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Abstract: This paper presents a generic and unsupervised failure prognosis method which can be
applied to wide scope of applications. The main contribution of the presented method is automatic
relevant data identification based on signal smoothing and trendability analysis and automatic degra-
dation model identification for health indices construction, built using a trained neural network, thus
allowing for the automatic adaptation of the degradation trend model to changes in the degradation
dynamic. Regarding the failure prognosis, the end of life is first predicted using a fitting model;
then, the remaining useful life is predicted using a similarity algorithm. The proposed approach is
validated using the turbofan engine data sets provided by NASA. The prediction results have been
evaluated using accuracy metrics such as root mean square error and prognostic metrics such α− λ

and relative accuracy. The obtained results show the effectiveness of the proposed method, both for
the end of life and remaining useful life predictions.

Keywords: prognostic and health management; trend modeling; machine learning; neural network;
remaining useful life

1. Introduction

Predicting system failure is nowadays a challenge for industries and scientists, since
this information is essential for maintenance management. Indeed, the implementation
of conditional and predictive maintenance strategies requires knowledge of the temporal
evolution of the health-state of the system, the main objective being a reduction in the
system’s downtime and an increase in its availability. The standard ISO 13381-1:2015 pro-
vides guidance and a general guideline for the development and application of prognosis
processes. It specifies failure prognostics and presents the road maps of the prognostics
steps and details the monitoring system setup and how to estimate the confidence interval
related to the predicted RUL. It also proposes some useful tools for modeling degradation.
The presented approach is developed with respect to ISO standards and proposes a generic
and automatic prognosis algorithm that can be applied on a wide scale in industrial ap-
plications considering different steps to perform failure prognosis: data filtering, trend
analysis and health indices (HIs) construction, the end of life (EOL) and the remaining
useful lifetime (RUL) prediction.

The main contributions of the proposed method are:

• Automatic relevant data identification based on signal smoothing and trendabil-
ity analysis.

• Automatic degradation model identification for HIs construction, built using an offline
trained neural network, thus allowing for the automatic adaptation of the degradation
trend model to changes in the degradation dynamic.
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The similarity method is used in this paper for RUL prediction, since it is an efficient
geometric method which does not require prior knowledge of the complete profile of the
degradation process. This gives this method an advantage on the application level, knowing
that the data available on the degradation profile are often incomplete in real applications.

The remainder of this paper is organized as follows. In Section 2, related works are
presented. The proposed algorithm is described in Section 3. Section 4 presents experiment
methods used to validate the approach. Section 5 is devoted to the results. Finally, in
Section 6, the conclusions and some remarks are presented.

2. Related Works

In the literature, three main approaches are distinguished for failure prognosis [1,2]:
physics-based approaches, data-driven approaches and hybrid approaches.

Physics-based approaches are suitable when physical knowledge about system dy-
namics is deeply known and enough data are available on the normal operation of the
system for parameter identification and model validation [3–5]. They give accurate results
when the physical knowledge of the system is adequately expressed to take the right
modeling assumptions about the degradation process; therefore, a detailed knowledge of
these complex processes is required [6,7]. Some models have been developed, such as the
Arrhenius model for semiconductor electronic components [8] and the Paris model [9] for
crack propagation in mechanical systems. In practice, it is the lack of physical knowledge
about the degradation process that prevents large-scale development of these methods. To
overcome this issue, recent research works proposed methods that do not require prior
knowledge of the degradation process [10,11].

Data-driven approaches are based on data analysis using artificial intelligence (AI)
tools, such as neural networks [12,13], support vector classification [14,15] and support
vector regression [16,17]; continuous statistical tools, such as the Wiener process [18] and
the Gamma process [19,20]; discrete statistical tools, such as the hidden Markov model and
the hidden semi-Markov model [21], and probabilistic tools, such as Bayesian networks [22]
and Gaussian mixture models (GMM) [23]. Data-driven approaches have evolved rapidly
in recent years by the development of fast computing systems and the evolution of data
storage, which have expanded their application fields. However, data presenting the
degradation profile are required. The latter is rarely available, and when available, it does
not represent all the possible operating conditions of the considered system.

