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Abstract: The progress of high-efficiency non-precious metal anode catalysts for direct seawater
splitting is of great importance. However, due to the slow oxygen evolution reaction (OER) kinetics,
competition of chlorine evolution reaction (ClER), and corrosion of chloride ions on the anode, the
direct seawater splitting faces many challenges. Herein, we develop a perovskite@NiFe layered
double hydroxide composite for anode catalyst based on Ba0.5Sr0.5Co0.8Fe0.2O3 (BSCF) and NiFe
layered double hydroxide (NiFe-LDH) heterostructure. The optimized BSCF@CeO2@NiFe exhibits
excellent OER activity, with the potential at 100 mA cm−2 (Ej = 100) being 1.62 V in the alkaline
natural seawater. Moreover, the electrolytic cell composed of BSCF@CeO2@NiFe anode shows an
excellent stability, with negligible attenuation during the long-term overall seawater splitting with
the remarkable self-recovery ability in the initial operation stage, and the direct seawater splitting
potential increasing by about 30 mV at 10 mA cm−2. Our work can give a guidance for the design
and preparation of anode catalysts for the direct seawater splitting.

Keywords: seawater electrolysis; perovskites; layered double hydroxide; oxygen evolution reaction;
anode catalysts

1. Introduction

Hydrogen with high energy density (142 MJ kg−1) and clean nature can hold great sig-
nificance for “carbon neutrality” and has been widely hypothesized to be the most promis-
ing sustainable energy in the future [1–5]. Using intermittent clean energies such as wind
energy and solar energy to split fresh water is well considered as one of the most sustainable
H2 production technologies [6]. Generally, water splitting (2H2O + energy→ 2H2 + O2 )
consists of two half-reactions, the oxygen evolution reaction (OER) on the anode side and
the hydrogen evolution reaction (HER) on the cathode side. The kinetic process of OER is
much slower than that of HER due to the fact that the former involves a complicated four-
electron transfer, while the latter only involves two-electron transfer [7–9]. Therefore, the
OER performance of the anode is critical to the water splitting efficiency.

Compared with fresh water, seawater occupying about 97% of the Earth’s water resources
is inexhaustible [10]. Therefore, splitting seawater to produce H2 instead of fresh water has
received more and more attention due to the following facts [11,12]. Firstly, seawater is a
very abundant resource on our planet compared with the scarce freshwater resources [11].
Secondly, the direct seawater splitting without desalination can simplify electrolysis systems by
eliminating the complex desalination equipment [13]. Finally, the direct seawater splitting is of
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great importance. However, the direct seawater splitting faces many challenges, especially for
the anode sides [3]. The biggest challenges for direct seawater splitting are the chlorine evolu-
tion reaction (CER, 2Cl− → Cl2 + 2e−, E0 = 1.36 V vs. reversible hydrogen electrode (RHE))
and the corrosion of chloride ions on anode electrocatalysts. It is well known that the
chloride ion content in seawater is about 0.5 M [14], and its oxidation to form Cl2 in-
volves only a two-electron/proton transfer process, which will compete with OER on
the anode side. Under alkaline conditions (pH >7.5), the equilibrium potential of CER
(2Cl− → Cl2 + 2e−, Cl2 + 2OH− → OCl− + H2O, E0 = 1.72 VRHE ) is large, being about
490 mV higher than that of OER (1.23 V vs. RHE) [15]. The Cl2 produced by CER in the
alkaline medium will further combine with the OH− in the electrolyte to form hypochlo-
rite, which aggravates the corrosion on the anode catalyst. In addition, during the direct
splitting of seawater to produce hydrogen [15], the bacteria, microorganisms, suspended
solid particles, and some metal ions (such as Mg2+, Ca2+, etc.) that can easily form hydrox-
ide precipitation (M2+, x+ + OH− → M(OH)2, x, M = Mg2+, Ca2+, etc. ) also have serious
impacts on OER catalysts. Therefore, direct seawater splitting should follow several con-
ditions: (1) adopting alkaline electrolyte to suppress CER; (2) the anode voltage below
1.72 V (vs. RHE) to avoid the generation of ClO− and ensure an approximative 100% OER;
and (3) the electrodes on both sides have good activity, selectivity, corrosion resistance,
and durability.

