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Abstract: Microwave-driven electrodeless ultraviolet (UV) lamps have the advantages of high effi-
ciency and high power. However, the conventional microwave system is slightly oversized, which
restricts the use of the lamp in a narrow space. A miniaturized microwave-driven electrodeless
UV lamp based on a coaxial slot antenna was developed in this study. First, the structure of slots
was optimized using a finite-difference time-domain algorithm such that high efficiency of radiated
energy could be achieved. Second, a complex model based on the Drude model and the electromag-
netic theory was established to simulate the interaction between the microwave and UV lamps. The
efficiency and uniformity of the UV lamps were analyzed. Finally, an experimental system was built,
and the computed results agreed well with the simulation results. The efficiency of the miniaturized
microwave-driven electrodeless UV lamp reached 91.8%.

Keywords: electrodeless UV lamp; microwave plasma; Drude model; miniaturization

1. Introduction

Sterilization is an essential procedure in medical treatment, environmental protection,
food safety, and reuse of water. At present, ultraviolet lamps are widely used in various
industries as a general sterilization method, but the UV lamp has the disadvantages of
insufficient power and incomplete sterilization [1]. The microwave-driven electrodeless
ultraviolet lamp provides a new solution for sterilization. In 2016, Zhang et al. proposed
a microwave-induced electrodeless ultraviolet (MW-EUV) lamp and demonstrated that
MW-EUV irradiation was a rapid and efficient method without photoreactivation. The
treated water met the hygiene standards for the reuse of recycled water [2]. Furthermore,
electrodeless UV lamps can be utilized in air disinfection as purifiers [3]. Subsequently, UV
lamps have a wide range of uses in chemical fields [4–9].

The use of microwave-driven electrodeless UV lamps, which have significant ad-
vantages in sewage treatment, has been proposed. These lamps have a long life, high
power, and high efficiency. Additionally, there are no complications in lamp shape and no
variations in light intensity (the light output is stable), indicating that rapid and complete
sterilization can be achieved [10–13]. The initial microwave-driven electrodeless UV lamp
lies inside the waveguide. This structure can be regarded as a microwave radiator that
excites plasma to emit UV light. Due to the work of the waveguide requiring an anhy-
drous environment, the waveguide is surrounded by a quartz column to make sure that
the entire structure represents a sealed environment for underwater sterilization [14,15].
Horikoshi et al. proposed a structure in which microwave radiation is used as a heat source,
and UV and microwave radiation are available simultaneously [16].

UV lamps can be widely used in various fields. For instance, they can be used for
chemical synthesis, warnings of approaching missiles, and sterilization. Because of the
characteristics of microwave-driven electrodeless UV lamps, several related studies have
been conducted. Furthermore, Remya and Swain investigated the degradation of soft
drink industrial wastewater using microwave electrodeless UV lamps [17]. In addition,
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Horikoshi et al. proposed a new type of microwave electrodeless UV lamp structure and
conducted relevant research on the chemical oxidation and photolysis of contaminated
water [16]. Shi and Chen studied the performance of microwave electrodeless lamps
at high frequency and compared electrodeless microwave lamps with conventional Hg
lamps [18,19]. Horikoshi et al. also considered the efficiency of photo-assisted degradation
of organic substrates using a microwave discharge electrodeless lamp in which TiO2 is
present, which can assist in the photodegradation of a large class of organic pollutants. The
degradation reached 100% within 10 min [20–22]. Oberreuther et al. examined a dry plasma-
reforming process of carbon dioxide with methane, which runs in microwave plasma under
atmospheric conditions. The efficiency reached 90–100% [23]. Conventional microwave
electrodeless UV lamps use rectangular waveguides to couple energy, which are difficult to
miniaturize due to size constraints. The structure of the rectangular waveguide leads to
uneven distribution of the energy and different brightness of the UV lamp. Zhong et.al.
proposed a microwave-driven UV lamp with a rectangular structure to solve the uneven
distribution of light intensity [24]. However, most of these devices are significantly large
and thus cannot be used in some narrow spaces. In areas such as places with pipelines, most
of the equipment cannot be used, and devices that have been miniaturized are generally
limited by their low power and poor uniformity.