Hybrid approaches combine two methods or more, taking advantage of their ben-
efits [24]. For example, by combining physics knowledge about system dynamics and
historical data to build a degradation model, a failure prognosis task is performed [10].
Hybrid approaches can be also obtained by combining expert knowledge either with signal
processing [25] or artificial intelligence tools [26–28].

3. Overview of the Proposed Approach

As illustrated in Figure 1, the proposed approach is composed of two stages: an offline
stage and an online one. The first four steps of the offline stage deal with relevant data
identification (that will be used in the training model) as well as in the characterisation of
the degradation model (used for HI generation). The selected variables are used as training
data to build an HI for degradation estimation. The online part uses the data collected in
real time to construct the HI for predicting the EOL and the RUL of the system.
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Figure 1. An overview of the proposed approach.

3.1. Offline Stage

The offline stage consists of four steps and is devoted to building a model which will be
used online for degradation estimation and RUL prediction. In this stage, relevant data that
bring degradation information are selected automatically using a smoothing filter and trend
analysis. In step 1, signal smoothing is used to extract useful information and to reduce
the noise ratio. In step 2, trend analysis is used to identify only data (or measurement)
that represent tendency. These data are relevant for failure prognosis. The data relating
the transient dynamic are deleted in an automatic way. In step 3, a degradation trend
profile is constructed using the fit technique and injected into a neural network (step 4) for
model training.

3.1.1. Signal Smoothing

In most applications, data are contaminated with noise, particularly in a harsh envi-
ronment (high pressure, temperature, vibration, etc.), so smoothing data is an essential step
in any failure diagnosis and prognosis schema. Porotsky [29] used a fitting technique to
reduce noise based on non-linear regression methods, considering two types of smoothed
functions: polynomial functions and exponential functions. Since the smoothing function
did not guarantee permanent stability, Porotsky proposed to select the right function for
each considered sensor. Bektas et al. [30] used ninth- and fourth-degree polynomial regres-
sion to filter data, and each polynomial degree was used either for training or testing. Coble
et al. [31] proposed for reducing noise a quadratic fitting technique. In data analysis, these
methods can sometimes lead to an undershoot and a loss of critical information (peaks).
Additionally, the performance depends on the appropriate selection of polynomial order,
which is difficult.

In this work, a modified Savitzky–Golay (SG) filter [32–34] is used. The original algo-
rithm fits a low-degree polynomial in a least-squares sense on the samples within a sliding
window m. The smoothing result depends on the appropriate choice of polynomial order
and the sliding window length. An arbitrary selection of these parameters is difficult for
any user. The SG filter is distinguished from other filters since it gives a good compromise
between the possible loss of information caused by filtering and the improvement of the
quality of the signals by eliminating noise.

The contribution made in this work tends to automatically choose the sliding window
value (m) that keeps only the appearance of the signal by removing noise and outlier
components. Choosing the smoothing parameters is a common problem in smoothing
methods. One of the most effective optimal choices for smoothing windows is in kernel
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smoothing. In [35], the authors discussed the most common optimal choice of the parameter
h. In the case of a normal data vector y, the kernel estimator is written as in Equation (1):

f̃ (y) =
1
n

n

∑
i

w(y− yi; h) (1)

where f̃ is the kernel estimator, n is the amount of data and w is the kernel function
whose variance is controlled by the parameter h, representing the smoothing function or
the bandwidth.

From the general optimal h, which minimizes the mean integrated squared error
(MISE) in order to smooth f̃ , the optimum formula to calculate h is given by Equation (2):

h =

(
4

3n

) 1
5
σ (2)

The choice of m is driven by a close similarity between kernel smoothing regression
and the SG filter. First, both methods are used for smoothing. Second, in kernel smoothing
regression, a kernel function and a bandwidth parameter h are chosen by users, which is
similar to the SG filter, where the polynomial degree and the sliding window m must be
chosen. Third, for kernel smoothing regression or the SG filter, increasing h or m makes the
data smoother, while decreasing them makes the estimation wiggly. This broad analogy
between kernel smoothing regression and the SG filter, in the sense that the parameters h
and m in both methods have the same effects, encourages us to use h as m. In this work, the
polynomial order is fixed to two (2) to avoid any intense wiggling in the smoothed signal.

