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Abstract: While traditional one-dimensional and three-dimensional numerical simulation techniques
require a lot of tests and time, emerging Machine Learning (ML) methods can use fewer data to obtain
more information to assist in engine development. Combustion phasing is an important parameter
of the spark-ignition (SI) engine, which determines the emission and power performance of the
engine. In the engine calibration process, it is necessary to determine the maximum brake torque
timing (MBT) for different operating conditions to obtain the best engine dynamics performance.
Additionally, the determination of the combustion phasing enables the Wiebe function to predict
the combustion process. Existing studies have unacceptable errors in the prediction of combustion
phasing parameters. This study aimed to find a solution to reduce prediction errors, which will
help to improve the calibration accuracy of the engine. In this paper, we used Support Vector
Regression (SVR) to reconstruct the mapping relationship between engine inputs and responses, with
the hyperparametric optimization method Gray Wolf Optimization (GWO) algorithm. We chose the
engine speed, load, and spark timing as engine inputs. Combustion phasing parameters were selected
as engine responses. After machine learning training, we found that the prediction accuracy of the
SVR model was high, and the R2 of CA10−ST, CA50, CA90, and DOC were all close to 1. The RMSE
of these indicators were close to 0. Consequently, SVR can be applied to the prediction of combustion
phasing in SI gasoline engines and can provide some reference for combustion phasing control.

Keywords: support vector regression; machine learning method; combustion phasing prediction;
ignition-spark engine

1. Introduction

As carbon peak emissions and carbon-neutral strategies continue to advance, higher
demands are being placed on engine performance [1,2]. The internal combustion engines
will continue to be the major power sources, especially for heavy-duty trucks and off-road
applications [3,4]. The new requirements of next generation engines are more efficient
and cleaner combustion [5–7]. The use of updated tools to assist engine design, which can
shorten the period of engine design and reduce development costs, is a new trend [8,9].
In the process of engine research and development, numerical simulation is often used to
assist the design [10,11], thus improving the efficiency of development and reducing the
number of tests. Three-dimensional (3D) simulation technology can simulate the flow and
combustion processes in the cylinder well [12,13]. However, it requires complex chemical
mechanisms and high computational power, which makes 3D simulation computationally
expensive [14,15]. Zero-dimensional (0D) and one-dimensional (1D) simulation techniques,
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focusing on the overall performance of the powertrain [16], can be used to analyze in-
cylinder heat transfer. Semi-empirical models, such as Wiebe functions [17], are used
for combustion calculations. Compared with 3D simulation technology, 1D simulation
requires less calculation time but more test data for calibrations [18]. More recently, with the
development of machine learning (ML) and computer performance, data-driven surrogate
models have become an approach to engine development [19–21]. ML models do not
require complex physical models, they are reconstructions of the engine input and output
relationships and reduce the number of tests [22]. The prediction of output parameters is
used to help the engine development process. Such as engine power performance [23–25],
emission performance [19,26], exhaust gas temperature [27,28].

Combustion phasing parameters are vital to engine combustion control [29–31]. The
combustion phasing parameters reflect the in-cylinder combustion and determine the
dynamic performance and emissions of the engine [32,33]. The combustion phasing pa-
rameters help to search for maximum brake torque (MBT) timing, under which the engine
will have the best dynamic performance and the lowest fuel consumption rate. Therefore,
during engine calibration, the combustion phasing parameters should be controlled. For
example, the crank angle where 50% of fuel has burnt (CA50) should be limited in the range
of 5 to 11 CAD ATDC for most ignition engines [30]. Determining the optimal combustion
phasing is the primary work to be done during engine calibration, which obtains a balance
between engine efficiency and emissions. Traditionally, the engine calibration work is
carried out by dynamometer tests, which are time consuming and expensive [34]. Worse,
the engine dynamometer tests may output different performances at different times, such as
the different weather and different seasons [35]. Additionally, the unavoidable noise from
the experimental tests also contributes to the uncertainties [36]. Furthermore, combustion
phasing is required for a robust Wiebe function. The Wiebe function can only predict the
combustion in the cylinder if accurate combustion phase parameters are provided [37].
Generally, the prediction of combustion phasing is a key technology.