Recently, some high-efficiency non-precious metal catalysts including transition metal ox-
ides [16–22], nitrides [1,23,24], phosphides [25,26], sulfides [27–30], and (oxy)hydroxides [31–34],
etc. have been developed for seawater splitting. Among them, NiFe-layered double hydrox-
ide (NiFe-LDH) have great advantages of a low cost, facile synthesis process and superior
OER activity [15]. Nevertheless, the OER activity of NiFe-LDH degrades rapidly at high
current densities (j > 100 mA cm−2), and few NiFe-LDH catalysts can retain 80% of their
initial current density after 24 h in seawater [35]. Hence, its stability needs to be further
improved for practical seawater splitting [36].

In the past few years, some Co-based perovskites with excellent OER activities and
stabilities have been exploited as anode catalysts for water oxidation [37–40]. Among these
Co-based perovskites, Ba0.5Sr0.5Co0.8Fe0.2O3 (BSCF) even shows an acceptable OER cat-
alytic activity compared with the state-of-the-art iridium and ruthenium dioxides (IrO2
and RuO2) [27,41]. The latest work indicates that the compositing cerium oxide (CeO2)
can significantly improve the OER catalytic properties of some metal compounds such
as LaFeO3 [42], RuO2 [43], and NiMn-LDH [44]. CeO2 has a strong oxygen accumulation
ability and lots of oxygen vacancies [45], and its (111) facet can promote OER catalysis.
Therefore, it is easy to assume that compositing NiFe-LDH, CeO2 with BSCF can construct
a robust anode catalyst with good OER performances for seawater splitting.

Herein, we synthesized a novel compositing anode catalyst of BSCF@CeO2@NiFe
with a heterogeneous structure by a facile precipitation method. The BSCF@CeO2@NiFe
catalyst exhibits much higher OER activity (with Ej = 100 = 1.52 V vs. RHE) than that of
NiFe-LDH in alkaline medium. Moreover, our BSCF@CeO2@NiFe has high durability in
the alkaline natural seawater, suggesting that it can be used as a promising candidate for
seawater splitting.

2. Materials and Methods
2.1. Synthesis of Materials

All the reagents mentioned in this work were analytical grade (AR) and purchased
from commercial channels without further processing unless otherwise specified. The clas-
sic sol-gel method was adopted to synthesize the Ba0.5Sr0.5Co0.8Fe0.2O3 (BSCF) according
to our previous work [46]. The stoichiometric ratio of Co(NO3)2·6H2O, Fe(NO3)3·9H2O,
Ba(NO3)2 and Sr(NO3)2 (Sinopharm Chemical Reagent Co., Ltd. Ningbo, China) were
dissolved into 250 mL deionized (DI) water followed by adding citric acid (CA) and
ethylenediaminetetraacetic acid (EDTA, Aladdin Ltd., Shanghai, China). The total mole
of metal ions:CA:EDTA = 1:1.5:1, and the pH value of the mixture was adjusted to about
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6 with NH3•H2O. Then, the mixture was vigorously stirred at a temperature of 80 ◦C.
After the gel formed, it was placed at 180 ◦C and kept for 10 h in air. Subsequently, the dry
gel was sintered at 950 ◦C for 5 h, and its heating rate was 100 ◦C h−1. Finally, the obtained
powder was further ball-milled for 1 h to obtain BSCF.

The subsequent loading of CeO2 on BSCF are synthesized by a precipitation method.
For synthesizing BSCF@CeO2, 1 mmol (0.218 g) BSCF was dispersed in 1 mL ethanol, then
100 mL DI water was added with continuous stirring at room temperature. Then, 100 mL
0.060 wt % cationic polyacrylamide (CPAM, 0.060 g, Baichuan Biotechnology Co., Ltd.,
Ningbo, China) clear solution was slowly added to pretreat the BSCF powder for 1h.
Afterwards, the product was centrifuged, filtered, and then placed in 100 mL of DI water
and heated at 50 ◦C. Next, 1 mmol Ce(NO3)2·6H2O and 3.2 mmol NaOH (Sinopharm
Chemical Reagent Co., Ltd., Ningbo, China) was dissolved in 100 mL DI water, respectively.
Then, two solutions were slowly dripped into the above mentioned BSCF–water mixture
and the solution pH value kept at 9.5 during the whole process. Next, the precipitated
product was centrifuged and filtered for three times with DI water and ethanol, and then
dried at 100 ◦C for 10 h. Finally, the above dried product was heated to 600 ◦C for 2 h
in order to yield the product of BSCF@CeO2-11. It should be noted that the former “1”
represented the total moles of BSCF, and the latter “1” represented the total moles of added
cerium ions. For comparison, a similar method was adopted to prepare the CeO2 except
for the use of BSCF and CPAM.

