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Abstract: The laminar cooling process is an important procedure in hot steel strip rolling. The
spatial distribution and the drop curve of the strip temperature are crucial for the production and the
quality of the steel strip. Traditionally, lumped parameter methods are often used for the modeling
of the laminar cooling process, making it difficult to consider the impact of the variation of state
variables and related parameters on the system, which seriously affect the stability of the steel strip
quality. In this paper, a modeling and monitoring method with a time–space nature for the laminar
cooling process is proposed to monitor the spatial variation of the strip temperature. Firstly, the
finite-dimensional model is obtained by time–space separation to describe the temperature variation
of the steel strip. Next, a global model is constructed by using the multi-modeling integration method.
Then, a residual generator is designed to monitor the strip temperature where the statistics and the
threshold are calculated. Finally, the superiority and reliability of the proposed method are verified
by the actual-process data of the laminar cooling process for hot steel strip rolling, and different types
of faults are detected successfully.

Keywords: process monitoring; fault detection; distributed parameter systems; time–space separa-
tion; laminar cooling process; hot steel strip rolling

1. Introduction

With the increasing demand for steel strips in the market, its performance is required
to be higher and higher. The laminar cooling process (LCP) is an important procedure in
hot steel strip rolling, which is used to cool the steel strip from an initial temperature of
roughly 800–950 ◦C down to a coiling temperature (CT) of roughly 550–700 ◦C [1,2]. The
CT of the steel strip after cooling process is one of the related parameters that determine
the mechanical and physical performance of the steel strip. Problems or faults in the
LCP, such as spray failure, side-spray system failure, and an abnormal high-level water
tank, are unavoidable with the characteristics of variable operating conditions and harsh
environment. If they cannot be monitored and controlled effectively, the mechanical and
physical performance of the steel strip will be poor and the quality of the product will be
affected eventually. Therefore, the research on modeling and process monitoring for the
LCP plays a key role in improving the safety and stability of hot steel strip rolling.

The mechanism of the LCP is complex, with characteristics such as strong nonlinearity,
time-varying parameters, and distributed parameters [3]. The models of the LCP com-
monly used for industry include the exponential model, statistical model, and differential
model [4–6]. Most of these models are obtained through experiments or statistics under
certain assumptions, and the accuracy is affected by the field experiment and operating
conditions. In order to obtain a precise CT, a substantial body of the research has emerged,
addressing the problem of modeling and monitoring for the LCP [7–13]. Many scholars
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have improved the mathematical model of the LCP based on the thought of the empirical
formula and the multi-model [8,9]. Cai et al. [10] accurately described the variation of the
CT through the numerical calculation model, which provided an effective way for further
analyzing the mechanical variation and microstructure evolution of hot steel strip rolling.
Various factors affecting the CT should also be analyzed and the compensating cooling
mathematical model was proposed to solve the problems of the selection of the model
parameters and the large sampling period [11]. Artificial intelligence technologies such as
neural networks and support vector machines are often used to optimize the accuracy of
the CT for the LCP [12,13]. These models only consider the impact of the current inputs
and environmental conditions on the system. Later, it has been found that the differential
equations based on the mechanism of heat conduction can effectively describe the heat
conduction modes in the whole cooling zone, and the distribution and the drop curve
of the strip temperature can be estimated by solving the differential equations [14]. The
control of the LCP is also studied for monitoring the strip temperature, for which the ex-
tended Kalman filter method was implemented to predict the CT, and the model predictive
control was adopted to improve the precision of it [15]. Reducing the vibration of the
process machine is also a useful method to improve the quality of the metal forming [16].
Pian et al. [17] proposed a model intelligent identification method about the temperature
variation of heat conduction, which effectively improved the calculation accuracy of the
coiling temperature. However, the above methods, which are called lumped parameter
methods, only analyze the temperature variation of the steel strip in the time domain and
ignore the influence of the variation of the boundary conditions and parameters on the
system in the spatial domain. Traditional lumped parameter methods hardly describe the
temperature variation in the whole cooling zone. Considering that the inputs, outputs,
and even parameters can vary both temporally and spatially, and can be affected by the
operating conditions, the distributed parameter systems (DPSs) are used to describe the
LCP. It can accurately monitor the temperature variation of the steel strip in the spatial
domain and meet the requirements of the temperature uniformity in a large spatial range.

Compared to lumped parameter systems (LPSs), the spatially distributed feature of
DPSs is described by partial differential equations (PDEs), leading to the time–space nature
and the degrees of freedom with infinite dimensions [18]. There has been much progress in
the area of modeling in DPSs, which enriches the research of process monitoring [19–21].
Since there are a finite number of actuators and sensors for practical sensing and there is
limited computing power for implementation, such infinite-dimensional systems need to
be approximated by finite-dimensional systems, which is called model reduction [22]. It is
obviously that the model reduction method with time–space separation becomes the main
idea to solve the problem of monitoring for DPSs.