Therefore, a fast and efficient tool to assist engine mapping is needed to reduce costs
and effort. The machine learning approach has been approved to be such a tool because
it can eliminate the noise and effectively establish the relationship between engine oper-
ational parameters and engine responses [38,39]. In recent years, many researchers have
combined machine learning methods to predict the combustion process [40,41] and to
control the combustion phasing parameters of engines [42,43]. Edward et al. [44] applied a
clustering method based on fuzzy logic predicates to the combustion stage identification
of internal combustion engines. Huanyu et al. [45] adopted an extreme learning machine
(ELM) to learn and estimate the in-cylinder pressure sequence in the combustion process
and combustion stage. They controlled the in-cylinder combustion in real-time by con-
trolling the combustion phasing. Wang et al. [46] established the oxidizer temperature,
pressure, and mixture fraction for a dual-fuel engine by using high-dimensional input-
output relationship (HDMR) and Convolutional Neural Networks (CNN) methods. The
relationship between strain rate and ignition delay showed that machine learning methods
could capture the ignition behavior of dual-fuel engines. Liu et al. used random forest
(RF) [47] and K-nearest Neighbors (KNN) algorithms [48] to predict CA50 and the location
of peak cylinder pressure of a natural gas engine. However, the error of the prediction
results is slightly larger in the existing studies, which may affect the calibration accuracy. In
terms of combustion phase parameter prediction, according to the literature, the prediction
accuracy of the RF [47] and KNN [48] methods are not high enough, with the RMSE around
3 CAD. The ANN method can reduce the RMSE to 1.4 CAD [24], but such predictions are
still difficult to use for accurate engine calibration and robust Wiebe function modification.
Generally, these machine learning methods have limited accuracy in predicting combustion
phasing.

Support Vector Regression (SVR) is a suitable machine learning method for nonlinear
and complex regression problems [49,50], based on Support Vector Machine (SVM). More-
over, it has some applications in engine responses prediction [22,51]. Najafi et al. [52] used
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SVR model to establish the relationship between engine fuel composition and emissions.
As shown in Table 1, SVR performs well in predicting many engine parameters, however,
at present. However, SVR model is seldom used to predict the combustion phasing of spark
ignition (SI) gasoline engines. Consequently, the goal of this study is to find a solution to
reduce the prediction error, which can help improve the calibration accuracy of engines.

Table 1. The application of SVR model for different engine parameters prediction.

Study Engine Type Input Output Performance (R2)

[53] Diesel engine
Rail pressure, Injection timing, Charge

pressure, Charge temperature, Max
pressure

Max pressure 0.99

[54] Diesel engine Speed, brake mean effective pressure
(BMEP) Soot emissions 0.97

[55] Hydrogen enriched engine Excess air ratio, speed, injection timing,
Fuel, hydrogen volume percentage Cyclic variation of speed 0.99

[56] Diesel engine Engine speed, amount of injected fuel,
rail pressure, BMEP BMEP 0.99

[57] Hydrogen enriched engine Excess air ratio, hydrogen volume
percentage, injection timing CO emissions 0.99

[58] Diesel engine Injection pressure, injection timing Max pressure 0.99

In this paper, the application of SVR-GWO algorithm in engine combustion phasing
parameters prediction was discussed, which contributed to the determination of MBT and
the modification of the Wiebe function. A calibrated 1D model of the SI gasoline engine
was developed and simulation experiments were performed. Then, the SVR algorithm
was used for fitting and the Gray Wolf Optimization (GWO) algorithm [59] was used to
optimize the hyperparameter set. The engine speed, load, and spark timing were used to
model the engine combustion phasing parameters. The prediction results were compared
with the 1D simulation results. Finally, the prediction curves of engine performance and
engine input parameters were generated based on the SVR model.

