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Abstract: Chemical accidents are the biggest factor that hinders the development of the chemical
industry. Issuing an emergency evacuation order is one of effective ways to reduce human casualties
that may occur due to chemical accidents. The present study proposes a machine learning-based
decision making model for faster and more accurate decision making for the issuance of an emergency
evacuation order in the event of a chemical accident. To implement the decision making model,
supervised learning by the 1-Dimension Convolutional Neural Network based model was carried
out using the HSEES and NTSIP data of ATSDR in the United States. An action—victim matrix was
devised to determine the validity of emergency evacuation orders and the decision making model
was made to learn the matrix so that the decision making model could recommend whether to execute
the emergency evacuation orders or not. To make the decision making model learn the chemical
accident situations, the embedding technique used in text mining was applied, and weighted learning
was carried out considering the fact that learning data are asymmetric. The AUROC value for the
results of the decision making by the model is 0.82, which is at a reliable level. Establishing such an
emergency response decision making model using the method proposed in the present study in the
mitigation stage will help the process. Among the chemical accident emergency management stages,
constructing a database for the model, and using the model as a tool for quick decision making for an
emergency evacuation order, is also thought to be helpful in the establishment and implementation
of emergency response plans for chemical accidents.

Keywords: chemical accident; evacuation order; CNN; machine learning; HSEES

1. Introduction

Chemical accidents are the largest factor that hinders the development of the chemical
industry. Various techniques are being applied to minimize damage due to chemical acci-
dents. Issuing an emergency evacuation order is a method of accident response that can
effectively reduce human casualties due to chemical accidents. These accident responses,
which are made by collecting and analyzing information related to chemical accidents,
sometimes take a considerable amount of time due to the complexity of the decision making
process. Figure 1 is an example of an emergency response decision making procedure [1].
When a chemical accident has occurred, an alarm is issued by sensors or staff. Thereafter,
the emergency decision making system is driven using chemical information, demographic
information such as residential locations, metrological information including wind direc-
tion, and infrastructure information. An emergency plan is decided upon through the
results of the emergency decision making system, a resource schedule is made, mitigation
measures are taken, and people are evacuated.

Although the more the information necessary for the emergency decision making
system is collected, the more accurate accident control becomes, the time required to collect
or analyze the information increases. That is, a trade-off inevitably occurs between speed
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and accuracy. However, in order to successfully respond to chemical accidents, both speed
and accuracy must be satisfied.
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Various studies are currently being conducted in order to facilitate the emergency
evacuation carried out when a chemical accident has occurred. Hou J. et al. [2] evaluated
efficiently informing residents when a large-scale evacuation order is deemed necessary as
important and presented a regression analysis based mathematical model that can be used
to analyze the correlation between the evacuation rate and the delivery of the evacuation
order. Hou. J. et al. [3] alstudied the correlation between chemical accidents and the
evacuation of residents by analyzing chemical accidents that occurred from 2009 to 2018
using the China Chemical Information Net. Through database analysis, they identified
areas where the incidence of chemical accidents was high, facilities where residents were
mainly evacuated, and areas where a large number of casualties occurred due to chem-
ical accidents. Furthermore, based on the results of the statistical analysis as such, they
presented the direction of the development of emergency response measures for chemical
accidents from the perspective of each part of the LGCETE (law regulation, government
supervision, corporate responsibility, emergency management, technical improvement,
environmental protection.

Dou. Z. et al. [4] suggested that evacuating workers from workplaces near the accident
site is important for responses to a chemical accident that occurred in an area where facili-
ties using chemical substances are concentrated. They presented a method to effectively
select emergency evacuation routes by identifying factors that adversely affect workers’
emergency evacuation and also by combining an artificial neural network model and com-
putational fluid dynamics simulations. Xe. K. et al. [5] proposed a multi-index emergency
risk assessment method that considers individuals’ health and emergency evacuation
speeds, because emergency response behaviors and scenarios should be established when
selecting emergency evacuation routes. Chen P. et al. [6] studied a similar topic and re-
garded that emergency evacuation routes should be optimized due to the characteristics of
the Chemical Industrial Park. This study, which began from the limitations of the existing
one-way emergency evacuation route calculation, suggested that the efficiency of emer-
gency evacuation can be enhanced through simulations of dynamic interactions between
the road network and emergency rescue and emergency evacuation locations. Studies
to select the evacuation areas effectively by estimating not only emergency evacuation
routes but also accident impact ranges were conducted by Mizuta et al. [7], Hoscan. O and
Getinyokus. S. [8].

Other than the above approaches, there have been many researchers who have studied
the application of artificial neural networks in different fields of engineering, such as in
the civil engineering of bridges, roofs, pavements, and water management. Yang et al. [9]
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reviewed all the ANN works for civil engineering and mentioned that this research area is
currently highly motivated.

Phark C. et al. [10] presented a system that can effectively predict the issuance of
emergency evacuation orders. The foregoing study’s main methodology applied machine
learning algorithms using data from chemical accidents that have occurred, and it is said
that this methodology can be effectively used in emergency response decision making for
chemical accidents that are expected to become more complex thereafter. However, since
emergency evacuation orders were predicted in this study, this study has a shortcoming that
wrong decisions made previously may be learned, as well as the limitation that decision
making is not possible for accidents in which the situations are not sufficiently written in
the database.