In recent years, process monitoring methods have been widely investigated, including
model-based and data-driven methods [23–25]. The problem of process monitoring with
infinite-dimensional properties has received significantly more attention in the existing
literature. It was first considered by Demetriou, who looked at infinite-dimensional prop-
erties in space domain, and the Galerkin method was used to approximate the model to
detect the fault by estimating the variation of the parameters [26]. Li et al. [27] proposed
a fuzzy fault-detection filter for the hyperbolic DPSs, which were reconstructed by the
T–S fuzzy model with a spatial-differential linear matrix inequality. The lumped models
with a finite-dimensional order neglect the higher order; however, important modes of the
system, which could lead to control or observation, spill over. To maintain the dynamic
characteristic, an infinite-order observer is usually constructed for the original PDEs. Cai
et al. [28] proposed a Luenberger observer to estimate the output of the system, then, the
residual was proved to the convergence in the absence of disturbance, which could be
reduced to a low-order one. The original infinite-dimensional data were mapped into the
finite-dimensional subspace for the infinite-dimensional system to obtain a high accuracy
of the residual [29]. However, these methods only depend on the mechanism analysis of
the object, which is poor for analyzing the process data and being combined with them. If
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the mechanism of the LCP cannot be analyzed sufficiently, it is difficult to obtain practical
results with the model-based method of process monitoring.

Traditional modeling and process monitoring methods of DPSs only consider the
system with a single model. Laminar cooling is an industrial process with a long procedure,
in which it is difficult to describe the variation of the strip temperature with the time–space-
coupled by a single model of DPSs. Based on this problem, the studies of modeling and
process monitoring for the LCP need to construct a global monitoring model for data-driven
realization. Firstly, a framework of modeling and process monitoring of the time–space
nature is proposed for the LCP. Secondly, the finite element method is combined with the
Galerkin method to describe the temperature variation in each cooling zone, and the global
spatio-temporal output model for the LCP is constructed with the three-domain integration
method. Finally, based on the global model, a residual generator is designed with kernel
method to monitor the variation of the strip temperature when faults occur.

The rest of this paper is organized as follows: The laminar cooling process of hot steel
strip rolling and its distributed parameter model is described in Section 2. In Section 3,
the variation of the strip temperature in each cooling zone is analyzed and a global model
is constructed to calculate the time–space output of the process. The process monitoring
framework for the LCP is obtained in Section 4. In Section 5, both simulation and experi-
ment results are presented. This article ends with concluding remarks in the last section.

2. Laminar Cooling Process of Hot Steel Strip Rolling
2.1. Process Description

The production line of hot steel strip rolling is shown in Figure 1. The hot steel strip
rolling process can be divided into five steps: reheating, rough rolling, finishing rolling,
laminar cooling, and coiling. In the LCP, the length of the corresponding water spray is
determined by the outlet temperature, the thickness, and the speed, to adjust the total
number of valves and the flow of the cooling water. More refined crystalline particles and
reasonable crystal structures are obtained with better microstructures and properties in the
steel strip after the cooling process. The accuracy of the CT and the distribution and the
drop curve of the strip temperature have a great impact on the quality and quantity of the
steel strip.

The cooling area includes the air cooling zone, the main cooling zone, and the fine
cooling zone, which are affected and correlated with each other. The hot steel strip rolling
process with a series structure has been formed from the product of the finish rolling coiling.
The schematic diagram of the LCP is illustrated in Figure 2. The equipment of the spray
headers for the LCP are installed above and below the roller table between the finishing
rolling and the coiler. The top headers are of the U-type for laminar cooling and the bottom
headers are of the straight-type for the low-pressure spray. These headers are divided into
some groups in the main and fine cooling zones. Two pyrometers are located at the exit
of the finishing mill and before the coiler to measure the temperature of the steel strip.
The coiling speed is measured by the velocimeter installed on the coiler’s mandrels. The
LCP operates in the harsh environment of high-temperature baking, cooling water-vapor
erosion, and vibration impact, and it is difficult to measure the variation of the temperature
in the whole cooling zone. It is of great significance to establish an effective temperature
monitoring model.
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Figure 1. The flowchart schematic diagram of hot steel strip rolling.

Figure 2. The schematic diagram of laminar cooling process.

2.2. Thermodynamic Model of Laminar Cooling Process

The mechanism of the LCP is usually described with the heat conduction model.
The commonly used heat conduction models include the second-order parabolic PDE
and second-order hyperbolic PDE, which are usually used to analyze the temperature
gradient variation in the direction of the length, the width, and the thickness, with three
spatial dimensions of the steel strip [30,31]. Combining the research results [32,33], a two-
dimensional hyperbolic-distributed parameter model is expressed for the LCP. The PDE
model is

∂T
∂t

= − λ

ρcp

∂2T
∂z2 − v · ∂T

∂x
(1)

where T denotes the state variable; t denotes the time; x , z denote the coordinate values of
the length and the thickness, respectively; ρ denotes the thermal conductivity; cp denotes the
specific heat capacity of the steel strip; and λ denotes the thermal conductivity. The model
assumes that the heat transfer in the width direction and length direction is considered,
and the internal latent heat is ignored. The boundary conditions on its top and bottom
surfaces are

± λ
∂T
∂z

= h(T − T∞) (2)

h depends on the heat transfer mode as follows:

h = hw
T − Tw

T − T∞
+ σε

T4 − T4
∞

T − T∞
(3)

where T∞ denotes the ambient temperature and Tw is the water temperature; σ = 5.67×
10−8 w/m2 · K4 denotes the Boltzmann constant; and ε is an emission coefficient. The
transfer coefficient hw is only applicable in the water cooling zone and hw is zero in air
cooling zone. The boundary conditions are considered as the effect of the top and bottom
headers on the temperature field, which are referred to as in reference [7].
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3. Time–Space Coupled Based Modeling for Laminar Cooling Process

Since the steel strip runs to different cooling zones with different heat transfer condi-
tions, the model is established to monitor the temperature variation in the whole cooling
zone. A global modeling method with a time–space-coupled nature for the LCP is adopted
to solve the problem. For one thing, the whole system is divided into many subsystems
and each subsystem is considered by time–space separation. For another, the multi-model
integration method is adopted to establish the transition relationship among subsystems to
describe the whole cooling section.