The assumption of normality can cause problems of overshooting when dealing with
non-normal data. To reduce overshooting, σ must be adjusted by Equation (3).

σ̃ =
median{abs(yi − µ̃)}

0.6745
(3)

where µ̃ notes the median of the sample.

3.1.2. Trend Analyses

Trendability and monotonicity are important parameters for failure prognosis. A
measurement that monotonically decreases or increases along the system life can represent
fault or be related to it. In this paper, the relevant measurement (or data) variables are
identified based on trendability analysis. The most popular statistical tests for the detection
of the monotonic trend in time series are: the t-test for regression slope, the Mann–Kendall
(MK) test, the test based on the Theil–Sen slope, the Brillinger test, the Abelson–Tukey
test, the Spearman tests and the Cox–Stuart (CS) test. All mentioned tests, except for the
t-statistic, do not assume the shape of the trend: linear, exponential, logarithmic or more
complex. The distribution type of the data is also not specified.

In this paper, the CS and MK tests [36,37] are used. In most applications, the MK test
has the dominant position if the trend does not exist. In cases when the trend is very weak
and the time series is short, the CS test has a better chance of detecting the trend than the
MK test. As these conditions cannot always be fulfilled, it is better to use another test as a
complement [36].

The CS and MK tests are statistical methods used to check an upward or a downward
monotonic trend in data over time, which means that the data magnitude is increasing or
decreasing or not through time. These tests are non-parametric or distribution-free tests.

The MK and CS tests determine whether to reject the null hypothesis H and accept the
alternative hypothesis HA, where:

• H: no monotonic trend;
• HA: a monotonic trend is present.
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Consider a time series Y = [y1, y2, . . . , yN ]
T . For the CS test, the CS is computed by

Equations (4) and (5).

CS =
N/2

∑
i=1

CSi (4)

CSi =

{
1 if yi − y( N

2+i )
> 0

0 if else
(5)

3.1.3. Degradation Fit Model

There exist in the literature different models describing component degradation over
time. These models are mainly based on a prior understanding of the physics process of
component degradation or on data that can be modeled by a stochastic process, such as the
Wiener or Gamma processes. In this paper, analytical models of the degradation process of
incipient faults have been considered. The time/cycle evolution of the these models are
illustrated by Figure 2. These curves represent the trajectory of the HI, considering the life
evolution of the system from a healthy state to a failure one, and normalize from 1 (health
state) to 0 (failure state). They are obtained by simulating the corresponding models from
the health-operating mode to failure during the life cycle of the system.

The fit model (step 3) is selected for the training data within multiple fitting functions
once the relevant data are identified (from step 1 and 2). The most effective fit model
is declared as the degradation function based on root mean square error (RMSE) and
R-squared (R2) statistical measures.

Figure 2. Examples of degradation models used in this work. These models present the damage
propagation profiles. The HI decreases over time/cycles from health state 1 to health state 0.

3.1.4. Model Training

There are several neural network techniques to build a data-driven model, such as:
recurrent neural networks [38,39], convolutional neural networks [40] and deep bidirec-
tional (LSTM) neural networks [41]. In this work, a neural network is used as a data-driven
model and trained to estimate the HI trajectory. The training inputs are the relevant data
identified in step 2 with the corresponding time vectors or life cycles and as targets the HI
constructed in step 3. In this step, the training inputs are not smoothed. Signal filtering is
used to smooth measurement in order to identify the degradation model, since with noisy
measurement it is hard to distinguish with high accuracy the degradation as well as to
construct the HI. However, in the training step, it is necessary to consider the raw signal to
take into account the different operation of all engines.
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3.2. Online Stage
3.2.1. Health Indices Construction

The trained data-driven model in step 4 of the offline stage is used to estimate HI
in the online stage. The trajectory of HI is generated every time sample/cycle by using
the same relevant data used for the model training. The obtained HI is used for failure
prognosis in step 6.

