
Citation: Wang, F.; Wu, Z.; Bao, T.

Time-Jerk optimal Trajectory

Planning of Industrial Robots Based

on a Hybrid WOA-GA Algorithm.

Processes 2022, 10, 1014. http://

doi.org/10.3390/pr10051014

Academic Editor: Blaž Likozar

Received: 27 April 2022

Accepted: 18 May 2022

Published: 19 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

Time-Jerk optimal Trajectory Planning of Industrial Robots
Based on a Hybrid WOA-GA Algorithm
Fang Wang, Zhijun Wu * and Tingting Bao

Automobile School, Zhejiang Institute of Communications, Hangzhou 311112, China;
wangfang@zjvtit.edu.cn (F.W.); tingting@zjvtit.edu.cn (T.B.)
* Correspondence: zjwu@zjvtit.edu.cn; Tel.: +86-158-6901-7950

Abstract: An optimal and smooth trajectory for industrial robots has a positive impact on reducing
the execution time in an operation and the vibration in their joints. In this paper, a methodology for
the time-optimal and jerk-continuous trajectory planning of industrial robots is proposed. The entire
trajectory is interpolated in the joint space utilizing fifth-order B-splines and then optimized by a
hybrid whale optimization algorithm and genetic algorithm (WOA-GA). Two objective functions,
including the integral of the squared jerk along the entire trajectory and the total execution time,
are minimized to obtain the optimal entire trajectory. A fifth-order B-spline interpolation technique
enables the achievement of a jerk-continuous trajectory, while respecting the kinematic limits of jerk,
acceleration and velocity. WOA-GA is utilized to solve the time-jerk optimal trajectory planning
problem with nonlinear constraints. The proposed hybrid optimization algorithm yielded good
results and achieved the time-jerk optimal trajectory better under kinematic constraints compared to
the genetic algorithm, whale optimization algorithm, improved whale optimization algorithm with
particle swarm optimization and adaptive cuckoo search algorithm. The numerical results show the
competent performances of the proposed methodology to generate trajectories with high smooth
curves and short total execution time.

Keywords: industrial robots; optimal trajectory; WOA-GA; B-splines

1. Introduction

Due to their outstanding performance in accuracy, repeatability and efficiency, indus-
trial robots have become one of the most important equipment to replace human resources
in the machinery, automobile, electronics, metal, and other industries [1–3]. Generally
speaking, an industrial robot is a nonlinear dynamic mechanism, which needs to follow
a specific trajectory to avoid any possible collision. Therefore, trajectory planning is an
essential technique in automated industrial activities using industrial robots. A reasonable
trajectory can reduce the vibration and noise of robots and ensure a high trajectory tracking
accuracy and motion stability of robots [4–6].

In the relevant literature, trajectories are mainly constructed by polynomial, spline,
Bezier, NURBS and other interpolation functions. In order to obtain a smooth trajectory
with jerk boundary, Jond et al. used polynomials of the orders 3, 4 and 5 to generate
an acceleration-continuous trajectory, in which the acceleration values at the start and
end motions are non-zero [7]. Sonja Macfarlane et al. employed a series of fifth-order
polynomials to plan a smooth trajectory between two directional points [8]. Similarly,
Bureerat et al. used quintic polynomials to connect the initial and intermediate points,
to finally the end point [9]. Lin et al. proposed a method of a 7-segment acceleration
profile motion model based on a time-optimal trajectory, which divided all waypoints
into continuous batches, and each batch had two overlaps of waypoints [10]. Wu et al.
proposed a novel point-to-point trajectory planning algorithm (PTPA) to improve the
motion efficiency of industrial robots [11]. Moreover, spline functions have been used as
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trajectory primitives to ensure acceleration continuity or jerk continuity. Since each control
point on the B-spline curve will only affect the parameters within a range of the curve,
various B-splines were used to construct joint trajectory. For example, the minimum time
trajectory is generated by cubic splines for the robotic manipulator [12–14]. Muhammad
Zeeshan et al. interpolated the entire fifth-order trajectory with B-spline interpolation
method to obtain the minimum time trajectory [15,16].

