried out by
comparing their 16S rRNA gene sequences with other closely related 16S rRNA sequences
on NCBI BLASTn. Strain S1 was identified as B. subtilis S1 (accession no. MN963814) with
the sequence similarity of 100% with B. subtilis strain RS10 [18] (accession no. CP046860.1),
and strain KSM12 was identified as B. amyloliquefaciens KSM12 (accession no. MN391010)
with the sequence similarity of 99.93% with B. amyloliquefaciens strain BCRC 11601 (accession
no. NR116022). The phylogenetic tree of both B. subtilis S1 and B. amyloliquefaciens KSM12
shows that both bacterial strains belong to the genus Bacillus and are closely related to
B. subtilis and B. amyloliquefaciens, respectively (Figure 3).
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3.5. Optimization of Protease Production

Protease production of both B. subtilis S1 and B. amyloliquefaciens KSM12 was observed
maximum in the neutral to the alkaline range (Figure 4A). The optimal protease production
for B. amyloliquefaciens KSM12 can be seen at pH 9 (27.9 U/mL protease activity) while for
B. subtilis S1 at pH 8 (34.3 U/mL protease activity).
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(C) incubation time optimization (F = 338.72, p < 0.0001), and (D) NaCl optimization (F = 73.75,
p < 0.0001).

Both strains, B. subtilis S1 and B. amyloliquefaciens KSM12 showed maximum protease
production at 37 ◦C (Figure 4B). At this temperature, B. subtilis S1 exhibited 99.8 U/mL of
protease activity, and B. amyloliquefaciens KSM12 exhibited 94.6 U/mL of protease activity.
After 37 ◦C, protease production gradually started declining. More than 80% activity was
retained at 42 ◦C, but less than 50% activity at 47 ◦C.

Optimization of incubation time indicated that B. amyloliquefaciens KSM12 was able to
produce maximum protease (88.9 U/mL) after 72 h, and B. subtilis S1 produced maximum
protease (67.5 U/mL) after 48 h (Figure 4C).

Optimum protease production (94.2 U/mL) was observed at 10% (w/v) NaCl by
B. amyloliquefaciens KSM12, and (53.3 U/mL) at 5% (w/v) NaCl by B. subtilis S1, after that it
started to decline rapidly (Figure 4D).
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3.6. SDS-PAGE and Zymogram Analysis

Partially purified proteases produced a single band conforming to a molecular weight
of 17 kDa and 65 KDa on an SDS-PAGE gel for B. subtilis S1 and B. amyloliquefaciens KSM12,
respectively (Figure 5). The zymogram activities for both the proteases also showed a single
band corresponding to the band in SDS-PAGE.
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3.7. Physicochemical Characterization of Partially Purified Protease

Alkaline proteases generally exhibit optimum activity between pH 9–11. The proteases
purified from both B. subtilis S1 and B. amyloliquefaciens KSM12 showed significant activity
in the pH range of 6–11. Optimal protease activity for B. amyloliquefaciens KSM12 was
observed at pH 9, while 98% of activity was retained at pH 10, 72% at pH 11, and 86% at
pH 6. Optimal protease activity for B. subtilis S1 was observed at pH 8, while it retained
82% activity at pH 10 and 63% at pH 11 (Figure 6A).

Proteases from both B. subtilis S1 and B. amyloliquefaciens KSM12 showed significantly
higher activity at 37 ◦C and 60 ◦C, respectively (Figure 6B). Both proteases were active in
the range of 30–60 ◦C. The protease from B. subtilis S1 retained 40% activity at 60 ◦C and
the protease from B. amyloliquefaciens KSM12 retained almost 95% activity at 70 ◦C.