The present study was conducted to construct a machine learning decision making
model to determine the necessity of issuing an emergency evacuation order by solving
these limitations.

Machine learning is one of the big data processing techniques and is a method used to
optimize the decision boundary that conforms to the purpose of analysis [11]. Therefore, to
implement a model using machine learning, the big data to be analyzed and an algorithm
to determine the decision boundary, as well as an indicator to judge the applicability of the
model, is necessary. The respective contents of the foregoing will be described in detail in
the methodology chapter.

In the present study, the machine learning model was implemented using Python
software with Keras, which is a deep learning API (Application Programming Interface)
running on top of the machine learning platform Tensorflow. For the data, the NTSIP
(National Toxic Substance Incidents Program) and HSEES (Hazardous Substances Emer-
gency Events Surveillance database) of ATSDR (Agency for Toxic Substances and Disease
Registry) in the United States were used as data for the learning of the machine learning
model and the verification of the accuracy.

2. Methodology
2.1. Database

The databases used in the present study were the HSEES and NTSIP of ATSDR.
Chemical accidents that occurred from 1996 to 2009 are recorded in the HSEES, and as the
HSEES was revised into the NTSIP in 2010, chemical accidents that occurred from 2010
to 2014 are recorded in the NTSIP. The two databases have almost similar structures, and a
total of 115,569 chemical accidents are recorded in the databases. Each chemical accident is
described using over 100 qualitative/quantitative attributes. Table 1 is a summary of the
list of attributes used in the HSEES/NTSIP databases and their descriptions.

Table 1. Attributes in HSEES/NTSIP databases description.

Attribute Class
/Information Category Description

STAE (a) State where event occurred
EVNTCNTY (a) County where event occurred
FIPSCODE (a) Five digit FIPS county code
EVNTTYPE (a) Type of event
NOTF_TYP (a) Who notified the health department?—Primary source

NOTF_2_TYP (a) Who notified the health department?—Supplementary source
NOTF_THR (a) Primary source ID in other database

NOTF_2_THR (a) Supplementary source ID in other database
THRTACTU (a) Was the release actual or threatened

YEAR (a) Year when event occurred
SEASON (a) Season when event occurred

WEEKDAY (a) Portion of week when event occurred
TIME (a) Time range that event occurred

AREATYP1 (a) Description one of type of area where event occurred
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Table 1. Cont.

Attribute Class
/Information Category Description

AREATYP2 (a) Description two of type of area where event occurred
AREA_RES (a) Residential area within 1

4 mile of event
PRIM_FACT (a) First contributing factor
SEC_FACT (a) Secondary contributing factor

PRIM_SPECIFY (a) Primary factor specify
SEC_SPEFICY (a) Secondary factor specify
FIXTYPE1, 2 (a) Fixed facility type one, two

TRNTYPE1, 2 (a) Transportation type one, two
NAICS (a) 2–3 digit NAICS code for event location

NAICS_DESC (a) NAICS description assigned to the NAICS 2–3 digit code
LIVEQTR (a) Number of people living within 1

4 mile of event
EVAC_ORD (b) Evacuation ordered: TARGET VALUE of this study
EVAC_PPL (c) Total number of people evacuated as a result of the event
SHLT_ORD (b) In-place sheltering ordered

DCON_SCTOTR (c) Rang of number of people decontaminated at the scene
DCON_MFTOTR (c) Rang of number of people decontaminated at a medical facility

TOT_CHEM (c) Total number of chemicals spilled
SUB_CAT (c) Substance category
CHEM1~6 (c) Chemical name #1~#6

CHM_QCAT1~6 (c) Category for the amount of Chemical #1~#6
CHM_UNIT1~6 (c) Unit of measure for the amount of Chemical #1~#6
RELS1CHEM1~6 (c) First type of release for Chemical #1~#6
RELS2CHEM1~6 (c) Second type of release for Chemical #1~#6

TOT_VICT (d) Total number of victims of the event
TOT_FATAL (d) Total number of fatality in the event
AGE_CAT1 (d) Number of victim under 18 years old
AGE_CAT2 (d) Number of victim older than 18.
VICT_EMP (d) Number of employee victims
VICT_RESP (d) Number of responder victims

VICT_GP (d) Number of general public victims
VICT_STD (d) Number of student victims
INJ_TRA (d) Number of victims with trauma injuries
INJ_RESP (d) Number of victims with respiratory system irritation
INJ_EYE (d) Number of victims with eye irritation

INJ_GASTRO (d) Number of victims with gastrointestinal problems
INJ_HEAT (d) Number of victims with heat stress injuries
INJ_BURN (d) Number of victims with burn injuries
INJ_SKIN (d) Number of victims with skin irritation injuries
INJ_CNS (d) Number of victims with dizziness or other CNS symptoms