The subsequent loading of NiFe-LDH on BSCF@CeO2 are synthesized by a precip-
itation method. For synthesis of BSCF@CeO2@NiFe, 0.1 g BSCF@CeO2-11 was placed
into 100 mL DI water and maintained a constant stirring at ambient temperature. We dis-
solved a certain amount of Ni(NO3)2·6H2O and Fe(NO3)3·9H2O (Ni:Fe = 3:1) into 100 mL
DI water, then dissolved a certain amount of NaOH and Na2CO3 (Sinopharm Chemical
Reagent Co., Ltd., Ningbo, China) into another 100 mL DI water, and kept the solutions
at [OH−] = 1.6 × [Ni2+ + Fe3+], [CO3

2−] = 2.0 × [Fe3+] [47]. Then, we slowly dripped the
above two solutions into the solution containing BSCF@CeO2 at the same time, maintain-
ing the pH value of 9.5, and stirring for 2 h during the whole process. Ultimately, the
product was centrifuged, filtered, and evaporated at 80 ◦C for 10 h to yield the product
of BSCF@CeO2@NiFe. In order to probe the loading effect on the OER properties, we
loaded NiFe-LDH (Ni:Fe = 3:1) with total moles fraction of 2.0, 3.0, 4.0, and 6.0 mmol
on BSCF@CeO2, and abbreviated as BSCF@CeO2@NiFe-11x (x = 2, 3, 4, 6), respectively.
For comparison, a similar method was adopted to prepare the NiFe-LDH except for the use
of BSCF@CeO2 and stirring at 50 ◦C for 6 h [48].

2.2. Material Characterizations

X-ray diffraction (XRD) patterns were fetched on a Bruker D8 Advance X-ray diffract
meter (Cu Kα = 1.5418 Å, Bruker Ltd., Karlsruhe, Germany) at a scanning rate of 0.02◦ s−1

from 20◦ to 90◦. The micromorphology of the synthesized samples was observed by using
a field-emission scanning electron microscopy (SEM, Hitachi S4800, 5 kV, Hitachi Ltd.,
Tokyo, Japan).

2.3. Electrochemical Measurements,

The preparation method of the catalyst ink was described as the following according to
our previous work [49]: 5 mg catalyst and 5 mg carbon (Vulcan-XC72, Cabot Ltd., Shanghai,
China) were dispersed in 2.0 mL ethanol plus 80 µL of 5 wt% Nafion (DuPont Ltd., Bejing,
China) solution and ultrasonically blended for 2h to form a well-dispersed ink. Then, 20 µL
of the ink was pipetted on a polished glassy carbon (GC) electrode for preparation of
working electrode, and the solvent was evaporated naturally with a catalyst loading of
~0.245 mg cm−2. For measuring the working electrode, oxygen with ultrahigh purity grade
was bubbled into the electrolyte to make it O2-saturated during the measurements so as
to guarantee the O2/H2O equilibrium at 1.23 V vs. RHE. The standard three-electrode
system (the above working electrode, the counter electrode of carbon rod, and the reference
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electrode of Hg/HgO (1 M NaOH) electrode), rotating disc electrode (RDE, PINE) and
the electrochemical performances of the above specimens were recorded by CHI 760E
electrochemical workstation (Shanghai Chenhua, China) in 1 M KOH under a rotating
speed of 1600 rpm.

Before the electrochemical test, several cyclic voltammetry (CV) scans (0.2~1.0 V vs.
Hg/HgO) were performed to remove the bubbles covered on the catalysts. Linear sweep
voltammetry (LSV) was recorded from 0.2 to 1.0 V vs. Hg/HgO at a scan rate of 5 mV s−1.
Electrochemical impedance spectrum (EIS) was measured at 1.676 V vs. RHE over a
frequency range from 106 to 1 Hz. The equation: η = ERHE−1.23 V was adopted to work out
the overpotentials (η) of the working electrodes, and the Tafel equation: η = blogj + a was
adopted to work out Tafel slopes, where η is the overpotential, j represents current density,
and b is the Tafel slope [50]. The electrochemically active surface area (ECSA = Cdl/Cs) was
assessed by measuring double-layer capacitance (Cdl) from CV with different scanning rates.
CS represents the specific capacitance of 1.0 M KOH (0.04 mF/cm2) [50]. The Cdl which
was positively correlated to the ECSA was assessed by Cdl = jc/V, where jc represented the
current density, and V was the voltage measured by CV. The scanning potential range was
from 0.15 to 0.25 V (vs. Hg/HgO). The measured potentials were transformed to potentials
vs. RHE by the Nernst equation ( E(RHE) = E(Hg/HgO) + 0.098 + 0.059× pH). In addition,
the equation ( EC = EM − iRs) was adopted to correct the compensated potential, where Rs
is the ohmic solution resistance measured by EIS, i is the current, EC is the correction voltage
and EM is the measurement voltage. The stability tests of the catalysts were performed by
the continuous LSV and CV scanning.

