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Abstract: “High-performance thin-layer chromatography (HPTLC)” methods for gefitinib (GFT)
estimation are scarce in the literature. In addition, greener analytical techniques for GFT estimation
are also lacking in the literature. Accordingly, an attempt was undertaken to invent and validate
a sensitive and greener normal-phase HPTLC method for GFT analysis in commercial tablets in
comparison to the routine normal-phase HPTLC method. The greenness index for both methods
was assessed using “Analytical GREENness (AGREE)” methodology. GFT detection was carried
out using both methods at 332.0 nm. In the 30–700 ng/band and 20–1400 ng/band ranges, the
routine and greener HPTLC assays were linear for GFT estimation. The greener HPTLC method was
highly sensitive, more accurate, more precise, and more robust than the routine HPTLC assay for
GFT estimation. Both methods were able to detect GFT in the presence of its degradation products,
suggesting the stability-indicating property of both methods. The assay of GFT in commercial tablets
was 92.45% and 99.74% using the routine and greener HPTLC assays, respectively. The AGREE index
for routine and greener analytical assays was predicted to be 0.44 and 0.77, respectively, indicating
the excellent greenness index of the greener HPTLC assay over the routine HPTLC assay. The greener
HPTLC assay is considered superior to the routine HPTLC assay based on these results.

Keywords: AGREE method; gefitinib; greener HPTLC; validation

1. Introduction

Gefitinib (GFT) is a selective tyrosine kinase inhibitor, which is used in the treatment of
non-small cell lung carcinoma (NSCLC) by targeting the epidermal growth factor receptor
(EGFR) [1,2]. EGFR has over expression in various solid tumors, which includes lung,
colon, breast, brain, and ovarian tumors [3–5]. GFT was approved as the first-line treatment
for NSCLC by the United States Food and Drug Administration (USFDA) in 2015 [6,7].
It has been reported as practically insoluble in water and aqueous buffers, slightly solu-
ble in methanol, ethanol, isopropanol, 1-butanol, ethylene glycol, and propylene glycol,
sparingly soluble in 2-butanol, soluble in Carbitol and polyethylene glycol-400, and freely
soluble in dimethyl sulfoxide at an ambient temperature [8,9]. GFT is available in the
form of tablets (dose: 250 mg/day) on the market, which is sold under the trade name of
Iressa® [6,9]. Hence, the qualitative and quantitative standardization of GFT is important
in its commercial formulations.

The literature survey demonstrated different analytical assays of GFT estimation
in commercial formulations and biological samples. For the estimation of GFT in its
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bulk drug and dosage forms, visible spectrometry and derivative spectrometry assays
have been reported [10,11]. Different “high-performance liquid chromatography (HPLC)”
techniques have also been used for the detection of GFT in its bulk form and pharmaceutical
formulations [12–15]. An HPLC method has also been applied for the estimation of GFT
process-related impurities [16]. A voltammetry technique has also been used for GFT
estimation in pharmaceutical formulations and urine samples [17]. A system-biology-based
in silico analysis was applied for the identification of off-targets of GFT [18]. Various “liquid
chromatography mass spectrometry (LC-MS)” methods have been used to measure GFT in
mouse and human plasma samples [19–23]. An ultra-performance liquid chromatography
(UPLC) technique was also used for the GFT analysis in human plasma samples [24]. Iron-
oxide-based magnetic nanoparticles were also utilized to estimate GFT in water and human
plasma samples [25]. A wide range of analytical methods for GFT detection was found
in published reports. However, none of the reported methods’ greenness indices were
assessed. In addition, no GFT estimation has been recorded using the routine or greener
“high-performance thin-layer chromatography (HPTLC)” assays. Various quantitative
techniques have been reported for determining the greenness indices [26–30]. For the
assessment of greenness index, only the “Analytical GREENness (AGREE)” methodology
utilizes all twelve components of “green analytical chemistry (GAC)” [28]. Accordingly,
the AGREE approach was used to evaluate the current HPTLC techniques’ greenness
indices [28].