INJ_HACHE (d) Number of victims with headaches
INJ_HRT (d) Number of victims with heart problems
INJ_SOB (d) Number of victims with shortness of breath

SEV_HOSPA (d) Number of victims where injury severity
required treatment at hospital and admittance

SEV_HOSPR (d)
Number of victims where injury severity required

treatment at hospital without being admitted or victim was
transported to hospital for observation with no treatment

SEV_NHOSP (d)

Number of victims where injury severity required treatment
on the scene (first aid); or victim was seen by a private

physician within 24 h; or injuries were experienced
within 24 h of the event and reported by an official

VDCON_SN (d) Number of injured people decontaminated at the scene
VDCON_MF (d) Number of injured people decontaminated at a medical facility

VDCON_BOTH (d) Number of injured people decontaminated
at both the scene and a medical facility
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The attributes can be grouped into four categories to conform to the purpose of the
study. Information category (a) is information related to the chemical accident situations,
information category (b) is information on the results of decision making, information
category (c) is information on leaked chemicals, and information category (d) is information
related to victims of chemical accidents.

Among the data in category (a), the addresses of places where chemical accidents
occurred, and data related to the reporters, were excluded from the learning data. The
NAICS codes were excluded from the learning data because the code assignment method
was changed during the data collection period, and the NAICS code descriptions were used
instead. Items related to the causes of occurrence of chemical accidents were also excluded
from the learning data because those items were identified through investigation in some
cases. Categories (b) and (d) were used to identify the necessity of issuing an emergency
evacuation order, but direct information on them was excluded from the learning data.
Among data in category (c), the types, names, and accident patterns of the leaked chemicals
were included in the learning data because it was judged that it would be easy to identify
them at the early stage of the chemical accidents, but the amounts of the leaked chemicals
were not included. Table 2 rearranged the attributes used to make the machine learning
decision making model learn chemical accident situations.

Table 2. Attributes of database using Decision making model.

Attribute Class
/Information Category Description

THRTACTU (a) Was the release actual or threatened
SEASON (a) Season when event occurred

WEEKDAY (a) Portion of week when event occurred
TIME (a) Time range that event occurred

AREATYP (a) Description one of type of area where event occurred
AREA_RES (a) Residential area within 1

4 mile of event
FIXTYPE (a) Fixed facility type

TRNTYPE (a) Transportation type
NAICS_DESC (a) NAICS description assigned to the NAICS 2–3 digit code

SUB_CAT (c) Substance category
CHEM1 (c) Chemical name

RELS1CHEM1 (c) First type of release for Chemical

2.2. Judgement of the Necessity of Emergency Evacuation Orders

Machine learning methodologies are largely divided into supervised learning, unsu-
pervised learning, and reinforcement learning [12]. Supervised learning is an algorithm
used to learn and solve problems for which the correct answers that must be given by the
model and the labels have been determined [13]. On the other hand, unsupervised learning
is used to solve the problem of clustering unlabeled data according to the characteristics of
the data. Since the present study aims to judge the necessity of an emergency evacuation
order when a certain chemical accident situation has been given, supervised learning was
carried out in the present study. As examined in the database earlier, the results of issuance
of an emergency evacuation order can be identified in the database, but the necessity of
the foregoing cannot be identified. That is, the labels necessary for analysis had to be
determined and newly assigned to the database through the following procedure.

Figure 2 shows the schematization of the development of a chemical accident, the
victims, and the information in the database. The condition of the chemical accident
causes impacts. The actual necessity of the issuance of an emergency evacuation order
is determined according to the correlation between the impact of the chemical accident
and the situation in the vicinity of the accident. Separately from the foregoing issue, the
decision maker for the chemical accident analyzes the situation of the chemical accident
to interpret the necessity of the issuance of an emergency evacuation order and perform
accident response actions. The number of victims would be determined from the correlation



Processes 2022, 10, 1046 6 of 18

between the impact of the chemical accident and the decision making for emergency order.
The impact of the chemical accident can be accurately known after the chemical accident
has ended, and so can the actual necessity of an emergency evacuation order. Since the
actual necessity of the issuance of an emergency evacuation order, which should be a label
in the database, is in the gray area, the label was determined using information on the
surroundings, accident condition, evacuation order action, and victims in HSEES/NTSIP.
Table 3 is an action—victim matrix, which summarized the correlation between the impact
of the chemical accident and the decision making process. Here, the victims were limited
to the total victims in the database less the workplace workers.
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Table 3. Action-victim Matrix.

Emergency Evacuation Order Information

Issued NOT Issued

Victim
0 Required or Not Not required

0< Required Required

If any victim occurs in the aftermath of the chemical accident, the necessity of an
emergency evacuation order arises regardless of the outcome of the decision making
regarding the emergency evacuation order (areas (3) and (4) of Table 3). In the case of an
accident in which no victim has occurred and an emergency evacuation order has not been
issued either, no emergency evacuation order will be necessary thereafter too ((2) of Table 3).
When an emergency evacuation order has been issued and there is no victim ((1) in Table 3),
it was judged conservatively that the necessity of an emergency evacuation order had
occurred. However, when no one has evacuated due to the emergency evacuation order,
it was deemed that there was no need of an emergency evacuation order. The necessity
of an emergency evacuation order for data from 1997 to 2013 was judged with AVM and
according to the result, 98,984 cases of chemical accidents did not require the issuance of an
emergency evacuation order, and 11,099 cases of chemical accidents required the issuance
of an emergency evacuation order. Since the number of chemical accidents that do not
require the issuance of an emergency evacuation order is about 8.9 times larger, it can be
seen that the database used for learning is imbalanced.