3.1. Local Modeling for Laminar Cooling Process

Suppose the upper and lower surfaces of the steel strip are cooled by water spraying,
the temperature between surface and the core of the steel strip will be larger in a short
time and a temperature gradient in the thickness direction will be formed. The average
temperature in the direction of the thickness cannot be used, which will cause great error.
As a result, it is difficult to effectively describe the temperature variation of the steel
strip. The nodes of the steel strip, which are influenced with each other in the direction of
thickness, should be considered for each cooling zone. The finite element method (FEM)
constructs the model with the space-division technique, which is suitable for the LCP. With
the mesh division of the steel strip, the current temperature variation can be calculated by
the transfer conduction between the steel strip and water or air.

The first step of the FEM is to specify the approximate mesh for each subsystem. In
the direction of the length, due to the variation of the velocity on the whole rolling line,
the temperature and the velocity of the steel are always fluctuating. In order to reduce the
influence of the fluctuation on the temperature field model, the steel strip is processed into
blocks at the inlet and the outlet of each cooling zone in addition to the overall meshing
of the steel strip. That is, the distance of the steel strip in the cooling zone of every ∆T is
defined as the length of a zone of steel strip, and the variation of temperature and velocity
of the steel strip can be ignored in the time domain. Each cooling zone is divided into ns
grids. In the direction of the thickness, the strip is evenly divided into 2ms layers to reduce
the calculation error of the CT caused by the temperature gradient.

Denote the number of the grid in x-direction by ns and z-direction by 2ms + 1, as shown
in Figure 3. ∆x and ∆z are the length and the thickness of each grid. For convenience of
expression in this section, T(z, t) is adopted instead of Ti(z, t) to denote the state when
the steel strip runs into the ith subsystem. φi(z)(i = 1, 2 . . . , ∞) are basic functions of the
state variables, which mean the weight of each node temperature in the direction of the
thickness. The selection of the spatial basis function is of great importance for modeling in
DPSs.

Figure 3. Illustration of the mesh size.
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Define f (x, t) = ∂T
∂x , which is regarded as the external inputs of the system. Then

∂T(z, t)
∂t

= − λ

ρcp

∂2T(z, t)
∂z2 − v · f (x, t) (4)

Equation (4) is called strong form. In order to obtain the solution in a numerical way,
the so-called weak form is generally required with model reduction methods. Let S be the
function space of trial functions, which spans the exact solutions as φi(z), φj(z), g(z) ∈ S.
To obtain the solution of the weak form, multiply both sides of (4) with g(z) and integrate
over [0, 1], then integrate by parts, which gives

∫ 1

0

∂T(z, t)
∂t

g(z)dz =− λ

ρcp

∫ 1

0

∂2T(z, t)
∂z2 g(z)dz− v ·

∫ 1

0
f (x, t)g(z)dz (5)

The Galerkin method offers one possibility to approximate the exact solution in a
pre-defined m-dimensional function subspace, in which S and S = [φ1(z), φ2(z) . . . , φm(z)].
The spatio-temporal variable T(z, t) can be expanded in S as follows:

T(z, t) =
m

∑
i=1

φi(z)αi(t) (6)

where φi(z)(i = 1, 2 . . . , ∞) are basic functions of the state variables and the standard basic
functions for the FEM are piece-wise polynomials, among which the first-order ones are
widely used for mathematical simplicity and numerical efficiency as follows:

φi(z) =

{ z−zi−1
zi−zi−1

, z ∈ [zi−1, zi]
z−zi+1
zi−zi+1

, z ∈ [zi, zi+1]
(7)

where i = 1, 2, . . . , ∞. In order to reduce the numerical approximation error, either mesh
size or polynomial order could be selected approximately.

Substitute (6) into (5) and replace the function g(z) to the spatial term in (5) with
variational basic function φj(z), then

∑n
i=1

dαi(t)
dt

∫ 1

0
Φi(x)g(x)dx =−∑n

i=1 αi(t)
∫ 1

0

dΦi(x)
dx

dg(x)
dx

dx + p
∫ 1

0
g(x)dx

− λ

ρcp
∑m

i,j=1 αi(t)
{

φj(1)
dφi(z)

dz
|z=1 − φi(0)

dφj(z)
dz
|z=0

} (8)

which can be arranged as a state-space equation in the time domain:
a1,1 a1,2 · · · a1,m
a2,1 a2,2 · · · a2,m

...
...

. . .
...

am,1 am,2 · · · am,m




α̇1(t)
α̇2(t)

...
α̇m(t)



=


vα1(t)

...
0

−vαm(t)

+


k1,1 k1,2 · · · k1,m
k2,1 k2,2 · · · k2,m

...
...