The purpose of the present study is to invent and validate a normal-phase HPTLC
technique for GFT measurement in marketed tablets that is more precise, robust, sensitive,
and greener than the routine normal-phase HPTLC assay. Using “The International Council
for Harmonization (ICH)” Q2-R1 guidelines, routine and greener HPTLC assays for GFT
estimation were validated [31].

2. Materials and Methods
2.1. Materials

The standard GFT was obtained “Beijing Mesochem Technology (Beijing, China)”.
The HPLC-grade solvents such as ethanol (EOH), methanol (MOH), cyclohexane (CYH),
and chloroform (Ch) were obtained “E-Merck (Darmstadt, Germany)”. GFT (Teressa®)
marketed tablet dosage forms were obtained from a pharmacy in Riyadh, Saudi Arabia.
The rest of the materials were of analytical reagent grade.

2.2. Instrumentation and Chromatographic Procedures

The “HPTLC CAMAG TLC system (CAMAG, Muttenz, Switzerland)” was utilized for
the GFT estimation in marketed tablet dosage forms. The obtained samples were applied
as 6 mm bands with the help of a “CAMAG Automatic TLC Sampler 4 (ATS4) Sample
Applicator (CAMAG, Geneva, Switzerland)”. The “CAMAG microliter Syringe (Hamilton,
Bonaduz, Switzerland)” was linked with the sample applicator. The TLC plates were
“glass plates (plate size: 10 × 20 cm) pre-coated with normal-phase silica gel (particle size:
5 µm) 60F254S plates”. The application rate for GFT estimation was fixed to 150 nL/s. The
HPTLC plates were developed in a “CAMAG automated developing chamber 2 (ADC2)
(CAMAG, Muttenz, Switzerland)” with a spacing of 80 mm using linear ascending mode.
The development chamber was saturated with the vapors of respective mobile phases
for 30 min at 22 ◦C. A wavelength of 332 nm was used to detect GFT. The scanning rate
and slit dimension were both set to 20 mm/s and 4 × 0.45 mm2, respectively. For each
estimation, three or six replicates were used. “WinCAT’s (version 1.4.3.6336, CAMAG,
Muttenz, Switzerland)” was the program utilized.

The same instrumentation and analytical settings were utilized in both analytical
methods. The mobile phase compositions were the most significant differences between
routine and greener procedures. The optimized mobile phase in the routine HPTLC assay
was Ch/MOH (85:15, v/v), whereas the optimized mobile phase was EOH/CYH (80:20, v/v)
in the greener HPTLC assay.
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2.3. Calibration Curves and Quality Control (QC) Sample for GFT

The needed amount of GFT was dispensed into the provided volume of mobile phase,
providing a stock solution with a GFT concentration of 100 µg/mL. GFT concentrations in
the 30–700 ng/band range were produced using the routine HPTLC assay, whereas con-
centrations in the 20–1400 ng/band range were produced using the greener HPTLC assay,
which involved diluting varying amounts of GFT stock solution with the corresponding
mobile phase. An amount of 200 µL of each concentration of GFT was spotted to TLC
plates for routine and greener HPTLC assays. The spot area of each GFT concentration was
measured using both assays. GFT calibration curves were produced by plotting measured
spot area vs. GFT concentrations in six replicates (n = 6). Three different QC samples were
freshly produced for the evaluation of various validation parameters.

2.4. Sample Preparation for the Determination of GFT in Marketed Tablet Dosage Forms

The average weight of ten marketed tablets (each having 250 mg of GFT) was calcu-
lated. Using a glass pestle and mortar, the GFT-containing marketed tablets were crushed
and finely powdered. MOH was used to extract a weight of powder equivalent to 250 mg
of GFT. The MOH was evaporated, and the residue was dispensed separately in 100 mL
MOH in a volumetric flask. This process was repeated three times in total. This sample
was used as a test sample for both assays of estimating GFT in the marketed tablets.