2. Data Collection and ML Modeling
2.1. SI Engine Setup

A single-cylinder 0.5 L SI gasoline engine with natural suction and port fuel injection
was selected to study in this research. GT-Power software was used for the numerical
simulation software [60]. Based on the actual engine geometry parameters, the structural
dimensions of the 1D simulation model are determined as inputs [61], including the cylinder
diameter, stroke, and compression ratio of the engine, as shown in Figure 1. The important
parameters are shown in Table 2. The calibration of this simulation model can be seen in
the relevant study [62]. GT-Power has several numerical simulation models for simulating
the complex in-cylinder combustion processes in internal combustion engines, among
which the “EngCylCombSITurb” [63] predictive turbulent combustion model is used in the
numerical simulations. In the simulation model, “flame kernel growth multiplier” (FKMG)
and “turbulent flame speed multiplier” (TFSM) are two key parameters. By adjusting these
parameters, the combustion phasing in the engine cylinder can be calculated accurately.

Table 2. Engine specifications.

Engine Type Single-Cylinder 4-Stroke SI Gasoline Engine

Stroke × Bore 86.07 mm × 86 mm
Intake valve open 9 CAD BTDC
Intake valve close 84 CAD ABDC

Exhaust valve open 55 CAD BBDC
Exhaust valve close 38 CAD ATDC
Compression ratio 9.5

Connecting rod length 175 mm
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Figure 1. Simulation model of SI engine.

In this paper, CA10 is the crank angle (CA) where 10% fuel burnt, and CA10−ST (the
duration between spark timing to CA10) represents ignition delay. CA50 is the CA where
50% of fuel burnt, representing the middle point of combustion. CA90 is the CA where
90% of fuel burnt, representing the moment when the combustion finishes. DOC is the
combustion duration defined by the duration between CA10 to CA90. These combustion
phasing parameters can be calculated by a 1D model calculation of GT-Power.

To obtain the input data set for the ML method, three engine input parameters were
selected: engine speed, load (controlled by intake pressure), and spark timing, as shown
in Table 3. The engine speed was set from 1000 to 4000 RPM with 200 RPM intervals. The
intake pressure was set from 0.5 to 1 bar with 0.1 bar intervals. The spark timing was set
from −40 to 0 CAD ATDC with 2 CAD intervals, as shown in Table 3.

Table 3. Simulation setup.

Title Range Step

Engine speed 1000~4000 RPM 200 RPM
Intake pressure 0.5~1 bar 0.1 bar

Spark timing −40~0 CAD ATDC 2 CAD

As shown in Figure 2, the 1D simulation model in GT-Power was calibrated, and
then the data was calculated from the 1D model, without noise [58]. We used the training
dataset to build the ML surrogate model. Since this paper focused on the applicability of
machine learning methods, the data must be free from noise caused by experiments, so
that the sources of prediction errors can be analyzed. In this way, the ability of machine
learning methods to predict the combustion phasing parameters can be judged.
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2.2. SVR Method

SVR is a model derived from SVM and its structure is similar to ANN [64], as shown
in Figure 3. The structure of SVR has an input layer, hidden layer, and output layer. By
learning the training dataset of the input layer, the parameters of the hidden layer can be
obtained automatically.
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Figure 3. Structure of support vector regression.

By using kernel functions in the SVR model, feature vectors of sample data can be
mapped from low dimension to high dimension. The hyperplane which brings all the data
in a set to the closest distance to the plane can be found, as shown in Figure 4. ε represents
the maximum deviation.
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The regression function of the SVM is shown below:

f (x)= ω·x + b (1)

where ω and b are the hyperplane coefficients; x is the input feature vector; and f (x)
represents the predicted value of the input feature vector.