3.2.2. Failure Prognosis

The RUL prediction in the present work is conducted in two ways depending on
the HI value, either by fitting the HI to reach 0 using the degradation model identified
in the offline stage or by finding the most similar HI in the training model step [42]. The
threshold depends on the degradation model, for example, in the case of exponential trend,
the probability of false fit is at a minimum when the HI reaches 0.6. The RUL is calculated
based on the estimated EOL as given by Equation (6). If the threshold is reached, the EOL
is estimated by fit and the RUL by Equation (7).

RUL = EOLest − tp (6)

EOLest is estimated by fit and tp is the present time or cycle of the system.
If the EOL is estimated by a similarity approach, the RUL is calculated [42] by

Equation (7).

RUL =
k

∑
i=1

wiRULi (7)

where wi is the weight assigned to the estimated RUL and depends on the similarity
between the test and trained HI instances and k is the number of selected neighbors.

4. Application to Turbofan Engine: A Case Study

The proposed algorithm is applied on the Commercial Modular Aero-Propulsion
System Simulation data, or C-MAPSS data, from the Prognostics Data Repository [43].
The available data set is mostly time series data from some nominal state to a failed one.
Four different sets are simulated under different combinations of operational conditions
and fault modes. The simulation is carried with MATLAB software 2019 with an i3 Intel
processor and 4 Gigabytes of RAM. The MATLAB environment allows for fast development
of application, especially for data engineering and machine learning simulation.

The system settings and the available sensors are described in Appendix A—Table A1. In
total, there are twenty-one (21) sensors placed at different parts of the engine. Appendix A—
Table A2 shows all the information about the four data sets. The easiest data set is the first
one with one fault mode (HPC degradation) and one operation condition. The 4th data set
represents the most complex, with two fault modes and six operation conditions [43].

The first step is to identify the relevant data from the data sets. For this, the data are
smoothed using the SG filter with automatic window calculation and then the trend analysis
is triggered to identify the relevant data to be considered as the training input variables.

Figure 3 presents an example of the application of the SG filter on random measure-
ments of engine 1 from the four (04) data sets. Smoothing using an SG filter is very good
even in high noise contamination. Thus, the trendability and the monotonicity can be easily
analyzed from the resulting signal. Regarding the trend analysis step, all smoothed mea-
surements of all engines are analysed using CS and MK algorithms (step 2). Table 1 shows
the results of this step. All variables presenting trendability are selected as relevant data;
however, only those with the highest rates of trendability are used to select a degradation
trend model. The corresponding sensors are selected automatically to be input variables
for model training. The selected variables are given in bold in Table 1. Regarding data set 1,
14 measurements are considered relevant data (T30, T24, T2, farB, NRc, NRf, Phi, ps30, epr,
Nf, P30, P15, W31 and PCNfR-dmd). Then, for degradation model fitting, only 6 relevant
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data values (T2, T30, P15, Ps30, epr and PCNfR-dmd) with the highest trend percentages
are considered. Concerning data set 2, fewer inputs are selected. In this case, 8 sensors’
data values (T24, T30, P15, P30, Nf, Ps30, NRf and htBleed) are selected as training input
and one sensor (Nf) is used to determine damage function.

Table 1. The results of trend analyses and the trendability rate of each measurement.

Sensors Symbol Data Set Number
1 2 3 4

Sensor 1 T2 100 6 95 10
Sensor 2 T24 96 12 100 18
Sensor 3 T30 100 13 94 23
Sensor 4 T50 0 4 0 4
Sensor 5 P2 0 3 15 5
Sensor 6 P15 100 22 100 22
Sensor 7 P30 89 16 97 17
Sensor 8 Nf 81 35 94 39
Sensor 9 Nc 0 6 4 10
Sensor 10 epr 100 4 96 13
Sensor 11 Ps30 100 19 100 22
Sensor 12 phi 91 6 94 8
Sensor 13 NRf 87 15 93 28
Sensor 14 NRc 99 7 100 11
Sensor 15 BPR 0 10 0 9
Sensor 16 farB 99 4 99 11
Sensor 17 htBleed 0 16 0 17
Sensor 18 Nf-dmd 0 0 0 0
Sensor 19 PCNfR-dmd 100 5 98 6
Sensor 20 W31 99 4 100 5
Sensor 21 W32 0 0 0 0

Figure 3. Application of SG filter on sensor data. Top right, sensor 7 P30 total pressure at HPC outlet
from data set 1 (engine 1). Top left, sensor 4 T50 total temperature at LPT outlet from data set 2
(engine 1). Bottom right, sensor 7 P30 total pressure at HPC outlet from data set 3 (engine 1). Bottom
left, sensor 14 NRc corrected core speed from data set 4 (engine 1).