2.5. Validation Studies

Routine and greener HPTLC assays for the estimation of GFT were validated for vari-
ous parameters using the ICH-Q2-R1 guidelines [31]. GFT linearity was assessed by graph-
ing measured spot area against GFT concentrations. The linearity of the routine HPTLC
assay for GFT estimation was assessed in the 30–700 ng/band range (n = 6). GFT linearity
was assessed in the 20–1400 ng/band range (n = 6) using the greener analytical assay.

The determination of “retardation factor (Rf), asymmetry factor (As), and theoretical
plates number/meter (N/m)” was utilized to determine the parameters for the system
suitability for routine and greener HPTLC assays for the estimation of GFT. For both assays,
the “Rf, As, and N/m” data were determined using their standard formulae [30].

The accuracy of routine and greener HPTLC assays for estimating GFT was evaluated
using percent recovery analysis. GFT was evaluated at three QC levels: low QC (LQC;
50 ng/band), middle QC (MQC; 400 ng/band), and high QC (HQC; 700 ng/band) to
observe how accurate the routine HPTLC assay was. GFT was also evaluated at three QC
levels: LQC (50 ng/band), MQC (400 ng/band), and HQC (1400 ng/band) to observe how
accurate the greener HPTLC assay was. The percent of recovery for GFT was calculated
using both assays at each QC level (n = 6).

For GFT, the intra/inter-assay precision of routine and greener HPTLC assays was
studied. The intra-assay precision for GFT was studied using the estimation of freshly pre-
pared GFT solutions at LQC, MQC, and HQC on the same day for both assays (n = 6). GFT
inter-assay precision was studied using the estimation of freshly prepared GFT solutions at
the same QC levels on three different days for both assays (n = 6).

The robustness of GFT was evaluated for both assays by introducing some planned
adjustments to the mobile phase components. The routine mobile phase Ch/MOH (85:15,
v/v) for GFT was modified to Ch/MOH (87:13, v/v) and Ch/MOH (83:17, v/v) for the routine
HPTLC assay, and the variations in TLC response and Rf values were recorded (n = 6).
For the greener HPTLC experiment, the greener mobile phase EOH/CYH (80:20, v/v) was
changed to EOH/CYH (82:18, v/v) and EOH/CYH (78:22, v/v), and the variations in TLC
response and Rf values were recorded (n = 6).

Utilizing a “standard deviation technique”, the sensitivity of routine and greener
HPTLC assays for GFT was determined as “limit of detection (LOD) and limit of quantifi-
cation (LOQ)”. GFT “LOD and LOQ” were calculated using their reported formulae for
both assays (n = 6) [31].



Processes 2022, 10, 762 4 of 13

The Rf values and ultra-violet (UV) spectra of GFT in marketed tablets were compared
to those of standard GFT to evaluate the selectivity of routine and greener HPTLC assays
for GFT.

2.6. Forced Degradation Studies

Under acid, basic, oxidative, and thermal stress conditions, the forced degradation
of routine and greener HPTLC techniques were evaluated [30,32]. The MQC of GFT
(400 ng/band) was subjected to 1M HCl (acid), 1M NaOH (base), 30% v/v H2O2 (oxidative),
and a hot air oven at 55 ◦C for 24 h (thermal) for this investigation. The detailed procedures
as reported in our previous publication were used for these investigation [32]. For routine
and greener HPTLC procedures, GFT chromatograms were obtained and analyzed for
decomposition products under different stress levels.

2.7. Application of Routine and Greener HPTLC Assays in the Determination of GFT in
Marketed Tablets

For routine and greener HPTLC assays, the prepared samples of marketed tablets
were spotted on normal-phase TLC plates, and the peak areas for GFT were measured
(n = 3). For both assays, the quantity of GFT in marketed tablets was determined using the
calibration curve of GFT.