To find the most value regression function, the soft marginal loss function (SMLF) is
established [56]:

min 1
2 ωTω + C 1

N

N
∑

i=1
L( f (x i), yi) (2)

L(y) =
{

0, | f (xi)− yi| ≤ ε

| f (xi)− yi| − ε, | f (xi)− yi| ≥ ε
(3)

where C represents the penalty factor; y represents the true value; and L represents the loss
function.
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When slack variables ξ and ξ?i are introduced to the problem, Equation (4) can be
expressed as [65]:

min
1
2

ωTω + C
n

∑
i=1

(ξi+ξ?i )

s.t.


yi −ω·xi−b ≤ ε + ξ i

yi −ω·xi − b ≤ ε + ξ?i
ξi, ξ?i ≥ 0

(4)

By establishing the Lagrangian function and the Karush Kuhu Tucker (KKT) condi-
tion [66], the final regression function can be expressed as:

f (x)= ω·x + b =
l

∑
i=1

(
ai − a∗i

)
K(xi·x)+b (5)

where l is the number of SVR machines; αi represents the optimal solution; and K is the
kernel function, when satisfying the Mercer condition [40], K(xi, x) = Φ(xi)·Φ(xj).

Among the kernel functions, RBF can reflect the nonlinear response of the engine
well [40]. Therefore, RBF was chosen in this paper, and by adjusting the kernel function
coefficients γ, RBF would have high flexibility. The function can be expressed as [50]:

K
(
xi, xj

)
= exp

(
−γ|x i − xj

∣∣2), γ > 0 (6)

Most importantly, the penalty factor C, the kernel function coefficient γ, and the
maximum deviation ε will all affect the result of SVR [67]. These parameters can be set in
the LibSVM [68], which is an efficient SVM regression learning toolbox written by Professor
Lin Chih-Jen.

2.3. Gray Wolf Optimization Method

The Gray Wolf Optimization (GWO) algorithm is a novel intelligent operational
optimization algorithm proposed by Mirjalili et al. [59] for simulating the hunting behavior
of wolves. Generally, the three gray wolves with the highest fitness value were regarded as
α, β, and γ wolf. Their values determine the optimization process.

The three main definitions of the GWO algorithm are as follows.
Before predation, the position of the prey needs to be determined first; that is, the

distance between the prey and gray wolf needs to be solved [59]:

D =
∣∣CXp(t)− X(t)

∣∣ (7)

where D is the distance between a gray wolf and its prey; Xp is the position vector of prey;
X is the position vector of a gray wolf; and C is the coefficient vector, C = 2r1, r1 ∈ (0, 1).

Then, the position vector of the next generation of gray wolves X(t + 1) is obtained
as [59]:

X(t + 1)= Xp(t)− µD (8)

µ = 2ar2 − a (9)

where µ is the convergence vector; and r2 is a random vector of a. The component of a has
an initial value of 2 and decreases to 0 as the number of iterations increases.

The α wolf is closest to its prey. The distance between other gray wolves and α, β
wolves, and γ wolves is as follows [59]:

Dk = |CiXk(t)− X(t)| (10)

Xi= Xk − µiDk (11)

Xp(t + 1) = X1+X2+X3
3 (12)
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where k = α, β, γ; and i = 1, 2, 3.

2.4. Data Processing

Normalization can reduce the span of data and improve the accuracy of prediction in
ML methods. Therefore, in this research, the normalization method of [−1, 1] was chosen,
which can be shown as:

y = 2×
(

x − xmin
xmax − xmin

)
− 1 (13)

where x and y are the basic data and normalized data, respectively. After obtaining the ML
prediction results, it is necessary to perform the inverse normalization operation.

To evaluate the performance of the SVR method, the dataset generated by the 1D
simulation was divided into the training data (80%) and validation data (20%) sets, as shown
in Figure 5. Studies by [69,70] indicated that this percentage separation was recommended
for the engine model in this research.
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To further evaluate the success of the training model, steady-state data sets were uti-
lized, as shown in Figure 5. At 1 bar intake pressure, combustion phasing predictions under
different spark timings with certain speeds (i.e., 1000, 2600, and 4000 RPM) were analyzed.
Additionally, at −20 CAD ATDC spark timing, combustion phasing predictions under
different speeds with certain loads (i.e., 0.6, 0.8, and 1.0 bar) were analyzed. Furthermore,
at 2600 RPM, combustion phasing predictions under different loads with certain spark
timings (i.e., −40, −20, and 0 CAD ATDC) were analyzed.