The detergent industry requires enzymes to be compatible with surfactants and deter-
gents. Both these proteases were not only active under ionic surfactants such as SDS, but
also non-ionic surfactants such as Tween 80 and Triton X-100. B. subtilis S1 and B. amyloliq-
uefaciens KSM12 proteases retained activity of 50% and 60%, respectively, in the presence
of SDS (Figure 6C). While these proteases retained activity of 80% and 75%, respectively,
in the presence of Triton X-100. Inconsistent with the results of Triton X-100 for Tween 80,
B. subtilis S1 and B. amyloliquefaciens KSM12 proteases retained activity of 80% and 78%,
respectively (Figure 6C).
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4. Discussion

Many industries employ hostile environmental conditions such as extremes of pH, tem-
perature, and salinity, thus limiting the wide applicability of many commercially available
proteases. In the present study, two alkaline soil bacteria, i.e., B. subtilis S1 and B. amy-
loliquefaciens KSM12, were isolated from an alkaline dump and sodic soil, respectively.
The increase in pH of waste or dumpsites might be due to the presence of high organic
matter in the soil [20], which in turn increases the rate of mineralization and exchangeable
cations [21,22]. The high pH of salt mine soil might be due to the high amount of exchange-
able sodium (cation) in sodic soils [23]. Microorganisms surviving in both dump and sodic
soils have been reported to adapt to harsh environmental conditions. This might be due to
biochemical modifications at cellular and sub-cellular levels [24,25]. Bacillus spp. from soil
has been reported to produce alkali-thermostable proteases [26].

Preliminary screening showed halo zones produced on skim milk agar plates, indi-
cating proteolytic reaction performed by extracellular proteases secreted by these bacte-
rial strains.

Protease production by both bacterial strains was observed maximum in the neutral
to alkaline pH range. The optimum protease activity for both B. subtilis S1 and B. amy-
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loliquefaciens KSM12 was observed at pH 8 and 9, respectively, which suggests that both
strains might be producing alkaline proteases. These results conform with several earlier
reports involving maximal protease production at pH 8 [27] and 9 [28,29] by Bacillus spp.
Temperature optimization showed that both the bacterial strains, B. subtilis S1 and B. amy-
loliquefaciens KSM12, produced maximum protease at 37 ◦C suggesting their mesophilic
nature. Further increase in temperature decreased protease production, suggesting that
an increase in temperature eventually disrupts the molecular structure of bacteria and
thus stops protease production. Other studies on protease production by Bacillus subtilis
have also reported 37 ◦C to be the optimal temperature for protease production [30]. The
optimal incubation time for B. subtilis S1 and B. amyloliquefaciens KSM12 was after 48 h
and 72 h of incubation, respectively. Bajaj and Sharma [31] observed maximum protease
production by Streptomyces ambofaciens after 48 h. Lakshmi et al. also observed maximal
proteinase secretion by B. licheniformis after 72 h [28]. Maximum production of extracellular
proteases occurs in the late logarithmic and early stationary phase when bacteria start
secreting proteases to digest complex nutrients as cultural media starts to get deprived
of the primary sources of carbon and nitrogen [32]. The decline in protease activity of
B. subtilis S1 and B. amyloliquefaciens KSM12 after 48 h and 72 h, respectively, may be due
to the accumulation of toxic metabolites produced by bacteria in a culture medium. The
optimization of salt concentration for B. amyloliquefaciens KSM12 showed maximal pro-
teinase secretion at 10% NaCl (w/v), after which it rapidly started decreasing. Proteases
from Bacillus species are characterized by a molecular weight range from 27 to 71 kDa,
optimal pH range of 6–10, temperature of 37–60 ◦C, and stability values over a wide range
of pH and temperature [33]. After optimization, protease production increased by 2.9-fold
for B. subtilis S1, i.e., 99.8 U/mL from 34.3 U/mL, and 3.4-fold for B. amyloliquefaciens, i.e.,
94.6 U/mL from 27.9 U/mL. These results showed that these bacteria might be able to
produce highly halotolerant proteases. The decrease in protease production afterward may
be due to high ionic strength, which disrupts the enzymatic structures of this bacterium.
This indicates that the protease identified in the current study has high halo-tolerance and
can be used in several industries requiring high salt conditions.