2.8. Greenness Estimation

The AGREE approach [28] was utilized to determine the greenness index for routine
and greener HPTLC assays for GFT estimation. The AGREE indices (0.0–1.0) for routine
and greener HPTLC assays were obtained using “AGREE: The Analytical GREENness
Calculator (version 0.5, Gdansk University of Technology, Gdansk, Poland, 2020)”.

3. Results and Discussion
3.1. Method Development and Optimization

The system suitability parameters for routine and greener analytical assays are in-
cluded in Table 1. For GFT estimation, the “Rf, As, and N/m” for the routine analytical
assay were found to be acceptable. For GFT estimation, the “Rf, As, and N/m” for the
greener analytical assay were also acceptable.

For the GFT estimation by the routine HPTLC assay, various Ch/MOH concentrations
within the 45–90% Ch range were investigated as the routine mobile phases. The mobile
phase compositions and various chromatographic parameters are summarized in Table 1.
The results obtained showed that the routine mobile phase Ch/MOH (85:15, v/v) offered a
well-resolved and intact chromatographic peak for GFT at Rf = 0.3600 ± 0.0100 (Figure 1A).
GFT was also predicted to have As values of 1.040 ± 0.0200, which are suitable for GFT
analysis. As a result, the Ch/MOH (85:15, v/v) was chosen as the final mobile phase for
GFT estimation using the routine HPTLC assay.
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Figure 1. Representative “high-performance thin-layer chromatography (HPTLC)” densitograms of
standard gefitinib (GFT) obtained using (A) routine HPTLC and (B) greener HPTLC methods.



Processes 2022, 10, 762 5 of 13

Table 1. The optimization of the mobile phases and chromatographic conditions of gefitinib (GFT)
analysis for the routine “high-performance thin-layer chromatography (HPTLC)” and the greener
HPTLC methods (mean ± SD, n = 3).

Routine HPTLC

Mobile Phase As N/m Rf

Ch/MOH (45:55, v/v) 1.248 ± 0.0300 1585 ± 1.183 0.4400 ± 0.0200
Ch/MOH (50:50, v/v) 1.247 ± 0.0300 1598 ± 1.194 0.4300 ± 0.0200
Ch/MOH (55:45, v/v) 1.246 ± 0.0200 1642 ± 2.014 0.4200 ± 0.0200
Ch/MOH (60:40, v/v) 1.245 ± 0.0300 1692 ± 2.112 0.4100 ± 0.0200
Ch/MOH (65:35, v/v) 1.244 ± 0.0300 1763 ± 2.162 0.4000 ± 0.0100
Ch/MOH (70:30, v/v) 1.243 ± 0.0200 1854 ± 2.182 0.3900 ± 0.0100
Ch/MOH (75:25, v/v) 1.042 ± 0.0300 1985 ± 2.192 0.3800 ± 0.0100
Ch/MOH (80:20, v/v) 1.241 ± 0.0300 2014 ± 2.213 0.3700 ± 0.0100
Ch/MOH (85:15, v/v) 1.041 ± 0.0200 4972 ± 4.141 0.3600 ± 0.0100
Ch/MOH (90:10, v/v) 1.240 ± 0.0300 2278 ± 2.321 0.3500 ± 0.0100

Greener HPTLC

EOH/CYH (45:55, v/v) 1.267 ± 0.0300 1498 ± 1.844 0.5000 ± 0.0200
EOH/CYH (50:50, v/v) 1.266 ± 0.0300 1512 ± 1.854 0.4900 ± 0.0200
EOH/CYH (55:45, v/v) 1.265 ± 0.0300 1591 ± 1.922 0.4800 ± 0.0200
EOH/CYH (60:40, v/v) 1.264 ± 0.0200 1666 ± 2.101 0.4700 ± 0.0200
EOH/CYH (65:35, v/v) 1.263 ± 0.0200 1723 ± 2.115 0.4600 ± 0.0200
EOH/CYH (70:30, v/v) 1.262 ± 0.0200 1852 ± 2.171 0.4500 ± 0.0100
EOH/CYH (75:25, v/v) 1.261 ± 0.0200 1977 ± 2.202 0.4400 ± 0.0100
EOH/CYH (80:20, v/v) 1.080 ± 0.0200 4768 ± 3.972 0.4300 ± 0.0100
EOH/CYH (85:15, v/v) 1.269 ± 0.0300 2042 ± 2.542 0.4200 ± 0.0100
EOH/CYH (90:10, v/v) 1.268 ± 0.0300 2128 ± 2.612 0.4100 ± 0.0100