Some research has been conducted to miniaturize radiators. Zhuge et al. considered
a miniaturized dielectric resonator for microwave plasma lamps. This structure reduces
the weight of the dielectric cavity and thus the weight of the plasma lamp [25]. Wu et al.
proposed a miniaturized coaxial slot radiator structure and studied the effect of microwave
and UV on epoxy curing. The results showed that the use of the MW combined with UV
method can make the epoxy resin cure more thoroughly and have better adhesion. However,
the microwave input power is only 100 W, and there is strong microwave radiation [26].
Kando et al. investigated a new type of high-pressure microwave discharge for delivering
microwave power to the center of compact high-pressure discharge lamps [27].

The waveguide slot radiator is realized by adding a narrow slot on the sidewall of the
waveguide. It has the characteristics of stable performance, solid structure, high power
bearing capacity, and low loss [28]. Zhao et al. considered an eight-element waveguide
slot array based on rectangular waveguide. The measured bandwidth for VSWR ≤ 1.5 is
19.6% [29]. To improve the bandwidth of slot waveguide antenna, Wang et al. investigated
a longitudinally slotted ridge waveguide and the measured bandwidth of VSWR ≤ 1.43
has reached 14.9% [30]. Shin et al. proposed the cylindrical slot waveguide radiator and
studied its radiation properties. The measured bandwidth of S11 ≤ −10 dB is 15.2% [31].
Ho et al. also investigated an antenna based on a cylindrical waveguide and a helical
slot [32].

In this study, a miniaturized microwave-driven electrodeless UV lamp based on a slot
was developed. It solves the problem of device size and achieves the miniaturization of
the device without being limited by low power [33]. Using a coaxial slot structure, the
scope of the device was narrowed without reducing the power of the UV lamp. First, the
finite-difference time-domain (FDTD) algorithm was utilized to optimize slots to achieve
high efficiency of radiated energy. Section 2 presents a model established by combining the
Drude plasma model [34] and electromagnetic theory to compute the interaction between
the microwave and UV lamps. In addition, an experimental system was built to verify the
performance of the miniaturized device. Finally, the sensitivity of the structure is discussed.

2. Methodology

Aiming at the problems of the traditional electrodeless UV lamp proposed above, we
constructed and optimized the model of the miniaturized electrodeless UV lamp by using
the finite-difference time-domain algorithm.
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2.1. Geometry

As shown in Figure 1, the system used in this study is based on a coaxial slot waveg-
uide. We calculated the model with three, five, and eight slots, respectively. The electric
field distribution of the structure is the most uniform when the number of slots is eight, as
shown in Figure 2. There are eight slots around the coaxial waveguide, and a hollow ring
quartz tube is sleeved outside the coaxial radiator. The quartz tube is covered with metal
mesh, not depicted in Figure 1, to prevent electromagnetic waves from leaking, and the
tube is mainly filled with argon and liquid Hg. Electromagnetic waves are coupled in open
slots in the coaxial waveguide to excite the plasma lamp. A 2D top view, side view, and
cross section of the structure are illustrated by Figure 3.
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2.2. Plasma Parameters

At a frequency of 2450 MHz, the change in the electron mobility so small that can be
ignored. The plasma parameters can be considered as constants.

In this study, the relative permittivity of a dispersive medium was calculated from the
Drude model. In this model, the collision frequency vm, electron plasma frequency ωpe,
and breakdown field Ec are three critical parameters.

Firstly, the electron plasma frequency ωpe can be determined using Equation (1):

ωpe =

√
nee2

ε0me
, (1)

where ε0 is the vacuum permittivity, e is the element charge, me is the mass of the element
charge, and ne is electron density. Second, the collision frequency vm is expressed by
Equation (2):

vm =

√
8KBTe/πme

λe
, (2)

where KB is the Boltzmann constant, Te is the electron temperature, and λe shows the mean
free path between the neutral atoms and electrons. One can ignore the collision loss for
argon gas if the microwave frequency is significantly larger than the collision frequency.

vm ≈ 1.52× 107 p
√

Te, (3)

εp = ε0

(
1−

ω2
pe

ω(ω− jvm)

)
= E′ps − E′′ps, (4)

where p is the pressure, the permittivity of plasma is expressed in terms of ωpe and vm.
E′ps and E′′ps are the real and imaginary parts of the permittivity, respectively. As shown in
Figure 4, the dispersion curve was calculated from ωpe and vm.
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The breakdown field strength Ec can be expressed by Equation (5):

Ec =
KBTω

pS ∧
√

mevi
3e

, (5)

∧ =
1√(

π
l
)2

+
(

2.405
R

)2
, (6)

where l is the length of tube, R is inner diameter, S is the elastic collision cross-section, T is
the gas temperature, and vi is the first ionization energy of neutral particle [24].
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Only when the incident power of the microwave is sufficiently high, causing its
electric field strength to exceed the breakdown field strength of argon, can the UV lamp be
excited. The change in microwave incident power has a minimal effect on the electric field
distribution, and it only changes the amplitude of the electric field. The breakdown field
strength of argon under this structure, determined from previous calculations, is 3965 V/m.