. . .
...

km,1 km,2 · · · km,m




α1(t)
α2(t)

...
αm(t)


(9)

where ai,j =
∫ 1

0 φi(z)φj(z)dz. Imposing the boundary condition (2) will apparently make
the equations overdetermined T(0, t) = T0

n,m(t) ≈ α1(t), then an (m − 1)-order finite-
dimensional model can be obtained:
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 a2,2 · · · a2,m
...

. . .
...

am,2 · · · am,m


 α̇2(t)

...
α̇m(t)

+

 a2,1α̇1(t)
...

am,1α̇1(t)



=

 k2,2 · · · k2,m
...

. . .
...

km,2 · · · km,m


α2(t)

...
αm(t)

+

 k2,1α1(t)
...

km,1α1(t)


(10)

The right-hand side of (10) is considered as the actuator input u(t), which means the
number of switches, the flux of the cooling water, and the disturbance in each group of
headers are as follows:

u(t) =

 k2,1α1(t)− a2,1α̇1(t)
...

km,1α1(t)− am,1α̇1(t)

 (11)

Denote s(t) =

α2(t)
...

αm(t)

, and the alternative representation of (10) is

ṡ(t) = As(t) + Bu(t) (12)

where A =

 a2,2 · · · a2,m
...

. . .
...

am,2 · · · am,m


−1 k2,2 · · · k2,m

...
. . .

...
km,2 · · · km,m

 , B =

 k2,2 · · · k2,m
...

. . .
...

km,2 · · · km,m


−1

. The out-

put of the system y(t) is considered as the measurement of the CT on the top and the
bottom surfaces, as follows:

y(t) = Es(t) + ε (13)

where E =

φ2(z1) · · · φm(z1)
...

. . .
...

φ2(zn) · · · φm(zn)

, ε =

φ1(z1)α1(t)
...

φ1(zn)α1(t)

 with n = 1, 2, . . . r denoting r

sensor locations in the direction of the length for the LCP.
y(t) denotes the output of the local model in each cooling zone. However, due to

different production and working conditions in different cooling zones, the system often
works at different multiple operating points with a long procedure. The local distributed
parameter model of the LCP contains spatial functions and state variations in the time
domain. It is necessary to monitor the output of the steel strip in the whole cooling zone,
which requires the spatial integration method to establish the transition relationship among
the cooling zones. This method will be described in detail in the next section.

3.2. Global Modeling for Laminar Cooling Process

To obtain a global model, direct modeling and experiments in a large operating
range with strong nonlinearity and time-varying characteristics are challenging. The
characteristics of the system in the spatial domain corresponding to each actuator are
different in DPSs. The states varying in each cooling zone are affected by the adjacent zones.
To enhance the modeling capability, spatial integration with the multi-modeling method is
required to obtain a global model with a scheduling weight function at a large operating
range [34]. Some studies in multi-modeling of DPSs are available in the literature, such
as membership functions [35], finite Gaussian mixture models [36], kernel models [37],
and collocation methods [38]. The membership function method can realize the smooth
transition of the subspace and system identification of the working conditions. The output
of the global model can be obtained by constructing the functional relationship between
the reference point and the state in the subspace.
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Each local model has different weights in different spatial locations. However, the
scheduling function only depends on the time variable t and the spatial variable x. µi(x, t)
is regarded as the membership function in the ith cooling zone. To ensure the smooth
transition, one way is to use traditional integration with the membership function method
by reference [35]:

y(x, t) =
µ1(x, t)y1(x, t) + · · ·+ µi(x, t)yi(x, t) + · · ·+ µR+1(x, t)yR+1(x, t)

µ1(x, t) + · · · µi(x, t) + · · ·+ µR+1(x, t)
(14)

where yi(x, t) is the spatio-temporal output of the ith subsystem, x denotes the distance
between the ith subsystem and the outlet of the finish rolling, R denotes the number
of spray headers, and R + 1 denotes the air cooling zone after the water cooling zone.
However, different from the traditional integration method in LPSs, the weights depend
on both the system states and spatial locations of µ(x, s), where s(x, t) is the state with a
time–space-coupled nature of the whole system. To guarantee a smooth transition between
the local model, a three-domain (3D) integration method is used to provide a global spatio-
temporal model, where the weights depend on the system states (temporal variables) and
spatial locations, which are shown in Figure 4. The global model is illustrated as follows:

y(x, t) =
µ1(x, s)y1(x, s) + · · ·+ µi(x, s)yi(x, s) + · · ·+ µR+1(x, s)yR+1(x, s)

µ1(x, s) + · · · µi(x, s) + · · ·+ µR+1(x, s)
(15)

Figure 4. Three-domain membership functions.