Ch: chloroform; MOH: methanol; EOH: ethanol; CYH: cyclohexane; Rf: retardation factor; As: asymmetry factor;
N/m: theoretical plates number per meter.

For the GFT estimation using the greener HPTLC assay, various EOH/CYH concentra-
tions within the 45–90% EOH range were investigated as the greener solvent systems. The
mobile phase compositions and various chromatographic parameters for the greener ana-
lytical assay are also included in Table 1. The results obtained showed that the EOH/CYH
(80:20, v/v) offered a well-resolved and intact chromatographic peak of GFT at Rf = 0.4300
± 0.0100 (Figure 1B). GFT was also predicted to have As values of 1.080 ± 0.0200, which
was suitable for GFT estimation. As a consequence, the EOH/CYH (80:20, v/v) was selected
as the final greener mobile phase for GFT estimation using the greener HPTLC assay. The
maximum TLC response was recorded at 332.0 nm for GFT when the spectral bands for GFT
were evaluated under densitometry mode. As a consequence, the whole GFT estimation
took place at 332.0 nm.

3.2. Validation Studies

Various factors for GFT estimation were evaluated using the ICH-Q2-R1 recommen-
dations [31]. Table 2 summarizes the findings of the linear regression analysis of GFT
calibration curves using both procedures. For the routine HPTLC assay, the GFT calibration
curve was linear in the range of 30–700 ng/band. For the greener analytical method, the
GFT calibration curve was linear in the range of 20–1400 ng/band. For the routine HPTLC
experiment, GFT’s determination coefficient (R2) and regression coefficient (R) were 0.9945
and 0.9972, respectively. GFT’s R2 and R were 0.9964 and 0.9981, respectively, for the
greener HPTLC assay. These data showed a good connection between the measured peak
areas and GFT concentrations. All these findings indicated the suitability of both assays for
GFT estimation. The greener HPTLC assay, on the other hand, was more linear than the
routine HPTLC assay.
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Table 2. Results for the linear regression analysis of GFT for the routine and greener HPTLC methods
(mean ± SD; n = 6).

Parameters Routine HPTLC Greener HPTLC

Linearity range (ng/band) 30–700 20–1400
Regression equation y = 15.29x + 895.96 y = 21.31x + 614.79

R2 0.9945 0.9964
R 0.9972 0.9981

SE of slope 0.3838 0.3389
SE of intercept 4.589 2.213
95% CI of slope 13.63–16.94 19.85–22.76

95% CI of intercept 876.2–915.7 605.2–624.3
LOD ± SD (ng/band) 11.14 ± 0.4100 6.720 ± 0.1000
LOQ ± SD (ng/band) 33.42 ± 1.230 20.16 ± 0.3000

R2: determination coefficient; R: regression coefficient; SE: standard error; CI: confidence interval; LOD: limit of
detection; LOQ: limit of quantification.

The percent of recovery was used to assess the accuracy of both assays for GFT
estimation. The results for accuracy assessment for both assays are included in Table 3. For
the routine HPTLC assay, the recoveries of GFT at three distinct QC levels were recorded
as 96.13–103.4%. For the greener HPTLC assay, the recoveries of GFT at three distinct
QC levels were estimated as 98.88–101.5%. These results suggested that both assays were
accurate for GFT estimation, while the greener analytical assay was more accurate than the
routine analytical assay in estimating GFT.