Trajectory optimization is a highly complicated problem due to the nonlinear char-
acteristics of trajectories and the need of motion efficiency, smooth operation and low
noise of industrial robots. Many studies take the minimum time [17–21], the minimum
acceleration [9,16] and the minimum energy [22,23] as the trajectory planning optimization
objectives. In addition, the hybrid optimization methods have become the focus of robot
research in recent years. For example, Zhang et al. proposed a multi-objective optimization
method for robot trajectory planning under obstacles, including time optimization and
acceleration optimization. This method uses quintic B-splines to generate trajectory config-
urations in the joint space with motion constraints and obstacles constraints [24]. Wang et al.
proposed a new algorithm to define the objective function from two aspects of time and
speed [14]. Zhang et al. proposed an adaptive cuckoo search (ACS) algorithm to optimize
the trajectory of quintic B-spline programming [25]. Ameer adopted an RNN based meta-
heuristic approach (RNN-MA) to achieve real-time implementation [26]. Cheng proposed
beetle antennae search algorithm (BAS) to tackle the formulated optimization function [27].
Hybrid algorithms, such as an improved whale optimization algorithm with differential
evolution algorithm or particle swarm optimization (IWOA-DE and IWOA-PSO), and new
genetic algorithm and adaptive elite genetic algorithm (AEGA-SA) have been proposed
to improve the exploration and exploitation capacities of the original algorithm [21,28,29].
Several optimization methods with their characteristics are shown in Table 1.

Table 1. Several optimization methods with their characteristics.

Name Characteristics

IWOA-DE [21] Good global optimization ability, strong robustness and slow convergence speed.

ACS [25] Faster convergence degree, higher accuracy and better global search ability, but the final accuracy needs to
be improved.

RNN-MA [26] Fast convergence speed and suitable for real-time implementation.

BAS [27] Fast convergence speed with low searching precision and convergence speed, and sometimes it is prone to
local optimum.

AEGA-SA [28] Superior to the original genetic algorithm in terms of trajectory smoothness and trajectory efficiency, but it is
highly dependent on population size, and is prone to low convergence speed or fall into local optimum.

IWOA-PSO [29] Good global exploration ability and slow convergence speed.

This paper proposes a time-optimal and jerk-continuous trajectory planning technique
for industrial robots. This technique is based on fifth-order B-spline and hybrid WOA-GA.
Fifth-order B-spline is utilized to interpolate the multi-point trajectory. The WOA-GA
combining the advantage of GA and WOA is proposed to solve the time-jerk trajectory
optimization problem with nonlinear constraints. The rest of this paper is organized
as follows. Section 2 defines the problems of trajectory optimization. In Section 3, the
fifth-order B-spline is chosen to interpolate the joint trajectory, and the hybrid WOA-GA
is presented. In Section 4, we compare the simulation results from different optimization
algorithms, and Section 5 is the conclusion.

2. Problem Formulation

Trajectory planning is mostly carried out in the joint space, which can ensure the stabil-
ity of joint motion and avoid motion jump of the manipulator, while planning trajectories
in the operation space. Thus, this paper focus on planning trajectories in the joint space.