Next, the functional relationship between the local model and the global one can be
constructed. In the x-direction of the system, the global state s(x, t) with a time–space-
coupled nature can be calculated by the finite-dimensional method. For the global model,
the output of the system y(x, t) can be constructed using a set of m-lagged field distribu-
tions:

s(x, t) = [y(x, t− 1), . . . y(x, t−m)]T ∈ Rd (16)

Define the variable µ(s(Ω, t)), which can be transformed into µ(x, s(Ω, t)), and the
membership function can be approximated by

µi(x, s(x, t)) = µi(x,
R+1

∑
j=1

dj(Ω)s(t)) = wi(x, s(t)) (17)

The interconnection of these subsystems could be regarded as a cooperative regulation
problem, and the weight functions would be calculated with the consistency analysis, as
follows, by reference [39]:

lim
t→∞

{∥∥wi − wj
∥∥+ ∥∥∥∥∂wi

∂x
−

∂wj

∂x

∥∥∥∥+ ∥∥∥∥ ∂wi
∂s(t)

−
∂wj

∂s(t)

∥∥∥∥}=0 (18)
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Then, the state vector is decomposed with time–space separation. di(x) ∈ S has been
selected as the spatial vector of the local output to obtain the relationship between the state
and the membership function of the global model. Denote δ(x, t) = wi(x, s(t))− wj(x, s(t)) ,
then

δ(x, t) =


δ2(x, t)
δ3(x, t)

. . .
δR+1(x, t)

 =


∑
j

d2j(x2 − x1)

∑
j

d3j(x3 − x2)+d3(x3 − x0)

. . .
∑
j

dR+1,j(xR+1−xR)+dR+1(xR+1−x0)

 (19)

For each model, wi(x, s(t)) can be estimated by minimizing the following cost function

wi(x, s(t)) =
l

∑
i=1

n

∑
j=1

m

∑
k=1

aijkδj(x, t) (20)

where ai,j,k are unknown parameters, which can be estimated by minimizing the following
cost function:

min
R+1

∑
i=1

L

∑
t=1
|yi(x, t)− ŷi(x, t)|2 (21)

where y(x, t) is the output in each cooling zone. The solution can be obtained by many
nonlinear optimization algorithms [40], and this step will minimize the global model error.
δj(x, t), j = 1 . . . R + 1 are spatio–temporal bases related to the membership function (20).
After these weighting functions are obtained, the integrated global model can be used to
formulate a spatio-temporal model for monitoring. y(x, t) denotes the spatial variation
of the CT in the direction of the length for the LCP, that is, the desired drop curve of the
strip temperature into the geometrically location-dependent temperature profile from the
finishing mill to the coiler.

The time–space variation of the CT for the LCP is shown in Figure 5.

Figure 5. Time–space variation of the strip temperature for LCP.

4. Process Monitoring for Laminar Cooling Process
4.1. Kernel Representation-Based Residual Generator for Laminar Cooling Process

Firstly, refer to the state variables and output variables, s(t) is adopted to the global
model and the I/O discrete model is redefined:

˙̂s(k + 1) =Ad(x) · ŝ(k) + Bd(d(x), u(x, k))

+ (L(x), Y(x, k)− Ŷ(x, k))
(22)
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Y(x, k) = D(x) · s(k) (23)

where s(k) = 〈d(x), s(x, k)〉, u(k) = 〈d(x), u(x, k)〉 and 〈·〉 is the inner-product form.

Combine (8) and (9) with (19) to calculate Ad and Bd with Ad =

[
0 I

−A−1 −A−1 ·B

]
∈

R(m+l)·(m+l), Bd =

[
0

A−1 ·B

]
∈ Rm·(m+l). D(x) is a model parameter matrix with the spatial

variable x, which is defined as

D(x)=

d1,j,1(x) . . . d1,j,2nl(x)
...

. . .
...

dn,j,1(x) . . . dn,j,2nl(x)

. (24)

L(x) is an appropriately chosen observer-gain matrix in S-space.
Define the errors r(x, k) and e(k) that will serve as the residual signals used for

monitoring as
‖e(k)‖ = e(x, k) = s(x, k)− ŝ(x, k) (25)

r(x, k) = Y(x, k)− Ŷ(x, k) (26)

The residual signal with a time–space-coupled nature can be transformed with kernel
representation in reference [41], as follows:

r = Y(x, k)− Ŷ(x, k)

= y− D(I − Ad + LD)−1(Ly + u)

= (−D(I − Ad + LD)−1L + I)y

− (D(I − Ad + LD)−1)u

=
[
−N̂(x) M̂(x)

][u
Y

]
(27)

where M̂(x) = −D(I − Ad + LD)−1L + I, N̂(x) = D(I − Ad + LD). The kernel[
−N̂(x) M̂(x)

]
represents the redundancy of the DPSs. Different from the process

monitoring method in the LPS, the input signal obtained in the global model is infinite-
dimensional.

Substitute the spatial information of the local model into the residual and define Yk,k+s
and uk,k+s, which are related to y(x, k) and u(k), then

Yk,k+s(x, k)=

 (d(x), y(x1, k)) · · · (d(x), y(xn,k +N−1)
...

. . .
...

(d(x), y(x1,k+s)) · · · (d(x), y(xn,k +s +N−1))



uk,k+s(x, k) =

 (d(x), u(x1, k)) · · · (d(x), u(xn, k))
...

. . .
...

(d(x), u(x1,k+s)) · · · (d(x), u(xn, k + s))


(28)

the I/O model can be formulated as

Yk,k+s = Γs ·Φs + Hu,s · uk,k+s (29)

where Γs and Hu,s are the transfer matrices after the expansion of the input and output,
as follows:
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Γs =


D

D · Ad
...

D · As
d

, Φs =


s0(k)
s1(k)

...
ss+1(k)

,

Hu,s =


I 0 0 0

D · L . . . . . . 0
...