The statistical determination coefficient (R2) and root mean square error (RMSE) can
be used to evaluate the prediction performance. R2 and RMSE are defined as follows:

R2 =
∑n

i=1 (ŷi − y)2

∑n
i=1 (yi − y)2 (14)

RMSE =

√
1
n

n
∑

i=1
|yi − ŷi|2 (15)

where ŷi is the data predicted by SVR model; y is the average value of the experimental
data; yi is the measured data; and n is the amount of data. When R2 and RMSE are close to
1 and 0, respectively, it means that the predicted value matches well with the measured
value and the prediction is accurate.
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The process of building the SVR-GWO model is shown in Figure 6. First, the data are
preprocessed, including loading and normalization, and then the optimal set of hyperpa-
rameters is obtained by the GWO algorithm. Finally, the predictive capability of the SVR
model obtained by training is evaluated and de-normalization will be carried out.
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3. Results and Discussion
3.1. Combustion Phasing Prediction

Figures 7–10 show the comparison of the measured data with SVR prediction results
and the distribution of prediction errors. The choice of hyperparameters is shown at the top
of each figure. Study [55] shows that, as the value of ε decreases, the calculation amount of
the model will increase, but when the value of ε increases, the prediction accuracy of the
model will decrease, so the selection of ε is 0.01. The selection of C and γ was obtained by
GWO algorithm.

Hyperparameter set : C = 289.58; γ= 2.88; ε = 0.01

Hyperparameter set : C = 82.88; γ = 0.23; ε = 0.01

Hyperparameter set : C = 178.82; γ = 0.39; ε = 0.01

Hyperparameter set : C = 235.18; γ= 2.51; ε = 0.01
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dataset; and (d) prediction error of validation.

For the training dataset, the R2 of CA10−ST, CA50, CA90, and DOC were 0.9996,
0.9999, 0.9999, and 0.9997, respectively. The RMSE of these indicators were 0.0332 CAD,
0.1312 CAD, 0.1788 CAD, and 0.0528 CAD. As for the validation dataset, the R2 of CA10−ST,
CA50, CA90, and DOC were 0.9994, 0.9999, 0.9999, and 0.9994, respectively. The RMSE
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of these indicators were 0.0437 CAD, 0.1317 CAD, 0.1867 CAD, and 0.0620 CAD. SVR
predicted each indicator accurately, especially CA50 and CA90, with R2 very close to 1.
This is mainly due to the low noise of the simulated experimental data, so the fluctuation
of the results is also small. The prediction performance of SVR model was better than RF,
KNN, and ANN [24,47,48]. The SVR method could learn the principle of data variation
well. In terms of error distribution, the errors of CA10−ST and DOC are small with the
maximum errors less than 0.2 CAD, while the maximum errors of both CA50 and CA90 are
larger than 0.3 CAD. This was because CA50 and CA90 increased significantly with the
delay of spark timing, resulting in a larger span of their data and a larger prediction error.
For each parameter, the prediction results of the training dataset exceeded those of the
validation dataset, but the differences were small, indicating that the model generalization
ability of SVR was strong.

3.2. Steady-State Prediction

In the previous section, the prediction accuracy of SVR model for each parameter was
evaluated from the perspective of statistical results. To investigate whether the SVR model
learned the complex combustion process, this section presents a comparison of simulated
experimental data and model predictions under different operating conditions. Based on
the test dataset divided in Section 2.4, the prediction performance of the SVR model with
different operating conditions was discussed.