Table 3. The percent recoveries of GFT for the routine HPTLC and the greener HPTLC methods
(mean ± SD; n = 6).

Conc. (ng/Band) Conc. Found (ng/Band) ± SD Recovery (%) CV (%)

Routine HPTLC

50 51.71 ± 1.640 103.4 3.171
400 384.5 ± 9.510 96.13 2.473
700 718.5 ± 16.14 102.6 2.246

Greener HPTLC

50 49.68 ± 0.54 99.36 1.086
400 406.3 ± 3.840 101.5 0.9450

1400 1384.3 ± 12.31 98.88 0.8892

For GFT estimation, the precision of both assays was assessed as intra/inter-assay pre-
cision, and the results were represented as a percentage of the coefficient of variance (%CV).
Table 4 shows the intra-day and inter-day precisions for both assays of GFT estimation.
The CVs of GFT for the intra-day precision are 2.295–3.345% for the routine HPTLC assay.
For the routine HPTLC assay, the CVs of GFT for inter-day precision are 2.298–3.275%.
The CVs of GFT for the intra-day precision are 0.7893–0.8348% for the greener HPTLC
assay. The CVs of GFT for inter-day precision are 0.8559–0.9391% for the greener HPTLC
assay. These results suggested that both assays were precise for GFT estimation. For GFT
estimation, however, the greener analytical method was more precise than the routine
analytical method.
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Table 4. Determination of GFT precision for the routine HPTLC and the greener HPTLC methods
(mean ± SD; n = 6).

Conc.
(ng/Band)

Intraday Precision Inter-Day Precision

Conc.
(ng/Band) SE CV (%) Conc.

(ng/Band) SE CV (%)

Routine HPTLC

50 48.13 ± 1.610 0.6574 3.345 52.21 ± 1.71 0.6982 3.275
400 418.5 ± 11.31 4.618 2.702 382.4 ± 11.94 4.875 3.122
700 681.4 ± 15.64 6.386 2.295 721.3 ± 16.58 6.770 2.298

Greener HPTLC

50 50.31 ± 0.4200 0.1714 0.8348 48.98 ± 0.4600 0.1878 0.9391
400 388.9 ± 3.130 1.278 0.8047 406.2 ± 3.610 1.474 0.8886

1400 1411 ± 11.14 4.548 0.7893 1392 ± 11.92 4.867 0.8559

By making planned deliberate alterations in the components of mobile phases, the
robustness of both assays for GFT estimation was investigated. Table 5 lists the resulting
data of robustness assessment for both assays. For the routine HPTLC assay, the CVs for
GFT are 2.745–2.977%. GFT Rf values were uncovered as 0.3500–0.3700 for the routine
HPTLC assay. The CVs for GFT in the greener HPTLC are 0.9495–0.9632%. GFT Rf values
were uncovered as 0.4200–0.4400 for the greener HPTLC assay. These results suggested that
both assays were robust for GFT estimation. However, when it came to GFT estimation, the
greener HPTLC assay outperformed the routine HPTLC assay.

Table 5. Results of robustness analysis of GFT for the routine HPTLC and the greener HPTLC
methods (mean ± SD; n = 6).

Conc.
(ng/Band)

Mobile Phase Composition
(Chloroform-Methanol) Results

Original Used Conc.
(ng/Band) CV (%) Rf

Routine HPTLC

87:13 +2.0 385.4 ± 10.58 2.745 0.3500
400 85:15 85:15 0.0 392.6 ± 11.69 2.977 0.3600

83:17 −2.0 412.5 ± 12.12 2.937 0.3700
Greener HPTLC

Mobile phase composition (ethanol-cyclohexane)

82:18 +2.0 391.2 ± 3.740 0.9559 0.4200
400 80:20 80:20 0.0 402.3 ± 3.820 0.9495 0.4300

78:22 −2.0 406.9 ± 3.920 0.9632 0.4400

The sensitivity of both assays of GFT estimation was assessed using the “LOD and
LOQ”. The calculated values of “LOD and LOQ” for GFT using both assays are included
in Table 1. For the routine HPTLC assay, the “LOD and LOQ” for GFT were uncovered as
11.14 ± 0.4100 and 33.42 ± 1.230 ng/band, respectively. For the greener analytical assay, the
“LOD and LOQ” for GFT were uncovered as 6.720 ± 0.1000 and 20.16 ± 0.3000 ng/band,
respectively. Both assays were found to be sensitive for GFT estimation based on these
findings, while the greener analytical assay was more sensitive than the routine analytical
assay for GFT estimation.