The anodes for overall water (alkaline water, alkaline simulated seawater, and alkaline
natural seawater) splitting (OWS) were composed of the as-prepared catalyst and RuO2 ink
drip-coated on Ni foam (NF, 1 cm× 1 cm, Sinero Co., Ltd., Beijing, China) with the total load
being about 4.0 mg cm−2. The cathode was commercial 20 wt% Pt/C (Aladdin Ltd., Cardiff,
UK) which was dripped onto NF with the total load of about 2.0 mg cm−2. The stability
tests of OWS were performed at 100 mA cm−2 for alkaline aqueous solution and alkaline
simulated seawater [51] (seeing Table S1, Supplementary Information), but 10 mA cm−2 for
alkaline natural seawater (taken from the East China Sea, 29◦52′00.00" N, 121◦31′00.00" E).
All the OWS stability tests were uncompensated for resistance. In our work, the simulation
seawater in our paper is 0.5 M NaCl solution. The alkaline nature seawater in our paper
indicates the mixed solution of nature seawater with 1 M KOH.

3. Results

Figure 1a shows the simple precipitation synthesis process of BSCF@CeO2@NiFe.
The micromorphology of the different catalysts is observed by SEM. As shown in Figure 1b,
the BSCF powder particles with a relatively smooth surface are very large, with the diameter
>1 µm. The surface of BSCF@CeO2 (Figure 1d) is very rough due to a large number of
fine CeO2 particles with the diameter of about tens of nanometers coated on the BSCF
surface. BSCF@CeO2@NiFe shows a similar morphology with BSCF@CeO2, while some
NiFe-LDH nanorods entangled with the CeO2 nanoparticles can be found on the BSCF
surface (Figure 1e). In addition, BSCF@NiFe almost shows the same micromorphology
with BSCF@CeO2@NiFe (Figure 1c).

Figure 1f shows the XRD patterns of BSCF@CeO2@NiFe, BSCF@NiFe, NiFe-LDH,
BSCF@CeO2, BSCF, and CeO2. It is obvious that the XRD peaks of BSCF@CeO2@NiFe
correspond with BSCF (PDF#01-075-6980, space group Pm-3m), CeO2 (PDF#43-1002, space
group Fm-3m), and NiFe-LDH (PDF#00-040-0215, space group R-3m), and no other im-
purity phases can be found. It is worth noting that Sr ions in A-site of BSCF is easy to
segregate during sintering and electrochemical processes [52,53], and then deteriorate the
stability of the BSCF crystal structure. When BSCF is directly contacted with alkaline
solution, especially carbonate solution, A-site ions (Ba2+ and Sr2+) are easy to form car-
bonates (Sr0.8Ba0.2CO3) (Figure 1g) due to the electronegative nature of BSCF surface [54].
Therefore, during the synthesizing process of BSCF@CeO2, it is essential to coat the organic
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compound (CPAM) containing cationic characteristics on the BSCF surface to reduce the
electronegativity [54]. By introduction of CPAM, the impurity phase of Sr0.8Ba0.2CO3 can
be effectively prevented.
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The OER LSV curves of the different catalysts are measured to evaluate their cat-
alytic activities. BSCF perovskite as a classic oxygen evolution reaction (OER) cata-
lyst, has an excellent intrinsic catalytic activity compared with other perovskites [55].
As shown in Table S2, the OER potential of BSCF at 10 and 100 mA cm−2 are much
lower than those of most perovskites. However, the HER activity of BSCF is very poor,
and it cannot be used as a cathode catalyst for direct seawater splitting (Figure S1, Sup-
plementary Information). In order to optimize the composition of BSCF@CeO2@NiFe
composite catalysts, we measure the OER catalytic activities of BSCF@CeO2@NiFe-11x
(x = 2, 3, 4, 6) in 1M KOH alkaline solution. Obviously, BSCF@CeO2@NiFe-113 has
the highest OER performance among these samples (Figure 2a) and can be used as a
follow-up research object (abbreviated as BSCF@CeO2@NiFe). Moreover, compared with
BSCF@NiFe, BSCF@CeO2, and BSCF, BSCF@CeO2@NiFe has the much lower overpotential
of 297 mV at 100 mA cm−2, which is even lower than that of NiFe-LDH (315 mV) and RuO2
(344 mV) (Figure 2b,c). Additionally, BSCF@CeO2@NiFe owns the smallest Tafel slope of
56.0 mV dec−1 among above four samples (Figure 2d), which indicates its superior OER
catalytic kinetics. From Figure 2e and Table S3, it is obvious that the OER activity of our
catalyst is almost the highest among those of the previously reported perovskites and
NiFe-LDH catalysts.
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Although NiFe-LDH has an excellent OER catalytic activity, its stability needs to be
further improved (seeing Figure S2, Supplementary Information) [36]. The stabilities of
BSCF@CeO2@NiFe and NiFe-LDH are performed by 25-cycle CV scans (Figure 2f,g and
Figure S3). The result shows that the potential of BSCF@CeO2@NiFe slightly increases
from 1.52 to 1.55 V at 100 mA cm−2 after 25-cycle CV scanning, whereas the potential of
NiFe-LDH increases from 1.53 to 1.58 V at 100 mA cm−2 after the same CV scanning cycles.
Compared with NiFe-LDH, the high stability of BSCF@CeO2@NiFe can be attributed to the
synergistic effect of BSCF [56] and NiFe-LDH.