2.3. Machine Learning Algorithm

A layer in machine learning is the highest-level building block in deep learning which
can perform the role of a container that receives weighted input and transforms it with a
set of mostly non-linear functions and then passes that to the next layer. Fully-connected
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layers, which are shown in Figure 3, are used for data classification and have a limitation in
that they cannot maintain the correlations according to the order of the input data.
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Therefore, in this study, one-dimensional convolutional neural networks were applied
to the front end of fully connected layers to propose an algorithm that can better learn the
characteristics of chemical accidents.

The input values of the model designed in this study were largely composed of an
embedding layer, three 1-d convolutional neural network layers (1d-cnn), and two fully
connected layers. The data in HSEES/NTSIP that were provided to the machine learning
model through the embedding layer are used to determine whether an emergency evacua-
tion order is necessary or not while going through the aforementioned layers sequentially.
A batch normalization layer, a pooling layer, a flatten layer, and a dropout layer are inserted
between each two layers. Figure 3 is a schematic diagram of the flow of data, the overall
structure of the model, and the identification of model reliability.

2.4. Preprocessing: Embedding

In the embedding layer, chemical accident information in the form of texts is vectorized
through preprocessing of the input data. The rearranged attributes in Table 2 are to be
added to initiate the calculation. Most of the data in the database used in the present
study are recorded in letters with certain meanings, not numbers. On looking at the data
closely, it can be seen that attributes that can be classified into categories, such as seasonal
information or chemical equipment types, are recorded in coded texts, and attributes that
cannot be easily classified into categories, such as chemical names and North American
Industry Classification System (NAICS) code descriptions, are recorded in the form of texts.
The chemical names are recorded in mixture of substances that can be clearly distinguished,
such as benzene and substances that cannot be specified such as “corrosive liquid acidic
organic nos”. The text vectorization was performed using the tokenizer supported by
tensorflow to process text—type data by machine learning.

As methods of expressing words as vectors, sparse representation and dense represen-
tation techniques are mainly used. When words are vectorized using sparse representation,
one word is assigned to each position of the vector, and one is assigned to only the word
used, and zero is assigned to the rest of the words. For example, if the number of words used
is five and benzene is assigned to the third position of the vector, the vector is represented
as follows.

benzene = [0, 0, 1, 0, 0]
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Contrary to the sparse representation, the dense representation selects a certain value
for a vector length and converts words into vectors so that the words have values other
than zero and one. In the present study, the embedding layer supported by tensorflow
was used. In this layer, the initial embedding layer is randomly initialized, and in the
process of learning, it is converted into a vector with a meaning through the arrangement of
words in the learning data. For example, a workplace that has benzene can be represented
as follows.

benzene = [0.58, −0.13, 0.25, 0.71, −0.67]

The characteristic of the chemical accident vectorized as such is a sort of one-dimensional
image and is used as an input value of the 1-d convolutional neural network layer.

2.5. Decision Making Model using CNN

The chemical accident information vectorized through the embedding layer goes
through the feature extraction process in 1-d cnn layers. 1-d cnn layers are largely composed
of convolution layers and pooling layers.

When taking all the considerations together, we made the Python code of 300 lines of
which part is shown in Table 4. The convolution layers play the role of searching for images
using a certain filter and extracting the features of the images to form a feature map. In
addition, the filter used to form the feature map is modified to best extract features during
the learning process, and the number of dimensions increases as much as the number of
filters that searched for data. This algorithm can be expressed in pseudo code as follows.

Table 4. Pseudo code of CNN [14].

for each data in row:
set accumulator to zero

for each element in the filter:
if element position corresponding to data position then

multiply element value corresponding to data value
add result to accumulators

endif
endfor

endfor
endfor
set output data to accumulator

The pooling layer is mainly placed after the convolution layer, and through the
foregoing, an operation to reduce the size of the feature map by down sampling it is
performed. Unlike the convolution layer, the number of dimensions does not change,
and a certain feature is emphasized by extracting the statistical representativeness of the
feature map.

During training, internal covariate shifts in which the distribution of neural network
activation changes occurs sometimes due to changes in neural network parameters. Since
an internal covariate shift generates a saturated regime to cause gradient loss, internal
covariate shifts were prevented through batch normalization.

As the input data goes through the convolution layer, the size of the data decreases,
but the dimension increases as much as the number of filters. In order to carry out final
decision making using the fully connected layer, a flatten layer was placed at the rear end
of the 1-d CNN layer to reduce the high-dimensional vector into a one-dimensional vector.