2.3. Input Parameters

The parameters used in the simulations for the microwave and plasma are listed in
Table 1. Both the inner and outer conductors of the coaxial waveguide are considered
perfect electrical conductors (PEC).

Table 1. Input parameters.

Parameter Value

Input power 500 W

Microwave frequency 2450 MHz

Plasma frequency 3.4 × 1011 rad/s

Collision frequency 3 × 108 Hz

Plasma breakdown field strength 3.965 × 103 V/m

Plasma frequency maintained 1.7 × 1011 rad/s

2.4. Boundary Conditions

In this study, the entire structure included a coaxial radiator matched to a coaxial
cable with a characteristic impedance of 50 Ω. In the simulations, because the radiator was
made of metal, it was assumed to be a perfect electrical conductor that included a metal
inner conductor, metal outer conductor, metal short-circuit surface of the terminal, and
metal mesh covering the hollow ring quartz tube. A metal mesh was designed to prevent
electromagnetic waves from leaking. Working at 2.45 GHz, the microwaves corresponded
to a wavelength of approximately 122.44 mm. If the value is significantly higher than the
gap of the metal mesh, electromagnetic waves cannot escape.

The boundary conditions for a perfect electrical conductor can be expressed by
Equation (7):

→
et ×

→
E = 0,

→
en ×

→
H = 0, (7)

where
→
et is the tangential component,

→
en is the normal component.

The material of the electrodeless UV tube between the metal mesh and coaxial radiator
was a quartz wall. Quartz had a relative dielectric constant of 4.2 and did not have an
imaginary part, suggesting that the effect of the quartz wall on electromagnetic waves was
negligible.

3. Results and Discussion
3.1. Dimension Optimization

The dimensions of this new structure were determined by three factors: the field
uniformity, reflection coefficient (S11), and electric field strength. Based on S11, one can
observe the incident power and reflected power of this new microwave electrodeless UV
device. In general, the magnitude of S11 is preferably lower than −10 dB. Then, the
strength of the electric field around the UV lamp was the next point to consider. Finally, it is
necessary to consider whether the coupling energy of eight slots is uniform, which is critical
to ensure that the radiation of the hollow ring quartz tube is uniform in all directions.

The lengths of the coaxial radiator and ring tube were both 200 mm. The outer and
inner diameters of the tube were 45 and 25 mm, respectively. The designed coaxial radiator
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was inserted into the tube. The device uniformly coupled microwave energy from the
radiator into the tube by coupling through gaps and radiating the UV light. After ensuring
the length, one must ensure that the outer and inner diameters of the conductor are correct.
These parameters are given by Equation (8).

Z0 =
60√

εr
ln

D
d

, (8)

Here, εr is the relative permittivity between the inner conductor d and outer conductor
D. Air was selected as the dielectric, with a relative permittivity of 1. Moreover, the final
outer and inner diameters of the conductor were 19 and 8 mm, respectively, to match the
characteristic impedance of the coaxial radiator with the 50 Ω coaxial line widely used in the
industry and laboratories. As expressed by Equation (8), the characteristic impedance of the
coaxial radiator was approximately 50 Ω; unless the characteristic impedance matches well
with the coaxial feeder impedance, there are reflections due to impedance mismatching.

After the above parameters were determined, the FDTD method was applied to
emulate the entire model structure. In this simulation, the values of the two parameters,
W_slot and phi, were analyzed. These parameters were calculated and optimized separately.
The two steps are considered below.

First, eight gaps were slotted in the radiator with a total length of 200 mm. These
gaps had the same width and central angle. It was presumed that the distance between
adjacent slotted centers was 20 mm, and the distance from the short-circuit surface to the
first slotted center was 15 mm to determine whether the values for S11 were lower than
−10 dB and to determine the optimal width and central angle. After the optimal width and
central angle of the slots were obtained, the distance between adjacent slots was verified,
and three parameters—the value of S11, uniformity of the electric field distribution, and
magnitude of the electric field—were observed to determine the optimal dimensions. The
above calculations were based on the Drude model and FDTD algorithm.