The selectivity of the suggested method of GFT estimation was investigated by compar-
ing the Rf values and overlaid UV spectra of GFT in marketed tablets with those of standard
GFT. The superimposed UV spectra of standard GFT and GFT in marketed tablets are in-
cluded in Figure 2. The maximum response of GFT in standard GFT and marketed tablets
was studied at a wavelength of 332.0 nm. The selectivity of the suggested HPTLC assay of
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GFT estimation was confirmed by the identical UV spectra, Rf values, and wavelengths of
GFT in standard and commercial tablet dosage forms.
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3.3. Forced Degradation Studies

The forced degradation of routine and greener HPTLC methods were investigated
under various stress settings. Figure 3 and Table 6 present the findings of the routine
HPTLC method. The GFT peak was well-separated at different stress conditions (Figure 3).
Under acid (Figure 3A) and base degradation (Figure 3B) settings, 100.0% of GFT remained
intact and no degradation of GFT was recorded. As a consequence, GFT was sufficiently
stable under acid- and base-degradation settings. The Rf values of GFT under acid- and
base-degradation settings were slightly shifted (Rf = 0.3700 in both cases). An amount of
52.23% of GFT remained after oxidative stress settings, while 47.77% was decomposed
(Table 6 and Figure 3C). With Rf values of 0.0700, 0.2100, and 0.2400, the H2O2-induced
degradation peaks (peaks 1, 2, and 3 in Figure 3C) were resolved. Under oxidative-
degradation conditions, the Rf value of GFT was not shifted (Rf = 0.3600). GFT was also
maintained at 100.0% during thermal stress settings (Table 6), and no degradation of GFT
was recorded. As a consequence, GFT was also stable to thermal stress settings.

Table 6. Results of forced-degradation assessment of GFT at various stress conditions for the routine
HPTLC method (mean ± SD; n = 3).

Stress
Condition

Number of
Degradation Products

(Rf)
GFT Rf

GFT Remaining
(ng/Band)

GFT Recovered
(%)

1M HCl 0 0.3700 400.0 100.0 ± 0.0000
1M NaOH 0 0.3700 400.0 100.0 ± 0.0000
30% H2O2 3 (0.0700, 0.2100, 0.2400) 0.3600 208.9 52.23 ± 1.740
Thermal 0 0.3700 400.0 100.0 ± 0.0000
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and (C) oxidative degradation of GFT using the routine HPTLC method.

Figure 4 and Table 7 present the findings of the greener HPTLC method. The GFT peak
was also well-separated at different stress conditions (Figure 4). Under acid- (Figure 4A)
and base-degradation (Figure 4B) settings, 100.0% of GFT also remained intact, and no
degradation of GFT was recorded. As a consequence, GFT was sufficiently stable under
acid- and base-degradation settings. The Rf values of GFT under acid- and base-degradation
settings were not shifted (Rf = 0.4300 in both cases). An amount of 47.68% of GFT remained
after oxidative stress settings, while 52.32% was decomposed (Table 7 and Figure 4C). With
Rf values of 0.0500, 0.1200, and 0.6900, the H2O2-induced degradation peaks (peaks 1, 2,
and 4 in Figure 4C) were separated. Under oxidative-degradation conditions, GFT’s Rf
value was slightly moved (Rf = 0.4100). GFT was also maintained at 100.0% during thermal
stress settings (Table 7), and no degradation of GFT was recorded. As a consequence, GFT
was also stable to thermal stress settings.