We define the optimal planning problem similarly to Ref. [12]. Two objective functions,
including the integral of the squared jerk along the whole trajectory and the total execution
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time, are minimized to obtain the optimal whole trajectory. These two terms have opposite
effects. This implies that reducing the total execution time will lead to trajectories with large
values of the kinematic quantities, while reducing the integral of the squared jerk along
the whole trajectory will lead to a smoother trajectory with low efficiency. The trade-off
between these two objectives can be achieved by legitimately adjusting the weights of the
two objectives. Therefore, the optimization problem can be formulated as:

find :

minwT N
Np−1

∑
i=1

Ti + wJ
N
∑

j=1

∫ Tf
0 (Jj(t))

2dt

subject to :
Plower

j ≤ Pj(t) ≤ Pupper
j , j = 1, . . . , N∣∣Vj(t)

∣∣ ≤ VLj, j = 1, . . . , N∣∣Aj(t)
∣∣ ≤ ALj, j = 1, . . . , N∣∣Jj(t)
∣∣ ≤ JLj, j = 1, . . . , N

. (1)

The meaning of the symbols in Equation (1) is described in Table 2.

Table 2. Meaning of the symbols in Equation (1).

Symbol Meaning

N Number of robot joints
wT Weight of the term proportional to the execution time
Np Number of via-points
Ti Time interval between two via-points

Pj(t) Position of the jth joint
Vj(t) Velocity of the jth joint
Aj(t) Acceleration of the jth joint
Jj(t) Jerk of the jth joint
wJ Weight of the term proportional to the jerk
Tf Total execution time of the trajectory

Pj
upper Upper-bound position of the jth joint

Pj
lower Lower-bound position of the jth joint
VLj Velocity limit for the jth joint (symmetrical)
ALj Acceleration limit for the jth joint (symmetrical)
JLj Jerk limit for the jth joint (symmetrical)

3. Proposed Method
3.1. Multiple B-Splines

Multiple B-spline curves are widely used in the trajectory planning algorithms of
robots with good local support and continuous smoothness. A B-spline curve can be
expressed mathematically as follows:

p(u) =
n

∑
i=0

di Ni,k(u). (2)

where p(u) is the joint position, di is the ith control points of the B-spline, k is the degree of
the B-spline, Ni,k(u) is the ith basis function of the kth order B-spline, n is the total number
of the control points and u is the normalized knot vector variable. Ni,k(u) can be obtained
using the Cox–de Boor recursion formula.

Ni,0(u) =
{

1, if ti ≤ t < ti+1
0, others

Nj,k(u) =
t−ti

ti+k−ti
Nj,k−1(u) +

ti+k−1−t
ti+k−1−ti+1

Nj+1,k−1(u)
de f ine 0

0 = 0

. (3)
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The trajectory of an industrial robot is discretized to some designed points on the
time scale. Two virtual points are adopted at the second and the second–last positions of
the designed point sequence, due to the consideration of zero jerk at the initial and final
movements. Normalized knot vector u is generated from the sequence of t corresponding
to the designed points [16].

u = [u0, u1, . . . , un+2k] (4)

where 
u0 = u1 = . . . = uk = 0

ui = ui−1 + |hi−k−1|/
n−1
∑

j=0

∣∣hj
∣∣

un+k = un+k+1 = . . . = un+2k = 1

. (5)

The lth order derivatives can be described as

pl(u) =
i

∑
j=i−k+r

dr
j Ni,k−r(u), (6)

where

dl
j =

 dj, l = 0

(k + 1− l)
dl−1

j −dl−1
j−1

uj+k+1−l−uj
, l = 1, 2, . . . , r; j = i− k + l, . . . , i

. (7)

3.2. Whale Optimization Algorithm

Whale Optimization Algorithm (WOA) is a recently proposed population-based opti-
mization algorithm inspired by the hunting behavior of humpback whales [30]. The WOA
algorithm starts with a set of random solutions, including three kinds of hunting behaviors:
encircling prey, exploration and exploitation. At each iteration, the location of individuals
in the population is updated according to the most promising solution [31].

3.2.1. Encircling Prey

Since the prey in the search space is not known, the WOA assumes that the current
best-so-far solution is the target prey. Then, the other individuals will try to update their
positions towards the target prey. This behavior is represented by the following equations:

X(g + 1) = Xbest(g)−A
∣∣∣CXbest(g)−X(g)

∣∣∣. (8)

where A and C are coefficient vectors, Xbest is the current best-so-far solution, X is an
individual, g is the current iteration and | | denotes the absolute value.