The third step concerns degradation trend identification based on the highest rate of
trendability signal and by using metrics such as the RMSE and the adjusted R2. Figure 4
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shows the fitting results in the sense of RMSE of the different data sets. From this figure,
one can notice that the degradation follows an exponential trend, as it was considered in
damage propagation model built for C-MAPSS data [43].

Figure 4. The boxplot of RMSE between the degradation functions and the most trended sensors in
the data sets. The bottom and top of each box are the 25% and 75%, respectively, the red line in the
middle is the sample median and the red + points are outliers.

In the last step of the offline stage, the data-driven model for HI construction is
trained using relevant variables (14 variables in the case of data set 1) and targeted to HIs
constructed from the degradation fit model. The considered neural network is a two-layer
feed-forward network with 9 sigmoid hidden neurons and one linear output neuron. The
neural network is trained with the Levenberg–Marquardt backpropagation algorithm.
Figure 5 shows an example of HI estimation of a randomly selected engine from training
data set 1 in the online stage. From 155 cycles, 108 cycles are used for HI estimation. Using
the estimated HI, a fit is performed to reach the estimated EOL of the engine, which is in
this case equal to 163, i.e., 8 cycles over the real EOL of 155 cycles. The RUL is calculated as
the difference between the 108th cycle and the estimated EOL cycle.

Figure 5. HI estimation and EOL estimation on run-to-failure engine.
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5. Results and Discussion

The results are related to the online parts of the algorithm. First, the online stage
of the algorithm is tested on training data to validate it in all engine life. After that, the
algorithm is applied on test data. Figure 6 presents the results of the RUL prediction of the
first 20 engines of data set 1 compared to their real RUL values. The results show a strong
capability of RUL estimation, especially at the EOL cycles.

Figure 6. Results of RUL estimation for the first 20 engines of data set 1.

The aim of the presented paper is to show that the proposed algorithm performs RUL
prediction in an unsupervised manner by making good prediction results. For this, the
obtained results are evaluated by:

• Accuracy metrics such as RMSE;
• Prognostics metrics such as α− λ and relative accuracy.

The RMSE indicates how data fit the target prediction model, and it is calculated as
follows:

RMSE =

√√√√ 1
N

N

∑
n=1

(RULest − RULreal)2
n (8)

Table 2 presents a comparison of the proposed algorithm results obtained by an
application on the test data set 1 which contains 100 test samples. The obtained RMSE of
21.68 is acceptable compared to that of the other approaches since the target RUL model is
not fixed and depends on the fitted degradation trajectory. The other approaches suppose
that the RUL follows a linear piecewise function with a maximum RUL limit fixed a priori.

Table 2. Performance of algorithms on the full training/testing turbofan first data sets.

Ref. RMSE
RULCLIPPER [44] 13.26
Multi-layer perceptron [45] 14.39
Proposed app. 21.68
ESN trained by Kalman Filter [46] 63

To better assess the performance of RUL prediction, α − λ and relative accuracy
are used.

α− λ is used to evaluate the performance of the prediction accuracy within α ∗ 100 of
the real RUL at specific time instance tλ, and it is calculated by:
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(1− α)rul∗(t) ≤ rul(tλ) ≤ (1 + α)rul∗(t) (9)

where α is the accuracy bound and tλ = tp + λ
(
EOL− tp

)
such that tp is the time prediction.

However, the relative accuracy provides an easily interpretable measurement of the
confidence that can be given to the prediction accuracy (from 0 to 1), as it is expressed
according to the real RUL by:

RA(t) = 1− |RUL∗(t)− RUL(t)|
RUL∗(t)

(10)

where RUL∗ is the real RUL.
From Figure 7, the prediction performance of engine 63 is within the α = 20% accuracy

interval with relative accuracy close to 1 throughout the prediction process. At the end of
prediction, the relative accuracy tends to infinity because of its mathematical formulation.
These performance results are acceptable.