Subsequently, we explore the OWS properties of BSCF@CeO2@NiFe. As shown in
Figure 3a, the OER catalytic activities of BSCF@CeO2@NiFe are measured in 1 M KOH,
1 M KOH + 0.5M NaCl, and 1 M KOH + seawater on RDE. The results show that the
OER catalytic activities of BSCF@CeO2@NiFe in 1 M KOH and 1 M KOH + 0.5 M NaCl
solutions are very close, while the OER catalytic activity of BSCF@CeO2@NiFe is far lower
in 1 M KOH + seawater, compared with that in 1 M KOH. This can correspond to the
fact that the bacteria, microorganisms, suspended solid particles, and some metal ions
have serious impacts on the OER catalysts. Furthermore, we assemble an electrolytic cell
with BSCF@CeO2@NiFe anode and 20 wt% Pt/C cathode (Figure 3b) to study the OWS
performances of BSCF@CeO2@NiFe anode in 1 M KOH, 1 M KOH + 0.5 M NaCl, and
1 M KOH + seawater. As shown in Figure 3b, the OWS potentials of the electrolytic
cell with BSCF@CeO2@NiFe are 1.69V and 1.70V at 100 mA cm−2 in 1 M KOH and
1 M KOH + 0.5 M NaCl, respectively, which is even lower than that with RuO2 (1.74 V
in 1 M KOH). In addition, the OWS potential of the electrolytic cell at 100 mA cm−2 in
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1 M KOH + seawater is as large as 1.76 V, corresponding to the OER catalytic activity of
BSCF@CeO2@NiFe in the alkaline natural seawater.
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Figure 3. (a) OER LSV curves of BSCF@CeO2@NiFe and (b) polarization curves of overall water
splitting with BSCF@CeO2@NiFe anode in 1 M KOH (and RuO2), 1 M KOH + 0.5 M NaCl, and
1 M KOH + seawater. Insert of (b) is the illustration of overall water splitting. (c) Schematics of
overall seawater splitting. (d) Stabilities of BSCF@CeO2@NiFe and RuO2 anodes for overall water
splitting in 1 M KOH, (e) 1 M KOH + 0.5 M NaCl, and (f) 1 M KOH + seawater. (g) Faradaic efficiency
measurement in 1 M KOH + seawater at 10 mA cm−2.