The vectorized chemical accident situation that has undergone feature extraction
through the convolution layer and the pooling layer makes a final judgment while going
through the fully connected layers (FC). An FC is a neural network in which all the
perceptrons of individual layers are connected to the perceptrons of adjacent layers. The
value obtained by multiplying the input value of the layer by the synaptic weight and
adding the bias is input into the activation function, and when the value is above the
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threshold, a signal is sent to the layer at the rear. If the features of chemical accident data
were extracted in the convolution layer, the FC plays a role in classifying the data based on
the extracted features. In this process, a situation where the learning data is completely
classified, but the test data cannot be classified at all, occurs and this situation is called
overfitting. In the present study, to prevent the foregoing, dropout, which deactivates the
perceptrons that generate noises, was applied to the classification of FC [15].

2.6. Accuracy Index

The yearly decision making results of the model can be organized into a confusion
matrix. The confusion matrix is a matrix that separately indicates prediction results and
actual values as positive and negative values. Sensitivity, specificity, and precision can be
calculated using the confusion matrix. Sensitivity is also called recall and means the ratio
of samples predicted to be positive by the model to the samples that are actually positive.
Contrary to sensitivity, specificity means the ratio of samples predicted to be negative
by the model to the samples that are negative. Precision means the ratio of samples that
are actually positive to the samples predicted to be positive by the model. Table 5 is an
example of a confusion matrix, and Equations (1)–(3) are formulas for calculating sensitivity,
specificity, and precision.

Sensitivity =
TP

TP + FN
(1)

Specificity =
Tn

FP + TN
(2)

Precision =
TP

TP + FP
(3)

Table 5. Confusion matrix.

Prediction

Positive Negative

Actual
Positive TP

(True Positive)
FN

(False Negative)

Negative FP
(False Positive)

TN
(True Negative)

As described above, simple percentile accuracy cannot verify the reliability of the
model because the database used for learning is imbalanced. This is because even if it
is judged that no emergency evacuation order is necessary in all situations, an accuracy
of about 89% can be secured under this condition. Therefore, in the present study, the
reliability of the model was verified using balanced accuracy, skew-normalized f1 score,
and AUROC (Area under a Receiver Operator characteristic Curve). AUROC shows a
value between 0.5 and 1. In general, the model can be regarded to be an acceptable classifier
if the AUROC value is 0.7 to 0.8, an excellent classifier if the value is 0.8 to 0.9, and an
outstanding classifier if the value is 0.9 or higher. An ROC curve is a graph created using
sensitivity and false positive rates and is a graph that shows the performance at all pf the
classification thresholds of the model. AUROC, which means the area below the ROC
curve, was used to verify the accuracy of the decision making model derived through the
present study. Balanced accuracy means the average value of sensitivity and specificity.
The skew-normalized f1 score is the F1 score, which is the harmonic average of precision
and sensitivity, corrected using the imbalanced degree of data. The following formula was
used to calculate the skew-normalized f1 score [16].

Nagative sample = FP + TN (4)
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Positive sample = TP + FN (5)

Skew =
Negative sample
Positive sample

=
FP + TN
TP + FN

(6)

Calibrated FP =
FP

Skew
(7)

Calibrated Precision =
TP

TP + Calibrated FP
(8)

Skew − normalized F1 score =
2 × Calibrated Precision × Sensitivity

Calibrated Precision + Sensitivity
(9)

3. Model Setting
3.1. Database

Supervised learning is generally performed by randomly dividing data into a training
set, a validation set, and a test set. The training set is used for decision boundary deter-
mination, and the validation set is used for model performance evaluation and model
tuning. The machine learning model optimized using the validation set evaluates the
‘final performance’ using the test set. The biggest difference between the validation set
and the test set is that the validation set is data involved in training because it is used for
model tuning, but the test set is unseen data and is used only to evaluate the accuracy of
the model.

It is self-evident that the chemical accidents that occurred in 1997 occurred later than
the chemical accidents that occurred in 1996. Therefore, time-series feeding of data is
necessary to establish and verify a chemical accident emergency response decision making
model. In the present study, training, and validation were performed using data up to year
n−1 to construct a decision making model, and the reliability of the model was verified
using data in year n. In addition, since the criteria for chemical accidents recorded in
the database changed in 2010, the changed criteria were reflected on the CNN model
learning data.

3.2. Learning Algorithm

As chemical accident data are accumulated, the bag of words, which means the number
of words used in database records, becomes larger. As the number of words in the bags of
words increases, the size of the embedding dimension must also increase accordingly. In
the present study, an embedding dimension of 1/200 times the size of the bag of words in
the training dataset was applied.

To check the effect of the application of the 1d-cnn structure on the accuracy of classifi-
cation of vectorized data, the following two types of neural networks were constructed,
and the degrees of accuracy were compared.

Model #1: After the embedding layer, the fully connected layer is applied through
1-cnn.