The effect of W_slot, the width of all slots, on S11 for an operating frequency of
2.45 GHz is shown in Figure 5. S11 varied with the change in slot width. Under different
width parameters, the microwave attained resonance at the operating frequency, and S11
increased with increasing W_slot. When the value of W_slot was 17 mm, S11 exceeded
−10 dB, indicating that only the width between 9 and 16 mm could satisfy the requirement
of S11. The slot can couple microwave energy because the slot cuts off the current such
that microwave energy is coupled in the longitudinal direction of the slot. Therefore, the
more the power line is cut, the stronger the coupled energy. The position of the slots also
influences the coupling energy. Based on the principles above, the optimal value of W_slot
was 16 mm, and W_slot was set as a constant in the subsequent calculations. At this time,
S11 was determined to be −10.25 dB, and the absorption efficiency reached 90%.
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As shown in Figure 6, the effect of the angle on S11 was analyzed after the widths
of the slots were determined. There were ten datasets to satisfy the requirements of S11
at 2.45 GHz. The energies coupled in different central angles were compared and it was
determined that the best value for phi was 310◦. Thus, phi was set as 310◦ in the subsequent
calculations.
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After the dimensions of the slots were determined, the FDTD algorithm and Drude
model were used to calculate the optimal distance between the eight slots. For the coaxial
slot microwave electrodeless UV radiator used in this study, the microwave feed port
was at the end of the radiator, and the terminal short-circuit surface was at the other end.
Microwaves were fed from the microwave feed port. Because the slots had the same size,
the closer the slot is to the feed port, the greater the amount of energy coupled, resulting in
an uneven electric field distribution in the axial direction of the entire radiator. Therefore,
the slots were divided into three groups with four, two, and two slots. The group with
four slots was set at the end from the feed port, and the distance between adjacent slotted
centers was determined to be 18 mm. The distance for each group was adjusted to obtain
the final optimization results. As shown in Figure 7, S11 was approximately −12 dB at a
frequency of 2.45 GHz, and the power absorption rate reached 93.7%. At this point, all
initial dimension parameters had been obtained (Table 2).
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Table 2. Optimized dimensions of experimental equipment.

Parameter Physical Meaning Value

W_slot Width of all slots 16 mm
Phi Central angle of all metal slots 310◦

Rin Outer diameter of inner conductor of coaxial radiator 8 mm
Rout Inner diameter of outer conductor of coaxial radiator 19 mm

l Total length of coaxial radiator 200 mm
Distance Distance between adjacent slotted metal centers 18 mm

Distance 1 Distance from first slotted center to short-circuit surface 15 mm
Dout Outer diameter of outer conductor of coaxial radiator 25 mm

After sizing the model, we calculate the electric field strength and electric field dis-
tribution using the FDTD algorithm. Figure 8a shows the three-dimensional electric field
distribution, and the two-dimensional electric field distribution cut along the coaxial radia-
tor is shown in Figure 8b, where the maximum value is set to 5000 V/m. The covariance
(COV) of the electric field strength is introduced to describe the uniformity of the electric
field, and the COV can be expressed by Equation (9):

COV =

√
∑n
(
Ei − E

)2

n
/E, (9)

where n is the total number of points in the selected region, Ei is the electric field value
at the i-th point of the selected region, and E is the average electric field strength of the
selected region [25]. The smaller the covariance value, the more uniform the electric field
distribution.
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Figure 8 shows that the electric field distribution is uniform in the axial direction and
all angles in the radial direction. The COV is 0.38 and the electric field can be considered
relatively uniform.

3.2. Sensitivity Analysis

The frequency and collision frequency are two important parameters for plasma. First,
it was assumed that the microwave power was 500 W, adopted as a constant, and the
collision frequency of the plasma was 3 × 108 Hz. The plasma frequencies were set as
3.3 × 1011, 3.4 × 1011, and 3.5 × 1011 rad/s. The electric field distributions at different
frequencies are shown in Figure 9. A slight change was observed with the variation in the
plasma frequencies, and the maximum and average values of the electric field are shown
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in Table 3. Overall, the electric field distribution at different plasma frequencies (Figure 9)
shows a uniform and periodic distribution in the axial direction. In the 360◦ radial direction,
the electric field distribution was also close to uniform. As shown in Figure 10, S11 exhibits
almost the same trend with different plasma frequencies. The values of S11 were lower
than −10 dB at 2.45 GHz. Consequently, when the plasma frequency changed, the reflected
power was somewhat low, and almost no deviation was observed. The above results
confirm that this structure is applicable to different lamp types.
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Table 3. Maximum and average values of the electric field at different plasma frequencies.