In order to estimate the OWS stability, we measure the voltage vs. time curves of
BSCF@CeO2@NiFe in 1 M KOH (Figure 3d) and 1 M KOH + 0.5 M NaCl (Figure 3e) at
100 mA cm−2. Figure 3d shows that the voltage of the electrolytic cell with BSCF@CeO2@NiFe
exhibits a negligible elevation of about 10 mV after 25 h short-term OWS test, showing
the much higher stability than that with RuO2 (70 mV). Moreover, the electrolytic cell
with BSCF@CeO2@NiFe (Figure 3e) also shows a slight degradation after long-term 100 h
test, and the voltage of this electrolytic cell almost has no attenuation. Nevertheless, it
is worth noting that, in the initial 10 h of the stability test, the electrolytic cell voltage
rapidly increases until it reaches the maximum value of 1.87 V, and then sharply drops
to 1.81 V in the next approximate 1 h test. The quick degradation of the electrolytic cell
can be related to the corrosion of BSCF@CeO2@NiFe in the Cl−-containing electrolyte and
appearance of the passivation layer [3]. The subsequent performance recovery can be
ascribed to be the surface amorphization of BSCF perovskite anode in the alkaline overall
water splitting test [53,57] and subsequent appearance of CoFe-LDH on the BSCF surface
caused by the dynamic surface self-reconstruction [52,58]. Considering the high splitting
overpotential of natural seawater, the stability test of BSCF@CeO2@NiFe in the natural
seawater is performed at 10 mA cm−2 to prevent the formation of the strong corrosive
ClO−. Figure 3c is a corresponding seawater splitting schematic. As shown in Figure 3f,
during the 200 h stability test in 1 M KOH + seawater, the variation trend of this electrolytic
cell voltage is similar with that in 1 M KOH + 0.5 M NaCl, displaying a superior stability
after long-term test. Compared with the initial cell voltage (1.56 V), the final cell voltage
only increases by about 30 mV after 200 h. In addition, during the natural seawater test,
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the anode and cathode products are collected by the drainage method and compared with
their theoretical values (seeing Figure S4, Supplementary Information). The results show
that the test values are basically consistent with the theoretical values, indicating that the
Faraday efficiency are close to 100%, and almost no Cl2 is produced (Figure 3g). The result
indicates an excellent OER selectivity of BSCF@CeO2@NiFe.

4. Discussion

As mentioned before, BSCF@CeO2@NiFe shows a superior OER catalytic activity
in alkaline solutions. To clarify the mechanisms, we further perform the EIS and Cdl
measurements. It is known that ECSA of the electrocatalysts can be estimated by cal-
culating Cdl from the cyclic voltammetry (CV) curves (Figure 4a–d). The Cdl value of
BSCF@CeO2@NiFe is 2.70 mF cm−2 which is higher than that of NiFe-LDH (1.19 mF cm−2),
BSCF@NiFe (1.07 mF cm−2) and BSCF (1.91 mF cm−2) (Figure 4e). The EIS Nyquist plots
in Figure 4f further shows that BSCF@CeO2@NiFe owns a lower charge-transfer resis-
tance (Rct, 2.1 Ω) compared with other samples [59], which demonstrates its quick charge
transport capability and favorable OER dynamics [60]. The improvement of Cdl and
smaller Rct of BSCF@CeO2@NiFe can be related to the introduction of CeO2 with strong
oxygen-gathering ability and heterogeneous interface formed between CeO2 and metal
(oxy)hydroxides (NiFe-LDH) [61].
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Figure 4. CV curves of BSCF@CeO2@NiFe (a), NiFe-LDH (b), BSCF@NiFe (c), and BSCF (d) catalysts
at 0.15~0.25 V (vs. Hg/HgO) with scan rates of 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 mV s−1.
Corresponding Cdl values (e) and EIS Nyquist plots (f) of BSCF@CeO2@NiFe, BSCF@NiFe, NiFe-LDH,
BSCF@CeO2, BSCF, CeO2, and RuO2. The insert of (f) is the EIS plots in a smaller range.

5. Conclusions

In this work, we successfully synthesized heterostructure electrocatalyst of BSCF@CeO2@NiFe
by compositing CeO2, NiFe-LDH with BSCF. Benefiting from its large ECSA as well as
smaller charge-transfer resistance, the synthesized BSCF@CeO2@NiFe showed a superior
OER catalytic activity with Ej = 100 being 1.52 V in 1 M KOH, 1.54 V in 1 M KOH + 0.5 M
NaCl and 1.62 V in 1 M KOH + seawater, which were even lower than NiFe-LDH and
RuO2. Additionally, our BSCF@CeO2@NiFe had an excellent long-term durability and
self-recovery capability during the stability test.
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