Model #2: The fully connected layer is applied immediately after the embedding layer.
The 1d-cnn applied to Model 1 was set as follows: a total of three 1d-cnn layers were

placed behind the embedding layer. Relu was used as the activation function of all 1d-cnn
layers, stride was set to 1, and padding was set to same. A batch normalization layer and
a dropout layer (rate: 0.5) were placed behind the first and second 1d-cnn layers, and a
batch normalization layer and a max pooling layer were placed behind the third 1d-cnn
layer. The reason for using max pooling among the pooling techniques is that, since only
the largest value is extracted from a specific area, unnecessary noise can be ignored by
analyzing mainly the strong parameters in the data (that is, the characteristics of the data
that stand out). This will allow you to better characterize the data. The first, second, and
third 1d-cnn layers were applied with 3, 5, and 7 filters, respectively, in order of precedence,
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and kernel sizes of 5, 3, and 2, respectively, in order of precedence. After the 1d-cnn layers,
a flatten layer was applied to adjust the dimension of the data.

After the 1d-cnn structure, 100 perceptrons with the Relu function as the activation
function were set in each of the two fully connected layers, and batch normalization and
dropout layers (rate: 0.5) were inserted. Finally, softmax was arranged to output the final
result of the decision making model in a binary format. To check the suitability of the 1-d
CNN model, the decision making model through model 2 in which the fully connected
layer is placed immediately after the embedding layer, has the following structure.

Figure 4 shows the structure of decision making model using FC. ADAM was used as
the optimizer to search the decision boundary of the model, and since the training data is
imbalanced data, the application of the cross entropy applied with weight was considered
when calculating the loss. The weight was calculated as follows using the ratio of those
accidents that require the issuance of an evacuation order to those accidents that do not
require the issuance of an evacuation order.

Positive weight =
Positive sample + Negative sample

2 × Positive sample
(10)

Negative weight =
Positive sample + Negative sample

2 × Negative sample
(11)
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4. Results and Discussions
4.1. Database Analysis

Table 6 shows the characteristic of test sample such as years and number of chemical
accidents learnt. The average skew value until 2009 was 9.95, and the average skew value
from 2010 to 2014 was 5.72. This difference is considered attributable to the fact that
chemical accident data, which did not require the issuance of an emergency evacuation
order, were not recorded due to the change in database collection standards as of 2010.

On reviewing BoW (Bag of Words), it can be seen that the number of BoWs over the
first four years was 1614. On the other hand, there are 3379 words in the data collected
for four years after the data collection standard was changed in 2010. Also, the BoW
size increase rate during the first four years is much steeper after 2010. This seems to be
attributable to the fact that the vocabulary used to describe chemical accident situations
has increased as the chemical accident situations becomes more and more complex.
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Table 6. Characteristic of test sample.

Test Year Learning Years Number of Chemical
Accidents Learned

Number of Chemical
Accidents Tested

Size of Bag
of Words

Skew of
Learning Data

1997 1996 5486 5513 997 9.75

1998 1996~1997 10,999 5981 1241 9.84

1999 1996~1998 16,980 6260 1398 9.28

2000 1996~1999 23,240 7548 1614 9.27

2001 1996~2000 30,788 8978 1936 10.95

2002 1996~2001 39,766 9014 2103 11.03

2003 1996~2002 48,780 9105 2593 11.63

2004 1996~2003 57,885 7744 2944 10.42

2005 1996~2004 65,629 8603 3225 10.63

2006 1996~2005 74,232 7489 3506 9.95

2007 1996~2006 81,721 7947 3694 10.45

2008 1996~2007 89,668 7559 3863 7.43

2009 1996~2008 97,227 4810 4000 8.72

2010 1996~2009 102,037 2981 4090 4.96

2011 2010 2981 3128 820 3.01

2012 2010~2011 6109 3139 1654 5.39

2013 2010~2012 9248 3131 2575 7.17

2014 2010~2013 12,379 1153 3379 8.08

4.2. Time Spent for Decision making through Neural Network Models

For both Model CNN) to which 1-cnn was applied and Model FC) to which the fully
connected layer was applied immediately after the embedding layer, models in which
weights were reflected when the loss was calculated and models in which weights were
reflected when the loss was calculated were constructed, respectively, to evaluate the
accuracy of a total of four models. Whether or not the weights are reflected when the
loss is calculated does not affect the overall structure of the model, and the following is a
summary of the foregoing.

(CNN_W) 1d-cnn was applied, weights were reflected when the loss was calculated
(CNN_WO) 1d-cnn was applied, weights were not reflected when the loss was calculated
(FC_W) 1d-cnn was not applied, weights were reflected when the loss was calculated
(FC_WO) 1d-cnn was not applied, weights were not reflected when the loss was calculated
The PC used to drive the models is an Intel core i7-5930, NVIDIA GeForce GTX970,

and the hardware memory is 64 GB. The average/maximum/minimum/total time required
for decision making in each test data year are as follows.