The proposed approach, being unsupervised, has a wider scope of application, and it
presents good results in the sense that:

• There is no expert supervision in the choice of training variables: by using the proposed
approach, the most trended signal in data set 1 is sensor 3: T30. This sensor is related
to the HPC and to the degradation in data set 1 [43]. The trend analyses can find
without any prior knowledge the sensors which are related to the degradation and
which can be used as HIs.

• The degradation model is determined using RMSE and R-squared metrics, among
multiple predefined fitting functions (sum of sin, power, exponential, Gaussian, etc.).
Considering C-MAPSS data, the degradation model was identified to follow an expo-
nential trend as it was considered in the damage propagation model [43].

• The failure prognosis results depend on whether the run-to-failure data are complete
or not, i.e, in the case of run-to-failure data, the estimated HI is near the EOL, so the
degradation state is clear and a fit of HI will estimate a good EOL. However, in the
case of non-complete data, the degradation trajectory and the EOL are hard to drive.

• The presented approach is a generic one, and it can be applied on any time series data
with neither knowledge of system dynamics nor expert intervention.

Figure 7. Prognosis metric results of the proposed approach.
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6. Conclusions

In this paper, a generic method of fault diagnosis and failure prognosis is presented.
The main contribution of the proposed approach compared to other diagnostic and prognos-
tic methods is its unsupervised aspect, through automatic degradation model identification
and the automatic adaptation of the trend model to changes in the degradation dynamic,
which makes the proposed method more generic with a wider scope of applications. To
show its effectiveness, the proposed method has been applied to well-known C-MAPSS
data proposed by NASA. With an RMSE of 21.68 and a prediction performance of engine
63 within the α = 20% accuracy interval with relative accuracy close to 1 throughout the
prediction process, the proposed method has demonstrated its effectiveness.
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Appendix A

Table A1. C-MAPSS data set parameters for PHM08 challenge. LPC/HPC = low/high-pressure
compressor, LPT/HPT = low/high-pressure turbine.

Symbol Description Unit
Unit / / /
Time / / t
Setting 1 / Altitude ft
Setting 2 / Mach number M
Setting 3 / Sea-level temperature °F

Sensor 1 T2 Total temperature at
fan inlet °R

Sensor 2 T24 Total temperature at
LPC outlet °R

Sensor 3 T30 Total temperature at
HPC outlet °R

Sensor 4 T50 Total temperature at
LPT outlet °R

Sensor 5 P2 Pressure at fan inlet Psia

Sensor 6 P15 Total pressure in
bypass duct Psia

Sensor 7 P30 Total pressure at HPC
outlet Psia

http://ti.arc.nasa.gov/project/prognostic-data-repository
http://ti.arc.nasa.gov/project/prognostic-data-repository
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Table A1. Cont.

Symbol Description Unit
Sensor 8 Nf Physical fan speed rpm
Sensor 9 Nc Phsical core speed rpm
Sensor 10 epr Engine pressure ratio /

Sensor 11 Ps30 Static pressure at
HPC outlet Psia

Sensor 12 phi Ratio of fuel flow to
PS30 pps

Sensor 13 NRf Corrected fan speed rpm
Sensor 14 NRc Corrected core speed rpm
Sensor 15 BPR Bypass ratio /
Sensor 16 farB Burner fuel-air ratio /
Sensor 17 htBleed Bleed enthalpy /
Sensor 18 Nf-dmd Demanded fan speed rpm

Sensor 19 PCNfR-dmd Demanded corrected
fan speed rpm

Sensor 20 W31 HPT coolant bleed lbm/s
Sensor 21 W32 LPT coolant bleed lbm/s

Table A2. C-MAPSS data characteristics.

Characteristics Data Set Number
1 2 3 4

Number of faults 1 1 2 2
Operation
conditions 1 6 1 6

N° of training
data engines 100 260 100 249

N° of test data
engines 100 259 100 248
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