. . . . . . 0
DAs+1

d · L · · · D · L I


(30)

It follows from (27) that the core of the residual generation problem is to identify the
left coprime factorization. This model is obtained in the data-driven realization, which is
referred to as in reference [42]. This is an alternative way of designing a residual generator
directly. This motivates us to address the data-driven design of the process monitoring
problem, which can be schematically formulated as an equation described by

∀uk,k+sψ ·
[

uk,k+s
Yk,k+s

]
= 0 (31)

where ψ is the data-driven realization of the left coprime factorization, which should be
calculated for the residual generator.

Assume that ψ =
[
ψs,u ψs,y

]
. Since the I/O model of (28) cannot be identified and

applied to the residual generation, QR decomposition in reference [43] is used to estimate
the influence on the residual, which is corresponding to the space vector, and then Φs

uk,k+s
Yk,k+s

 =

P11 0 0
P21 P22 0
P31 P32 P33

QT
1

QT
2

QT
3

 (32)

Moreover,
Hr,s · Rk,k+s(Q3 ·QT

3 ) = L33 ·QT
3 (33)

and the useful information about the lumped residual generator is mainly included in[
P21 P22
P31 P32

]
. By doing the following SVD:

[
P21 P22
P31 P32

]
=
[
U1 U1

][Σ1 0
0 Σ2

][
QT

2
QT

3

]
(34)

ψ and
[

P21 P22
P31 P32

]
have the same left null matrix, then

Σ2 = 0, ψs = UT
2 (35)

The equation can be proved by reference [44], then:

ψs,y · Γs = 0, ψs,u = −ψs,y · Hu,s (36)

and we obtain the coprime factorization ψ =
[
ψs,u ψs,y

]
.

Then, calculate the observer gain L(x). Since L(x) is a matrix whose elements are the
functions of x, L(x), d(x) ∈ S, for convenience, let us assume that L(x) can be designed
based on d(x), which is defined according to the properties of basic functions, as follows:

Li,j(x) =
γ

∑
k=1

ηi,j,kdk(x), i = 1, . . . 2l, j = 1, . . . l (37)
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Assume that (L(x), D(x)) = L · D, where Li = [Li,1, . . . , Li,n], then

Li,j =

 l1,j,1 · · · l1,j,l
...

. . .
...

l2n,j,1 · · · l2n,j,l

 (38)

It can be noted that L(x) contains the weighting coefficients for (38). Substitute the
result of D(x) into (37) with

L(x) =
[
Li,1d̂(x) · · · Li,nd̂(x)

]
=

 l1,j,1 · · · l1,j,l
...

. . .
...

l2n,j,1 · · · l2n,j,l

 ·

(d1(x), dn,j,1(x)) · · · (d1(x), dn,j,2nl(x))
...

. . .
...

(dl(x), dn,j,1(x)) · · · (dl(x), dn,j,2nl(x))

 (39)

where L(x) should be selected in such a way that (Ad, (L(x), D(x))) is stable and the
observer gain can be calculated by this method. Based on them, the residual generator
is achieved:

r(x, k) =
[
ψs,u ψs,y

]
·
[

uk,k+s
Yk,k+s

]
(40)

4.2. Residual Evaluation and Threshold Setting

The Hotelling’s T2 test statistic is adopted to evaluate the residual, and T2 is defined
as

T2 = r2/σr (41)

where σr is the covariance matrix of the residual signal when there is no fault with

σr =
1

N − 1

N

∑
k=1

(
r− 1

N

N

∑
k=1

r

)2

(42)

where N is the length of evaluation window. Under normal operating conditions, we
have r(k) ∼ N(rl , ∑). As a result, the T2 test statistic is noncentrally χ2-distributed with m
degrees of freedom, and the noncentrally parameter is r f /σ2

r . The distribution of the test
statistic is

T2 ∼ χ2(1, r2/σr) (43)

For a given significance level α, the threshold is determined as

Jth,T2 = χ2
1−α(1, r2

f /σr) (44)

and the decision logic is as follows:{
T2 > Jth,T2 , f aulty

otherwise, f ault f ree
(45)

The schematic procedure of the proposed process monitoring approach is presented
in Figure 6.
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Figure 6. Flowchart of the proposed modeling and process monitoring method for LCP.

5. Case Studies

In this section, a simulation study is carried out to verify the reliability and effective-
ness of the proposed method in modeling and monitoring for the LCP. Carbon Q235B-type
steel is taken as an example and the data are the actual operation data of a steel plant. The
parameters of the Q235B steel strip are shown in Table 1.

Table 1. Q235b strip steel thermophysical parameters.

Item Value Unit

λ


42.5, T ∈ [400, 600) ◦C

36.3, T ∈ [600, 800) ◦C

29.6, T ∈ [800, 1000) ◦C

w · (m · ◦C)−1

cp


621.2, T ∈ [400, 600)◦C

716.4, T ∈ [600, 800)◦C

946.7, T ∈ [800, 1000)◦C

J · (kg · ◦C)−1

ρ 7850 kg ·m3

Tw 30 ◦C
T∞ 30 ◦C

5.1. Validation of the Model for Laminar Cooling Process

The laminar cooling process studied in this paper is illustrated in Figure 2. There are
14 header banks in laminar cooling equipment as l1–l14, which all include top and bottom
headers. The initial state of the spray headers is shown in Figure 7. l1–l9 are open with
the water flux of 185 m3 · (s ·m2)

−1 and the top and bottom surfaces of the steel strip both
transfer heat with the cooling water, which is called top and bottom water cooling. l10–l11
are closed, and the top and bottom surface of the steel strip both transfer heat with air,
which is called top and bottom air cooling. The last three banks are regarded as the fine
cooling zone, with a water flux of 120 m3 · (s ·m2)

−1, and the state of the l14 header is set
to be open in the top and closed in the bottom.