CNN_W: 89.34 s/17.84 s/204.28 sec/1608.16 s
CNN_WO: 97.48 s/20.86 s/237.95 s/1754.76 s
FC_W: 35.89 s/8.96 s/86.22 s/645.93 s
FC_WO: 35.66 s/8.26 s/87.09 s/641.96 s
The decision making of the 1d-cnn model took about 2.6 times the time taken by fc

model. This is the sum of both the time to learn the data and the time to make a decision,
but the time taken to make a decision for the entire test data was about 1 sec. If the model
is to carry out re-learning every time a chemical accident occurs, up to 237 s can be taken
to make a decision on one chemical accident. On the other hand, if the neural network
information of the decision making model that completed learning is stored, the learning
process can be skipped, so that about 1 sec will be taken to make a decision on an emergency
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evacuation order. The ability to make “quick decision,” which was the initial purpose of
the study, seems to have been satisfied.

4.3. Model Accuracy
4.3.1. Balanced Accuracy

The Figure 5 plots the degrees of balanced accuracy of the test data by year. It can be
seen that when models of the same structure are used, the balanced accuracy is high in
cases where weights are considered in the calculation of losses. In cases where weights are
considered, the balanced accuracy of the 1d-cnn model is slightly higher than that of the fc
model in all years, and the gap becomes larger after 2010 when the data collection standard
was changed.
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The average values of the balanced accuracy of CNN_WO, CNN_W, FC_WO, and
FC_W are 0.61, 0.77, 0.63, and 0.74, respectively, in order of precedence, and the standard
deviations are 0.051, 0.022, 0.039, and 0.031, respectively, in order of precedence. It can be
seen that the average value of the balanced accuracy of the model considering weights is
higher and the deviation is smaller.

4.3.2. AUROC

Figure 6 plots the AUROCs of the test data by year. The average AUROC values of
CNN_WO, CNN_W, FC_WO, and FC_W are 0.83, 0.83, 0.81, and 0.81, respectively, in order
of precedence, and the standard deviations are 0.031, 0.025, 0.034, and 0.030, respectively, in
order of precedence. The AUROC values of the 1d-cnn model are slightly higher than those
of the FC model, but the differences are not large. However, CNN_W’s AUROC values
exceed 0.8 except for 2006 and 2013, and the AUROC values for the relevant years are 0.797
and 0.789, which are close to 0.8. Therefore, CNN_W seems to be the most stable model.
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4.3.3. Calibrated F1 Score

Figure 7 plots the calibrated F1 scores of the test data by year. It can be seen that in
cases where the models have the same neural network structure, the calibrated F1 scores of
the models considering weights when calculating the loss are higher and their deviations
are smaller.
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The Figure 8 shows the calibrated F1 scores of the test data by year as box plots. The
average AUROC values of CNN_WO, CNN_W, FC_WO, and FC_W are 0.39, 0.77, 0.44, and
0.73, respectively, in order of precedence, and the standard deviations are 0.147, 0.025, 0.100,
and 0.047, respectively, in order of precedence. In the case of CNN_W model, the minimum
calibrated F1 score is 0.71, and outliers occur, but it can be seen that the minimum value is
higher than the minimum values of other models in which outliers do not occur. Green
dots in the graph are just outliers.

Figure 9 plots the calibrated F1 scores and the degrees of data imbalance by year. The
calibrated F1 scores of the models considering weights are less affected by skew, but in
cases of the models that do not consider weights, the deviations of the calibrated F1 scores
tend to decrease as the data imbalance increases.
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4.3.4. Cumulative Data

Since the numbers of test data by year are different, test results by year were accumu-
lated to recalculate the balanced accuracy, AUROC, and calibrated F1 scores, and Figure 10
plots the foregoing values. Since the cumulative AUROC values of the four types of models
exceed 0.8, reliable results can be derived no matter which model is used to make a decision
on an emergency evacuation order. However, when the balanced accuracy and calibrated
F1 scores are considered, the CNN_W model seems to be the most reliable.



Processes 2022, 10, 1046 16 of 18
Processes 2022, 10, x FOR PEER REVIEW 17 of 19 
 

 
Figure 10. Accuracies of accumulating test data. 

4.3.5. Case Study 
In order to help readers’ understanding of the methodology, a case study is presented 

to show how to use artificial neural networks method to predict emergency evacuation 
orders for ammonia accidents case: an accident occurred in a food manufacturing facility 
using ammonia in the afternoon of Monday. It was summer and within a quarter mile of 
the site, there was a residential area. It was a real case, and the evacuation order was exe-
cuted in reality. The code predicts the order correct, which means “yes” or “no” binary 
answer was predicted for “yes” as it was ordered for the actual accident case.  

4.4. Limitations and Recommendations 
In order to avoid the learning of emergency evacuation order already issued wrong-

fully, the action—victim matrix was used when determining the necessity of an emer-
gency evacuation order. An emergency evacuation order was issued when an emergency 
evacuation order was judged to be necessary through the action—victim matrix, some 
people evacuated according to the evacuation order, and it was judged that the emergency 
evacuation order was appropriate for an accident with no casualties. Although this setting 
was made for a conservative approach, the possibility that there were no casualties be-
cause residents evacuated despite that an unnecessary evacuation order was issued can-
not be ruled out. Therefore, in order to use the methodology presented in the present 
study as an emergency response decision making tool hereafter, it seems that the effec-
tiveness of evacuation orders should be added when constructing the database. 