Table 7. Results of forced-degradation assessment of GFT at various stress conditions for the greener
HPTLC method (mean ± SD; n = 3).

Stress
Condition

Number of
Degradation Products

(Rf)
GFT Rf

GFT Remaining
(ng/Band)

GFT Recovered
(%)

1M HCl 0 0.4300 400.0 100.0 ± 0.0000
1M NaOH 0 0.4300 400.0 100.0 ± 0.0000
30% H2O2 3 (0.0500, 0.1200, 0.6900) 0.4100 190.7 47.68 ± 1.630
Thermal 0 0.4300 400.0 100.0 ± 0.0000
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Under oxidative-degradation settings, the maximal degradation of GFT was recorded
using routine and greener HPTLC methods. These findings suggested that GFT could
be discovered in the presence of its degradation products utilizing routine and greener
HPTLC methods. These findings pointed to the stability-indicating nature of routine and
greener HPTLC procedures. For GFT detection, both approaches were stability-indicating.

3.4. Application of Routine and Greener HPTLC Assays in GFT Estimation in Marketed Tablets

For the estimation of GFT in marketed tablets, both assays were applied. The chro-
matogram of GFT from marketed tablets was verified by comparing its single TLC spot
at Rf = 0.3600 ± 0.0100 for GFT with standard GFT using the routine HPTLC assay. The
chromatographic peak for GFT in marketed tablets was identical to that of standard GFT
using the routine HPTLC assay. The chromatogram of GFT from marketed tablets was
verified by comparing its single TLC spot at Rf = 0.4300 ± 0.0100 for GFT with standard
GFT using the greener HPTLC assay. The chromatographic peak of GFT in marketed tablets
was also identical to that of standard GFT using the greener HPTLC assay. In addition, no
additional peaks of excipients were detected in marketed tablets using both assays, sug-
gesting no interaction between GFT and tablet excipients. The amount of GFT in marketed
tablets was calculated using GFT calibration curve for both methods. Using the routine
HPTLC assay, the assay of GFT in marketed tablets was uncovered as 92.45 ± 1.841%.
Using the greener HPTLC assay, the assay of GFT in marketed tablets was uncovered as
99.74 ± 1.322%. Based on these results, the greener HPTLC assay is considered superior
over the routine HPTLC assay for pharmaceutical assay of GFT.

3.5. Greenness Estimation

Various methodologies are used for the greenness evaluation of pharmaceutical an-
alytical methods [26–30], while AGREE exclusively utilizes all 12 GAC components for
greenness assessment [28]. Accordingly, the greenness index of both assays was assessed
using “AGREE: The Analytical GREENness Calculator (version 0.5, Gdansk University
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of Technology, Gdansk, Poland, 2020)”. Figure 5 depicts a representative diagram for the
AGREE index of routine and greener HPTLC assays. For routine and greener HPTLC
assays, the AGREE index was found to be 0.44 and 0.77, respectively. These results demon-
strated the excellent greenness index of the greener HPTLC assay compared to the routine
HPTLC assay for GFT estimation.
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4. Conclusions

HPTLC methods of GFT estimation are scarce in the literature. Furthermore, greener
analytical methods for GFT estimation are also lacking in the literature. As a consequence,
this work aims to invent and validate a sensitive and greener HPTLC approach for GFT
estimation in marketed tablet dosage forms, as opposed to the routine HPTLC method.
For GFT measurement, the greener HPTLC assay is more linear, accurate, precise, robust,
and sensitive than the routine HPTLC assay. The percent assay of GFT was higher using
the greener HPTLC assay than the routine HPTLC assay. Both the methods were found
to be selective, with stability-indicating properties. The AGREE assessment suggested
the excellent greenness index of the greener HPTLC assay over the routine HPTLC assay.
Based on these data, the greener HPTLC assay is considered superior to the routine HPTLC
assay for estimating GFT in commercial tablets.
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