The vectors A and C are calculated as follows.

A = (2r− 1)a (9)

C = 2r (10)

where a is linearly decreased from 2 to 0 over the iterations and r is a random set in [0, 1].
The selection of this operator depends on the coefficient vector A and a random

number Po, where Po is a random number in [0, 1]. For each individual, if Po < 0.5 and
|A| < 1, the position is updated by encircling prey.

3.2.2. Bubble-Net Attacking Phase

If Po > 0.5, the bubble-net predation stage begins. The mathematical model of the
search is as follows.

X(g + 1) =
∣∣∣Xbest(g)−X(g)

∣∣∣ebm cos(2πm) + Xbest(g) (11)
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where b is a constant for defining the shape of the logarithmic spiral and m is a random
number in [−1, 1].

3.2.3. Searching for Prey

If Po < 0.5 and |A| ≥ 1, the individuals need to expand their exploration areas. This
phase uses a randomly generated set of solutions Xrand to update the individuals’ locations,
which allow the WOA algorithm to perform a global search. The rules of the update
solution are as follows.

X(g + 1) = Xrand(g)−A
∣∣∣CXrand(g)− X(g)

∣∣∣. (12)

3.3. Genetic Algorithm

Genetic algorithm (GA) is a random global search and optimization method developed
by imitating the biological evolution mechanism of nature [32]. It can automatically
obtain and accumulate knowledge about the search space in the search process, and
adaptively control the search process to obtain the best solution. Each individual in the
population represents a possible solution to the optimization problem. The adaptation
ability of individual is judged by the fitness function. The individuals with poor fitness are
eliminated, and the individuals with good fitness can continue to reproduce. In the process
of reproduction, it needs selection, crossover and variation to form a new population. Then,
the better solution will finally be obtained.

3.4. Proposed Hybrid WOA-GA Algorithm

The flowchart of the proposed WOA-GA algorithm is shown in Figure 1, and detailed
introductions are as follows:

Step 1: Define the initial parameters, such as Pop_quantity, MaxGen, Pc, Pm and Er. Then,
an initial population is obtained randomly.
Step 2: Calculate the fitness value of each individual using Equation (1) and find Xglobal_best

and Xlocal_best.
Step 3: Update the populations by WOA. If Po < 0.5 and |A| < 1, individuals are updated
by encircling prey using Equations (9)–(11). If Po < 0.5 and |A| ≥ 1, individuals are
updated by searching for prey using Equation (13). If Po > 0.5, individuals are updated by
bubble-net attacking using Equation (12).
Step 4: Update the binary-encoded population by GA. Roulette wheel selection method,
single-point crossover and bitwise mutation are utilized in the corresponding operators.
Step 5: Calculate the fitness value of each individual and update Xglobal_best and Xlocal_best.
Step 6: If t < MaxGen, then t = t + 1, update a, A, C, m, b and Po, and return to step 3. If
t = MaxGen, then the best fitness and Xglobal_best are obtained.

Since finding a suitable constraint handling method for WOA-GA is out of the scope
of this work, a constraint handling technique named static penalty is employed [33].
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4. Results and Discussion

In order to verify the feasibility of the proposed method, the numerical simulations
were tested by solving six unconstrainted optimization problems and a time-optimal trajec-
tory planning problem using 5th-order B-splines. WOA-GA was programed in MATLAB
R2018b, as well as WOA, GA, IWOA-PSO [29] and ACS [25], which were utilized for com-
parative analysis. The configurations of the personal computer were a Core i5-1035G1 CPU
with 16 GB of RAM. The parameter configuration of each algorithm are presented in Table 3.
All the algorithms were initialized with the same population for each run. For WOA-GA
and GA, we utilized 14 bits to code each time interval. The best-so-far feasible solution
in the population obtained at the end of generations was utilized to evaluate WOA-GA
on effectiveness and stability. The mean (‘MEAN’) and standard deviations (‘STD’) of the
best-so-far solutions are utilized as evaluation indices, formulated as follows:

MEAN =
1

Nr

Nr

∑
i=1

f best
i (13)

STD =

√√√√ 1
Nr

Nr

∑
i=1

( f best
i −MEAN)

2
(14)

where fibest is the best-so-far feasible solution obtained in the ith run and Nr is the number
of runs. Note that the smaller the values of MEAN and STD, the more reliable and stable
the solutions that the algorithm can provide [34].
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Table 3. Parameter configuration of each algorithm.

Algorithm Parameter Configuration

WOA-GA Pc = 0.85, Pm = 0.01, Er = 0.05
GA Pc = 0.85, Pm = 0.01, Er = 0.05

IWOA-PSO [29] Pc = 0.85, k = 0.4, c1 = 2.0, c2 = 2.0
ACS [25] a = 0.7, b = 0.5, Pa = 0.25

4.1. Application 1: WOA-GA for Test Functions

The first six unconstrainted optimization problems are classical benchmark functions
shown in Table 4. These functions include unimodal (F1–F2), variable-dimension multi-
modal (F3–F4) and fixed-dimension multimodal (F5–F6) benchmarks. Table 4 shows the
details of the test functions. Note that only one optimal solution exists in the unimodal
functions to evaluate the convergence rate and exploitation capacity of the algorithm, and a
global optimal solution with several local ones exist in the multimodal functions to evaluate
the exploration capacity of the algorithm. For each test function, WOA-GA was performed
20 times as well as WOA, GA, IWOA-PSO and ACS. For all algorithm, the test population
size and the maximum iteration were set to 30 and 500, respectively.

Table 4. Details of the test functions.

Function Dim Range Min

F1(x) =
n
∑

i=1
x2

i
30 [−100,

100] 0

F2(x) =
n
∑

i=1
|xi |+

n
∏
i=1
|xi | 30 [−10, 10] 0

F3(x) = π
n

{
10 sin(πy1) +

n
∑

i=1
(yi − 1)2[1 + 10 sin2(πyi+1) + (yn − 1)2]

}
+

n
∑

i=1
u(xi , 10, 100, 4)

yi = 1 + xi+1
4 , u(xi , a, k, m) =

 k(xi − a)m, xi > a
0,−a < xi < a
k(−xi − a)m, xi < −a

30 [−50, 50] 0

F4(x) = 0.1
{

sin2(3πx1) +
n
∑

i=1
(xi − 1)2[1 + sin2(3πxi + 1)] + (xn − 1)2[1 + sin2(2πxn)]

}
+

n
∑

i=1
u(xi , 5, 100, 4) 30 [0, π] 0

F5(x) = 4x2
1 +−2.1x4

1 +
1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2 2 [−5, 5] −1.0316
F6(x) = [1 + (x1 + x2 + 1)2(19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2
)
]

×[30 + (2x1 − 3x2)
2(18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2
)
]

2 [−2, 2] 3

Table 5 reports the statistical results for the unimodal function and shows that WOA-GA
can obtain the global optimal solution for F1 and F2. Table 6 reports the statistical results for
the variable-dimension multimodal and fixed-dimension multimodal functions. WOA-GA
can obtain the near-optimal solution for F3 and F4, and the global optimal solution for F5
and F6. Tables 5 and 6 indicate that WOA-GA has advantages in global searching and can
prevent falling into a local optimum, and demonstrate that WOA-GA is competitive with
other algorithms. Hence, although the time consumption is high, the proposed WOA-GA
can provide good exploration and exploitation capabilities.

Table 5. Comparisons of the optimization results for the unimodal functions.