From the perspective of the model presented in the present study, if the decision 
making model is evaluated based on AUROC, the following can be identified. The cumu-
lative AUROC values of all four models exceeded 0.8, indicating that the models have the 
levels of reliability considered to be ‘excellent’. However, since AUROC deviations occur 
depending on the test data, using the CNN_W model with the highest minimum AUROC 
for test data seems to be the most appropriate. 

However, although the reliability of the emergency evacuation decision making 
models presented in this study is ‘excellent’, there may be machine learning algorithms or 
CNN structures that show higher reliability within this database. Furthermore, the devel-
opment of Committee of Emergency decision making models that derive various decision 

Figure 10. Accuracies of accumulating test data.

4.3.5. Case Study

In order to help readers’ understanding of the methodology, a case study is presented
to show how to use artificial neural networks method to predict emergency evacuation
orders for ammonia accidents case: an accident occurred in a food manufacturing facility
using ammonia in the afternoon of Monday. It was summer and within a quarter mile
of the site, there was a residential area. It was a real case, and the evacuation order was
executed in reality. The code predicts the order correct, which means “yes” or “no” binary
answer was predicted for “yes” as it was ordered for the actual accident case.

4.4. Limitations and Recommendations

In order to avoid the learning of emergency evacuation order already issued wrong-
fully, the action—victim matrix was used when determining the necessity of an emergency
evacuation order. An emergency evacuation order was issued when an emergency evacu-
ation order was judged to be necessary through the action—victim matrix, some people
evacuated according to the evacuation order, and it was judged that the emergency evacua-
tion order was appropriate for an accident with no casualties. Although this setting was
made for a conservative approach, the possibility that there were no casualties because
residents evacuated despite that an unnecessary evacuation order was issued cannot be
ruled out. Therefore, in order to use the methodology presented in the present study as
an emergency response decision making tool hereafter, it seems that the effectiveness of
evacuation orders should be added when constructing the database.

From the perspective of the model presented in the present study, if the decision mak-
ing model is evaluated based on AUROC, the following can be identified. The cumulative
AUROC values of all four models exceeded 0.8, indicating that the models have the levels of
reliability considered to be ‘excellent’. However, since AUROC deviations occur depending
on the test data, using the CNN_W model with the highest minimum AUROC for test data
seems to be the most appropriate.

However, although the reliability of the emergency evacuation decision making mod-
els presented in this study is ‘excellent’, there may be machine learning algorithms or CNN
structures that show higher reliability within this database. Furthermore, the development
of Committee of Emergency decision making models that derive various decision making
models and make a final decision by synthesizing the decision making results of individual
models can be considered.
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5. Conclusions

The present study developed a neural network model that can satisfy both the speed
and accuracy of emergency response decision making in the event of a chemical accident
using the HSEES and NTSIP databases collected by ATSDR in the United States. Through
the present study, which derived two machine learning decision making structures and
divided the structures with whether the degrees of imbalance of learning data were reflected
or not to derive a total of four decision making models, the following could be confirmed.

1. The necessity of an emergency evacuation order was determined using the decision
making information and victim information in the chemical accident database and
the action-victim matrix. Even if only the chemical accident situation is taught to the
neural network model, the decision making result through the action-victim matrix
can be estimated.

2. Data consisting of strings can be processed using the embedding layer. Also, since the
number of words used varies according to the size of data used for machine learning,
it should be reflected on the size of the embedding dimension. When developing a
machine learning model using a database that grows in size over time, as with the
database used in the present study, it seems useful to use an algorithm that normalizes
according to the size of the bag of words.

3. The cumulative number of chemical accidents learned through the study was 775,155,
and emergency evacuation order decision making was performed for 110,083 chemical
accidents through a machine learning model. The most time-consuming case was
when the CNN_WO model was used, and it took a total of 1755 sec to make decisions
for all test data. Since the time required for data learning is almost all of the time
taken for decision making, it can be further shortened by storing the neural network
information that has been learned. That is, ‘quick decision making’ using the neural
network model seems to be possible.

4. The accuracy of a total of four types of decision making models, CNN_WO, CNN_W,
FC_WO, FC_W, was evaluated using a total of three types of accuracy indicators,
balanced accuracy, AUROC, and calibrated F1 scores.

On reviewing based on balanced accuracy and calibrated F1 scores, the following can
be identified. Reflecting the weights calculated through the degrees of disparity in the data
on learning greatly improves the accuracy of the decision making model. On the other
hand, the structure of the decision making model seems to affect the stability of the model.
The cumulative accuracy of the test data has is slightly different between the CNN models
and the FC models, but when 1d-cnn is applied, it can be seen that the standard deviation
of the accuracy of each test year is reduced. Therefore, when seen from the viewpoint of
applicability to unusual types of chemical accidents, the application of the CNN model is
appropriate for emergency response decision making.

Establishing such an emergency response decision making model using the method
proposed in the present study in the mitigation stage will help the process. Among the
chemical accident emergency management stages, constructing a database for the model,
and using the model as a tool for quick decision making for an emergency evacuation
order is also thought to be helpful in the establishment and implementation of emergency
response plans for chemical accidents.
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