The most imperative characteristic of partially purified proteases from both the strains
was their tolerance to a wide range of pH (8–11), which shows their high alkali-tolerance
nature. The optimal activity of protease from B. subtilis S1 was observed at pH 8 and
for B. amyloliquefaciens KSM12 at pH 9. The maximum activity of many commercially
important proteases is reported in the pH range of 8–11 [1]. High protease activity at such
a wide range of pH and optimal activity at higher pH makes this enzyme suitable for
the detergent industry, as many commercially important proteases used in the detergent
industry operate at a pH of 7–11. It can also be used for dehairing and bating processes in
the leather industry, preparation of protein hydrolysates, and as an additive in cleaning
and dishwashing detergents [34].

The maximum protease activity for B. subtilis S1 and B. amyloliquefaciens KSM12 was
observed at 40 ◦C and 60 ◦C, respectively, which indicates the thermo-tolerant nature of
these proteases. This can also be supported by a study that reports optimal protease activity
up to 60 ◦C [35]. These results show that the proteases are not only alkaline but can also
remain active at a wide range of temperatures. Optimal temperature ranges up to 60 ◦C
show the thermostable behavior of proteases, thus making them an ideal candidate for the
detergent industry. Furthermore, such thermostable proteases can be used to avoid the risk
of contamination by running processes not suitable for mesophilic microorganisms [36].

The stability of proteases in surfactants suggests that these proteases might be suitable
for the detergent industry. Both these proteases were not only active under ionic surfactants
such as SDS but also under non-ionic surfactants such as Tween 80 and Triton X-100.
The stability of these proteases towards SDS is a very crucial factor for the application
in the detergent industry as SDS is a very common additive in detergents. Also, many
proteases produced from Bacillus spp. are reported to be SDS-stable [36]. Alkaline proteases
produced by microbes are also extensively used in the leather industry. These proteases are
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especially useful for the removal of unwanted pigments during the dehairing process [37].
Apart from this, Bacillus spp. are also reported to be suitable for other industries. Table 2
shows the current research progress and the utilization of different Bacillus strains and their
applications in various industries.

Table 2. Current research trends and industrial applications of proteases secreted from Bacillus spp.

Sr. No. Industry Application Bacillus spp. Reference

1. Detergent Removal of blood stains from fabric B. licheniformis [38]
2. Leather Dehairing of skin B. mojavensis SA. [39]

3. Pharmaceutical Production of
value-added products B. subtilis [40]

4. Food Baking industry and
cheese ripening B. lentus [41]

These results show that the extracellular alkaline proteinases secreted by B. subtilis S1
and B. amyloliquefaciens KSM12 might serve as a potential candidate for different industrial
applications such as detergents, food, leather, textiles, and pharmaceuticals. Among
proteases, alkaline bacterial proteases play a vital role in different industries, and their
future use is likely to be increased.

5. Conclusions

In the present study, two bacterial strains Bacillus subtilis S1 and Bacillus amylolique-
faciens KSM12 were isolated from the soil for their ability to produce proteases. The best
conditions for protease production were optimized at pH 8, 37 ◦C, 48 h, 5% (w/v) NaCl
for Bacillus subtilis S1 and pH 9, 37 ◦C, 72 h, 10% (w/v) NaCl for Bacillus amyloliquefaciens
KSM12. The predicted maximum protease activity was 99.8 U/mL and 94.6 U/mL for
B. subtilis S1 and B. amyloliquefaciens KSM12, respectively. Maximum activity and stability
of protease enzyme were retained from B. subtilis S1 at pH 8, 40 ◦C and B. amyloliquefaciens
KSM12 at pH 9, 60 ◦C. The proteases were also stable against surfactants.

The characteristics exhibited by these extracellular proteases might help them to be
utilized as a potential additive in detergent formulations and as a catalyst in the textile,
food, and pharmaceutical industry with improved yield and characteristics. Other appli-
cations include protein hydrolysis, thermal tolerance, substrate specificity, processing of
photographic films, and production of zein hydrolysates.

The thermostable nature of these enzymes makes them suitable for industries employ-
ing higher temperatures along with shorter reaction times and a low risk of contamination.
Specifically, the tolerance towards alkaline pH makes these bacterial isolates more promi-
nent to act as biocatalysts and makes them useful for the local industrial sector.

This study concludes that produced surfactant stable compatible, thermotolerant,
alkaline protease has the potential for industrial applications.
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