Function WOA-GA WOA GA IWOA-PSO [29] ACS [25]

F1

BEST 0 1.21 × 10−80 7.3354 2.83 × 10−29 36.8232
WORST 3.61 × 10−4 6.08 × 10−70 1.22 × 103 7.1957 × 10−17 71.4722
MEAN 3.45 × 10−5 3.91 × 10−71 434.7116 4.84 × 10−18 52.3215

STD 7.76 × 10−5 1.36 × 10−70 395.9814 1.62 × 10−17 11.4114
Time consumption 60.3291 0.1556 35.0099 0.4467 0.8789

F2

BEST 0 8.11 × 10−59 3.1050 7.54 × 10−32 214.1185
WORST 0.0060 9.9 × 10−51 16.5300 1.79 × 10−20 1.00 × 1010

MEAN 3.00 × 10−4 3.36 × 10−52 6.4972 9.83 × 10−22 9.50 × 109

STD 0.0013 2.16 × 10−51 3.3679 3.90 × 10−21 2.18 × 109

Time consumption 60.8924 0.1868 36.1690 0.5520 1.0567
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Table 6. Comparisons of the optimization results for the multimodal functions.

Function WOA-GA WOA GA IWOA-PSO [29] ACS [25]

F3

BEST 4.88 × 10−5 0.0075 1.2974 0.1139 2.7302
WORST 1.72 × 10−4 0.0576 2.77 × 106 0.7058 7.7002
MEAN 1.14 × 10−4 0.0211 1.88 × 105 0.2740 4.8696

STD 3.39 × 10−5 0.0135 6.16 × 106 0.1528 1.3589
Time consumption 60.8924 0.1868 36.1690 0.5520 1.0567

F4

BEST 7.13 × 10−4 0.1161 0.5866 1.3246 1.00 × 1010

WORST 0.0136 1.0580 1.07 × 107 2.3390 1.00 × 1010

MEAN 0.0047 0.5327 1.05 × 106 1.8482 1.00 × 1010

STD 0.0049 0.2221 2.95 × 106 0.2569 0
Time consumption 56.5546 0.7357 35.9564 2.4473 2.0157

F5

BEST −1.0316 −1.0316 −1.0299 −1.0316 −1.0316
WORST −1.0316 −1.0316 −0.8077 −1.0316 −1.0316
MEAN −1.0316 −1.0316 −0.9549 −1.0316 −1.0316

STD 2.22 × 10−16 2.83 × 10−9 0.0734 5.03 × 10−9 4.55 × 10−16

Time consumption 20.6915 0.1751 18.0697 0.4982 0.6485

F6

BEST 3 3 3 3 3
WORST 3 3.0025 44.9507 30 3
MEAN 3 3.0001 20.6778 11.1041 3

STD 0 5.34 × 10−4 14.2922 12.3703 3.12 × 10−15

Time consumption 7.9300 0.0662 7.0914 0.1689 0.2644

Figure 2 shows the convergence curves from WOA-GA, WOA, GA, IWOA-PSO and
ACS. WOA, IWOA-PSO and ACS have an advantage on the local space search and can
converge rapidly, but they are easily to trap in a local optimum in low iterations. GA has the
advantage on global space search, but it converges slowly and needs more generations to
obtain the best fitness. In each iteration of WOA-GA, WOA follows several generations of
GA. Thus, the global search capacity of WOA is enhanced by GA, and the local search ability
of GA is improved by WOA. With the positive interaction between WOA and GA, the
exploration and exploitation abilities of WOA-GA are improved. The proposed WOA-GA
can converge rapidly and obtain the best fitness compared with WOA, GA, IWOA-PSO
and ACS.
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4.2. Application 2: WOA-GA for Time-Optimal Trajectory Planning Problem

A typical multi-point trajectory task for a 6-DOF industrial robot was employed [12].
The desired positions and kinematic constraints of test task are listed in Tables 7 and 8,
respectively. Since the order of magnitudes of the integral of the squared jerk is much
greater than that of the total execution time, wT and wJ were set as 0.9999 and 0.0001 to
achieve the trade-off between two objectives. For all algorithms, a test population size of 30
and the maximum iteration of 100 and 500 were utilized to solve this problem. WOA-GA
was performed 10 times as well as WOA, GA, IWOA-PSO and ACS.