Figure 11 shows the comparison between calibrated simulation experimental data
and SVR model for the effect of spark timing on the combustion phasing. CA10−ST first
decreased, and then increased with the spark timing delay, as shown in Figure 11a. CA50
increased with the delay of spark timing, as shown in Figure 11b. The optimum CA50
for a normal internal combustion engine is from 5 to 11 CAD ATDC [30]. Since the SVR
model has good predictive performance, it can be used to help select the best spark timing
for different operating conditions. The trends of CA90 and DOC were similar. As shown
in Figure 11d, when the spark timing increased above −10 CAD ATDC, the DOC in the
medium speed condition exceeds that in the high-speed condition. This was because, under
high-speed conditions, the lag time of combustion increased with the delay of sparking
timing. Generally, SVR model can successfully capture these changes.
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Figure 12 shows the comparison between calibrated simulation experimental data and
SVR model for the effect of engine speed on the combustion phasing. When the speed
increased from 1000 to 2600 RPM, the combustion phasing parameters increased; when the
speed increased above 2600 RPM, the combustion phasing did not change significantly. It
can be seen that the effect of engine speed was limited because the flame propagation speed
increased less when the engine speed increased. Additionally, the prediction accuracy of
CA50 and CA90 was lower than that of CA10−ST and DOC. Under certain conditions, the
predicted values deviated from the experimental values. This indicates that SVR has some
limitations in learning the speed influence law, but in general, it can predict accurately.
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Figure 13 shows the comparison between calibrated simulation experimental data
and SVR model for the effect of intake pressure on the combustion phasing. It can be seen
that the combustion phase parameter decreased as the inlet pressure increased. This was
because the airflow velocity increased with the increasing intake pressure, which improved
the speed of flame front surface propagation. Therefore, the values of CA10−ST and DOC
decreased, while the timing of CA50 and CA90 appeared in advance.
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3.3. Engine Map Prediction

In Section 3.3, SVR model can learn the combustion phasing variation under different
operating conditions. In engine calibration, combustion phasing parameters are often used
to assist in the determination of MBT. When the spark timing is MBT, the engine is in
optimal condition, with maximum torque and minimum fuel consumption. When the
spark timing advances, it will make the engine cylinder do more work in the compression
stroke, resulting in a waste of energy. On the contrary, when the spark timing is delayed,
the piston will locate in the expansion stroke and the in-cylinder pressure of the engine
will drop, which is not conducive to the full development of combustion and increases
fuel consumption. To reflect the relationship between combustion phasing parameters and
operation parameters, The engine map of combustion phasing was predicted by using the
SVR model, as shown in Figures 14–17.
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Figure 14. CA10−ST versus different operation parameters combination. (a,d,g,j) Prediction perfor-
mance when spark timing and engine speed change (intake pressure = 1 bar); (b,e,h,k) prediction
performance when engine speed and intake pressure change (spark timing = −20 CAD ATDC);
and (c,f,i,l) prediction performance when spark timing and intake pressure change
(engine speed = 2600 RPM).
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Figure 15. CA50 versus different operation parameters combination. (a,d,g,j) Prediction performance
when spark timing and engine speed change (intake pressure = 1 bar); (b,e,h,k) prediction perfor-
mance when engine speed and intake pressure change (spark timing = −20 CAD ATDC); and (c,f,i,l)
prediction performance when spark timing and intake pressure change (engine speed = 2600 RPM).
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Figure 16. CA90 versus different operation parameters combination. (a,d,g,j) Prediction performance
when spark timing and engine speed change (intake pressure = 1 bar); (b,e,h,k) prediction per-
formance when engine speed and intake pressure change (spark timing = −20 CAD ATDC);
and (c,f,i,l) prediction performance when spark timing and intake pressure change
(engine speed = 2600 RPM).
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Figure 17. DOC versus different operation parameters combination. (a,d,g,j) Prediction performance
when spark timing and engine speed change (intake pressure = 1 bar); (b,e,h,k) prediction perfor-
mance when engine speed and intake pressure change (spark timing = −20 CAD ATDC); and (c,f,i,l)
prediction performance when spark timing and intake pressure change (engine speed = 2600 RPM).