The strip data of actual production are applied to validate the global model for the
LCP. Five groups of measured steel strip data are selected, and each group of the strip
data includes 160 segments of input and output. The steel strip is divided into several
zones with a period of 1 s. The control system gives the set value of the number of the
total opening in a cycle of 1 s. When the head of the steel strip enters the cooling zone, the
control period is consistent with the time step. The inlet of the cooling zone has monitored
the temperature and speed of the steel strip in a period of 1 s, and the outlet detected the
coiling temperature of the steel strip, also. As for the method of model reduction, the open
dynamic system mentioned above is divided into eight segments in the z-direction and 16
segments in the x-direction.
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Figure 7. The initial state of spray header banks in LCP.

Based on the same specifications and input conditions, the global model of the LCP is
established in Section 3, and is used to calculate the CT, and the accuracy of it is compared
with the measured CT. The data with same specifications are shown in Table 2, which are
selected from the same steel strip. Nd and Ns denote the sequence number of all and each
group of the data. Umain and U f ine are the number of headers open in the main cooling
zone and the fine cooling zone. G is the strip thickness of finishing rolling. FRT0 and v0 are
finishing rolling temperature and velocity of the strip heads, respectively. FRTn, vn, and an
are the measured data for finishing rolling temperature, velocity, and acceleration of the
nth segment at the exit of finishing mill, respectively. The outputs of the data include the
coiling temperature CTn and coiling velocity v̂n at the cooling zone outlet.

Table 2. Input and output data of modeling with same specifications for LCP.

Nd Ns Umain U fine G FDT0 v0 FDTn vn an CTn CT
(◦C) (m/s) (◦C) (m/s) (m/s2) (◦C) (◦C)

1 0 108 60 5.25 872 4.00 872 4.00 0.5 658 650
2 1 108 60 5.25 872 4.00 864 4.04 0.5 655 650
3 2 108 60 5.25 872 4.00 863 4.09 0.5 652 650
4 3 108 60 5.25 872 4.00 866 4.15 0.5 649 650
... ... ... ... ... ... ... ... ... ... ... ...

159 158 108 60 5.25 872 4.00 870 4.17 −0.4 658 650
160 159 108 60 5.25 872 4.00 871 4.15 −0.4 656 650

The resulting predictions and the measurements of the CT are shown in Figure 8. By
comparison and calculation of the results, the curve of the predictive CT is very close to that
of the measurement. The maximum error between the prediction and the measurements is
nearly 13 ◦C. There are 34, 98, and 28 sampling points with errors within 5 ◦C, 5–10 ◦C, and
10–20 ◦C, respectively, as a result of the accumulation of errors in each cooling zone. The
prediction curve of the coiling temperature is smoother than the measurement curve with
the increase of the sampling points.

Based on the global model with a time–space coupled nature, the variation of the strip
temperature with a variable segment in each cooling zone can be observed. In order to
further validate the designed model, the 1st cooling zone (headers are all open, located
at the beginning of the main cooling zone), the 10th cooling zone (headers are all closed,
located at the back end of the main cooling zone), and the 14th cooling zone (headers are
partially open, located at the exit of the fine cooling zone) are selected to observe the spatial
variation of the strip temperature from zero, one, and four nodes in the direction of the
thickness in each cooling zone.
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Figure 8. Comparison between the prediction and the measurement of CT with same specifications.

Simulations are performed to illustrate this in Figure 9a–c. The top-surface temperature
of the steel strip is lower than the middle node of the steel strip due to the heat transfer
in the direction of the thickness. Besides, when the strip enters the cooling zone with a
different transfer conduction, the temperature variation is also different in the direction of
the thickness. The steel strip runs to the 14th cooling zone and the temperature variation in
the thickness direction is more obvious than that in other cooling zones. The trend of the
temperature variation in each cooling zone is similar to the prediction of the CT, which is
also reflected in the temperature gradient in the direction of the thickness.

(a) 1st cooling zone (b) 10th cooling zone (c) 14th cooling zone

Figure 9. Spatial variation of the strip temperature in the 1st (a), the 10th (b), and the 14th (c) cool-
ing zones.

The spatio-temporal output is illustrated in Figure 10. The three-domain coordinates
represent the segment number, each cooling zone, and the temperature of the steel strip.
“Temperature-samples” in two-dimensional space denotes the spatial variation in each
cooling zone of any node. “Temperature-positions” means the temperature drop curve of
the strip into the geometrically location-dependent temperature profile from finishing mill
to coiler.
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Figure 10. The spatial distribution of the strip temperature in normal condition.