Table 7. Desired positions of the test trajectory planning task.

Position No.
Joint No. (◦)

1 2 3 4 5 6

1 −10 20 15 150 30 120
2 Virtual point
3 60 50 100 100 110 60
4 20 120 −10 40 90 100
5 Virtual point
6 55 35 30 10 70 25

Table 8. Kinematic constraints of the test trajectory planning task.

Kinematic Constraints
Joint No.

1 2 3 4 5 6

Velocity (◦/s) 100 95 100 150 130 110
Acceleration (◦/s2) 60 60 75 70 90 80

Jerk (◦/s3) 60 66 85 70 75 70

Table 9 shows the comparisons of the optimization results obtained using WOA-GA,
WOA, GA, IWOA-PSO and ACS. WOA-GA is able to converge best in the test task, and
the mean and standard deviations are also the smallest, which implies that WOA-GA
has a good stability. Figure 3 shows the distributions of the best-so-far solutions from
WOA-GA, WOA, GA, IWOA-PSO and ACS. Additionally, the percentage of performance
rank in Table 9 indicates that WOA-GA mostly achieves a better performance than other
benchmark algorithms.

Table 9. Comparisons of the optimization results for the test trajectory planning task.

Algorithm BEST WORST MEAN STD Rank 1st Rank 2nd Rank 3rd Rank 4th Rank 5th

WOA-GA 39.9778 39.9837 39.9809 0.0020 80% 20% / / /
WOA 39.9865 42.6031 40.9722 0.8536 / / 20% 80% /

GA 40.0018 41.6566 40.4576 0.5605 / / 80% 20% /
IWOA-PSO [29] 41.0080 46.0309 43.1747 1.5323 / / / / 100%

ACS [25] 93.9780 39.9952 39.9861 0.0064 20% 80% / / /

The travelling time of the best solution from WOA-GA is 29.9930 s, where T1 = 0.0030 s,
T2 = 10.8240 s, T3 = 8.9690 s, T4 = 10.1850 s and T5 = 0.0120 s. Figures 4–7 illustrate the
trajectory curves of the industrial robot and their derivatives, including jerk, acceleration
and velocity. As shown in Figure 7, the jerk curves of all joints were continuous, which
resulted in the smoothness of the optimized trajectories. Furthermore, the values of jerk,
acceleration and velocity were zero at the start and end movement. The motion curves were
all bound under the kinematic constraints all the time. Therefore, the proposed method is
an effective time-jerk optimal trajectory planning tool for industrial robots.
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5. Conclusions

In this article, we proposed a new methodology for time-optimal and jerk-continuous
trajectory planning of industrial robots. Fifth-order B-spline was adopted to interpolate the
multi-point trajectory in the joint space. The proposed WOA-GA combining the advantages
of WOA and GA is utilized to solve the time-jerk optimal trajectory planning problem
with nonlinear constraints. Simulations were carried out to verify the effectiveness of the
proposed methodology. The comparison results of the best-so-far feasible solutions showed
that WOA-GA provides the best results compared with WOA, GA, IWOA-PSO and ACS.
Furthermore, the proposed WOA-GA algorithm has good stability. The optimized motion
curves obtained by the proposed methodology were all bound under the kinematic con-
straints all the time. Therefore, these results demonstrate that the proposed methodology is
an effective tool for industrial robots to generate time-jerk optimal trajectories.

Future work will be devoted to extending WOA-GA to optimize other trajectory
models based on polynomial and NURBS. The effectiveness of the proposed technique may
further be investigated by experiments.
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