Plasma Frequencies Maximum Average

3.3 × 1011 rad/s 121,850 V/m 77,754 V/m

3.4 × 1011 rad/s 122,489 V/m 77,980 V/m

3.5 × 1011 rad/s 122,109 V/m 77,854 V/m
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The plasma frequency was assumed to be 3.4 × 1011 rad/s, and the collision frequency
values of the plasma were set as 2.8 × 108, 3.0 × 108, and 3.2 × 108 Hz. The electric field
distributions for different plasma collision frequencies are shown in Figure 11. When
the plasma collision frequency changed, mainly because of the variation in the relative
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permittivity, the electric field distribution exhibited a slight change, and the maximum and
average values of the electric field are shown in Table 4. The electric field is periodically
distributed in the axial direction. In the radial direction, the electric field distribution is also
close to uniform.
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Table 4. Maximum and average values of the electric field at different plasma collision frequencies.

Plasma Collision Frequencies Maximum Average

2.8 × 108 Hz 122,050 V/m 77,702 V/m

3.0 × 108 Hz 122,489 V/m 77,980 V/m

3.2 × 108 Hz 122,195 V/m 77,796 V/m

S11 exhibits almost the same trend in each case as shown in Figure 12. The values of
S11 were all less than −10 dB at 2.45 GHz. When the plasma collision frequency changed,
the power absorption did not deteriorate. One reason is that the change in plasma collision
frequency influences both the imaginary and real parts of the relative dielectric constant,
ultimately resulting in no significant change in the loss tangent. Consequently, S11 does not
deteriorate. Another reason is that we completed the plasma frequency sensitivity analysis,
demonstrating that the designed structure can be applied to various lamps. Figure 11
shows that the designed system can be used on a UV lamp with frequencies of 2.8 × 108,
3.0 × 108, and 3.2 × 108 Hz.

3.3. Experimental Verification and UV Light Power Measurement

The overall diagram of the experimental system is shown in Figure 13. The main
function of the solid-state source is to generate microwaves with a maximum output power
of 1 kW. The circulator is a device that transmits electromagnetic waves in a one-way
ring shape. This device helps protect the expensive microwave generator. The EIT UV
power puck is a device that can measure UV power. Three test points are selected in the
tangential direction of the lamp, the power is measured by changing the distance between
the test point and the lamp, and finally the average value is taken and marked in Table 5.
Sterilization can be achieved when the UV light energy is greater than 30 mJ/cm2. Energy
can be calculated by E

(
mJ/cm2) = P

(
mW/cm2) × t(s), where P is the power, and t

is the time. From Table 5, it is found that sterilization can be complete within 10 s at a
position within 15 cm of the UV lamp. As the distance becomes longer, the time required
for sterilization increases.
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Table 5. Comparison of UV lamp power with distances.

Distance UV Lamp Power

10 6.6236 mW/cm2

15 4.0012 mW/cm2

20 1.7196 mW/cm2

25 1.428 mW/cm2

30 1.2984 mW/cm2

The light from the lamp is uniform and stable, as shown in Figure 14. In the hot state,
S11 reached −12.2 dB in simulation and −10.9 dB in the experiment. The power efficiency
was up to 91.8% in experiment. The comparison results for S11 under hot and cold conditions
are shown in Figure 15. The experimental and simulation results were consistent.
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4. Conclusions

In this study, we proposed a miniaturized microwave-driven electrodeless UV lamp
based on a coaxial slot antenna. The FDTD algorithm was utilized to optimize the entire struc-
ture for high efficiency of radiated energy, and the Drude model and electromagnetic theory
are used to build complicated models that simulate the interaction between microwaves and
UV lamps. For verification, an experimental system was built, and the microwave-driven
UV lamp was successfully lit. The electric field distribution was uniform in the axial and
radial direction, verifying that the energy of the radiator was uniformly coupled. In the
hot state experimental, the power absorption rate could exceed 91%. The miniaturized
microwave-driven electrodeless UV lamp can be used in a narrow environment.
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