The verification above is carried out in the same specification. In order to validate
the model with a different specification, data from four steel strips are used for the exper-
iment (G, FDTn, and CTn are different), as seen in Table 3. The comparison between the
prediction and the measurement of the CT for different specifications under the same input
conditions is illustrated in Figure 11. It can be seen that even if the specifications of the
steel strip change, the CT calculated by the dynamic model basically fits the measured
coiling temperatures with small errors. In conclusion, the global model proposed in this
paper is an effective method for the LCP, which could describe the spatial variation of the
temperature in the whole cooling zone.

Table 3. Input and output data of modeling with different specifications for LCP.

Nd Ns Umain U fine G FDT0 v0 FDTn vn an CTn CT
(◦C) (m/s) (◦C) (m/s) (m/s2) (◦C) (◦C)

1 0 96 60 5.25 872 4.00 865 4.18 0.5 658 650
2 1 96 60 5.25 872 4.00 868 4.23 0.5 655 650
3 2 96 60 5.25 872 4.00 872 4.26 0.5 652 650
4 3 96 60 5.25 872 4.00 873 4.29 0.5 649 650
... ... ... ... ... ... ... ... ... ... ... ...

159 158 96 60 5.25 872 4.00 868 4.62 −0.4 658 650
160 159 96 60 5.25 872 4.00 864 4.59 −0.4 656 650
161 0 96 60 5.25 872 4.00 856 4.64 0.5 645 650
162 1 96 60 5.25 872 4.00 853 4.67 0.5 646 650
... ... ... ... ... ... ... ... ... ... ... ...

481 0 108 60 5.25 872 4.00 858 4.61 0.5 641 650
... ... ... ... ... ... ... ... ... ... ... ...

639 158 108 60 5.25 872 4.00 875 4.24 −0.4 659 650
640 159 108 60 5.25 872 4.00 873 4.21 −0.4 658 650
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Figure 11. Comparison between the prediction and the measurement of CT with different specifications.

5.2. Performance of Process Monitoring

Based on the constructed residual generators, the abnormal conditions are used to
verify the effectiveness of the proposed approach. Faults in the LCP include spray failure,
instrument failure, side-spray system failure, and high-level water tank failure. In this
section, the spray failure and the instrument failure are selected to observe the spatial
variation of the strip temperature when fault occurs. Three fault scenarios are considered
as follows:

• The CT of the LCP is going up due to the failure of the 14th spray headers in the
fine cooling zone (the switch of the bottom headers is blocked and the headers fail to
close)(105th sample);

• The CT of the LCP is decreased due to the failure of the ninth spray headers in the
main cooling zone (the main switch of the group is blocked and the headers fail to be
closed)(80th sample);

• The CT of the LCP is varied in many samples due to the failure of speed tachometers
for measuring coiling speed, resulting in the running speed of the steel strip slowing
down at subsequent nodes (90th sample).

The spatial variations of the steel strips of different faults are studied with the same
input and working conditions. The first 160 samples are used to construct the test statistics
and to determine the threshold during the offline phase. With this fault structure, the
observer gain L(x) could be designed in such a way that eigenvalues of (Ad − (L(x), c(x)))
are all 0.01 under normal conditions. Note that the identified L(x) is not provided to the
online scheme and is only used to validate the performance of the scheme.

Similar to the simulation studies, we initialized the observers with the same speci-
fication conditions, except for the state of spray headers. A total of 640 samples of data
with four steel strips are used for the calculation of the threshold in normal conditions, and
five basis functions of piece-wise polynomials are used to construct the residual generator
during the offline phase. Therefore, we evaluate the effectiveness of the proposed scheme
in terms of the residual under faulty conditions. The surface temperatures under faulty
cases are shown in Figures 12a, 13a, and 14a, which clearly show the spatial variation of
the temperature under faulty conditions. The threshold setting is 9.4525. The detection
results of three fault scenarios are given in Figures 12b, 13b, and 14b. It can be observed
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that the temperature distribution with an obvious change happened in faulty, compared
to normal, conditions. From the 105th, 80th, and 90th samples, all three kinds of fault are
successfully detected.

(a) (b)

Figure 12. The temperature distribution (a) and monitoring result (b) of fault one.

(a) (b)

Figure 13. The temperature distribution (a) and monitoring result (b) of fault two.

(a) (b)

Figure 14. The temperature distribution (a) and monitoring result (b) of fault three.

6. Conclusions

In this paper, a modeling and monitoring method with a time–space-coupled nature
is proposed for LCP. The global spatio-temporal model is constructed with distributed
parameter systems for the LCP and a residual generator is designed to monitor the spatial
variation of the strip temperature. The characteristics of the proposed method are as follows:
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• The FEM is combined with the Galerkin method to describe the temperature variation
in the direction of the length and the thickness, which can accurately monitor the sys-
tem with a long procedure and meet the requirements of the temperature uniformity
in a large spatial range;

• The global spatio-temporal model for the LCP is constructed with the multi-modeling
integration method to establish the transition relationship between subsystems. The
complexity of modeling is reduced;

• Different types of faults are considered to monitor the faults in the data-driven realiza-
tion and the effectiveness of the proposed method is verified by actual-process data.

Since the method proposed in this paper can effectively monitor the temperature
variation of the strip in each cooling zone, it is difficult to identify the spatial location of the
fault and estimate the size of it. In subsequent work, based on the global modeling and
monitoring method for the LCP, the research on fault isolation and fault location will be
developed and the method will be extended to other distributed parameter models.
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