As shown in Figure 14, CA10−ST decreased with the increasing intake pressure and
slightly increased with increasing engine speed. Under different operation conditions, there
was a spark timing to minimize CA10−ST. The smaller CA10−ST means a shorter flame
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development period, more stable engine operation, and less pressure fluctuation between
cycles [70].

As shown in Figures 15 and 16, CA50 and CA90 have similar variation patterns.
They increase with the delay of spark timing and are most sensitive to spark timing in
all combustion phasing parameters. CA50, as an indicator describing the combustion
characteristics in the combustion chamber, can maximize the thermal efficiency of the
engine when its value is between 5 and 11 CAD [30]. When CA50 appears too early, a
large amount of combustion energy will be consumed in the upstream region of the piston,
which will reduce the engine efficiency. When CA50 retards too late, the cylinder pressure
drops, and combustion is inadequate due to the downward movement of the piston. It can
be seen in Figures 15j–l and 16j–l that under some operation conditions, the relative error
values are quite large because the values of the 1D simulation results are close to zero. It
can be found that the difference between the actual predicted value and the reference value
is very small. CA50 and CA90 indicate the combustion progress rather than the duration.
The error is acceptable and does not affect the prediction of law. Therefore, the SVR map
can be used to predict the optimal spark timing for each operating condition.

The prediction performance of DOC can be seen in Figure 17. DOC has an impact on
emissions and performance [71,72]. On the one hand, if DOC is too short, the conversion
rate of chemical energy to heat energy decreases. On the other hand, if DOC expands too
long, the time of the in-cylinder heat transfer process increases, resulting in excessive heat
loss. As the speed varies, an optimal DOC can be found [33] to optimize the dynamic and
emission performance of the engine. Therefore, the SVR engine Map can be used to control
DOC by controlling operation parameters.

4. Conclusions

Combustion phasing indicated the in-cylinder combustion, high accuracy prediction
of combustion phasing parameters is necessary for the determination of MBT and the
modification of Wiebe function. The RMSE values in other research are above 1 CAD, which
is not acceptable for highly accurate calibration and control. In this paper, the application
of SVR-GWO algorithm in the prediction of engine combustion phasing parameters was
investigated. Since the hyperparameter search method of GWO was used, the adjustment
of hyperparameters was more convenient. For both the training and validation dataset, the
prediction performance of combustion phasing was improved, with RMSE close to 0 and
R2 close to 1. Compared with the previous fitting results, the RMSE was reduced by more
than 87%. Additionally, the map prediction of the engine shows the potential of the engine
calibration and Wiebe function correction. In the future, we will study the effect of noise on
the algorithm.

Author Contributions: Q.W., conceptualization, methodology, simulation, and writing—draft prepa-
ration; R.Y., validation and simulation; X.S., validation and draft preparation; Z.L., validation,
methodology, and simulation; Y.Z., analysis and simulation; J.F., analysis and supervision; R.L., draft
preparation. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: Thanks for the equipment and the right to use the software provided by Power
Machinery and Vehicular Engineering Institute, Zhejiang University.

Conflicts of Interest: The authors declare no conflict of interest.



Processes 2022, 10, 717 19 of 22

Abbreviations

ABDC After bottom dead center
ATDC After top dead center
BBDC Before bottom dead center
BMEP Brake mean effective pressure
BTDC Before top dead center
CA Crank angle
CA10 The crank angle where 10% of fuel has burnt
CA10−ST The duration between spark timing to CA10
CA50 The crank angle where 50% of fuel has burnt
CA90 The crank angle where 90% of fuel has burnt
CAD Crank angle degree
CNN Convolutional Neural Networks
DOC The duration between CA10 to CA90
ELM Extreme learning machine
GWO Gray Wolf Optimization
HDMR High-dimensional input–output relationship
KNN K-nearest Neighbors
MBT Maximum brake torque
ML Machine Learning
RF Random Forest
SI Spark ignition
SVR Support Vector Regression
0D Zero-dimensional
1D One-dimensional
3D Three-dimensional
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