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Abstract: During the process of deep drawing of cylindrical thin-walled products from aluminum
sheets, the occurrence of product defects in the form of breaking the material continuity is observed.
This has a very large impact on the efficiency of production lines and the number of generated scraps.
The number of defects depends on many factors, including the material and the process properties.
Because the problem appears after changing one material to another, while the process parameters
do not change, it was assumed that the material has the main influence on the number of defects. To
reduce the number of defects, a tool is needed to predict threats to the process. Decision tree models
were used for this purpose. Using the tree interaction algorithms, the influence of the chemical
composition and strength parameters of the 3xxx series aluminum alloy on the number of generated
defects was investigated. Increased Silicon (Si) and Iron (Fe) values generated a higher number of
defects. Increased yield strength (YS) and decreased elongation (E) also generated a higher number of
defects. Based on the results, a defect prediction tool was created, where after entering the parameters
of the material, it is possible to predict production hazards.

Keywords: short cans; damaged cans; mechanical parameters; chemical composition; influence;
correlations; decision tree models; regression tree; classification tree; model C&RT

1. Introduction

Manufacturing enterprises place a great emphasis on the optimization of the produc-
tion process. They can achieve it by, among other things, increasing the efficiency of the
production lines. One of the activities that has a significant impact on the improvement of
the production efficiency is decreasing the number of defects in products, which are gener-
ated during the forming process. When a beverage can manufacturer produces 18 billions
cans per year [1], decreasing spoilage by one percent results in 180 millions of non-wasted
products. That is why in this type of business, reducing defects is so important. Since many
factors influence the formation of defects, it is difficult to clearly determine which of them
is significant or what combination of them gives rise to the greatest number of defective
products. In the production process of an aluminum beverage can, there are potentially
several defects that can arise at various stages of the process. Many of the defects can
be generated on the front of the line, on the vertical press during cup operation, and on
a horizontal press during redrawing and drawing operations as well as forming of the
bottom of the can. One of the most common defects on the horizontal press is related to the
loss of material continuity when aluminum is drawn between tools, which are successively
reducing the can’s diameter and which are called “ironings”. The phenomenon of rupture
of the can wall is called “short can”, which is related to the lower height compared to a
full-value product shown in Figure 1. Figure 1b shows a properly manufactured can. The
top of the can is uneven, which is the normal effect of the material being pulled through
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the ironings. On the Figure 1a it can be seen that the can is significantly shorter than the
can shown in Figure 1b, which is caused by the breakage and detachment of the rest of
the material during the ironing process. More details about the production process of the
aluminum can are described in Section 2.2—Technology.

Figure 1. Analyzed defect—”short can”.

In the literature on the production processes of aluminum beverage cans, we can find
information on the influence of individual process parameters on the pressing force. Many
analysts in this field tried to find such dependencies using various methods that would
indicate a solution to eliminate the problem of a defective semi-finished product/final
product.

Der-Form Chang, Jyhwen E. Wang (1997) [2] investigated the influence of tool angles
reducing the thickness of the side wall (ironings), the influence of ironing diameter reduc-
tion and the influence of friction on the deep-drawing process. They extended the analysis
of deep-drawing parameters taking into consideration the material’s inhomogeneous defor-
mation. They proved that punch load increases with increasing thickness reduction, die-cup
coefficient of friction, punch-cup coefficient of friction, and strain-hardening coefficient and
with a decreasing die semi-angle.

Similarly, Luis Fernando Folle et al. (2008) [3] dealt with the influence of the friction
coefficient, ironing angles, but in terms of the influence on the pressing force. Moreover,
they analyzed the influence of material hardening and the clearance between the punch
and the ironing on the pressing force. They observed that the friction coefficient has the
largest impact on the ironing force, the clearance between a punch and an ironing die also
has a high influence on it, but smaller than the friction coefficient. Ironing die angle and
strain-hardening exponent have a lower impact on the ironing force.

Marco Schunemann et al. (1996) [4] extended their research to the fundamental but
lesser-known aspects of the process, such as the temperature generated during the drawing
process. They wrote about the influence of deformation on temperature and lubrication.
They showed that higher flow stresses in the upper part of the cup wall result in higher
temperatures in that area, compared with lower cup parts and the bottom. They also
showed the temperature distribution in the deformation area for the punch, material, and
ironing die.

V.M. Simões et al. (2013) [5] studied the influence of lubrication on the coefficient of
the friction between the material and the tools using an experimental device. They used
AA5xxx series aluminum for testing. This has been supported by numerical simulations
using the finite element method. Experimental results indicated that the amount of the
lubricant has a negligible effect on the punch force. These results indicate that maybe
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lower amounts of lubricant should be tested to better understand the effect of this variable.
Similar results were obtained in the experimental and numerical analysis for the different
contact conditions between the sheet and the tools. However, the contact between the sheet
and the die has the highest influence on the process.

G. Venkateswarlu (2010) et al. [6] analyzed the influence of the blank temperature,
ironing angle, and punch speed on the characteristics of AA7xxx series aluminum using
the finite element method. Their paper illustrates the use of FE simulations with Taguchi’s
design of the experimental technique to determine the proportion of contribution of the
important process parameters on the deep-drawing process. The blank temperature (84.4%)
has a major influence on the deep-drawing process, followed by the punch velocity (9%)
and die arc radius (6.6%).

GAO En-zhi (2009) at al. [7] researched the influences of material parameters such
as hardening exponent n, yield stress σs, and elastic modulus E on the process by a 3D
finite element model simulation. They developed a model of a thin-walled hemispheric
surface part. The results show that when E increases but σs or n decreases, the equivalent
plastic strain increases, and generally, the maximum equivalent plastic strain occurs at a
wall region outside the die corner. However, when the value of n decreases to 0.03 or σs is
smaller than 120 MPa, a higher equivalent plastic strain occurs at ball top. When n, E or σs
increases, a higher punch force occurs, and the influences of n and σs on the punch force
are more notable.

The influence of the yield stress model on the forming of the material during the
beverage can manufacturing process was studied theoretically and experimentally by
Wędrychowicz (2021) et al. [8]. In that work, it is shown that when the stress–strain
curve changes by several percent, the result of the FEM modeling of the process changes
significantly. At the same time, the refinement of the dependence of the stress on strain
enabled describing the features of the forming observed in experiments using the FEM
simulation. Thus, it has been established that the sensitivity of the forming of the can billet
to the yield stress model is quite high. For this reason, a variation in this parameter in
the billets of different manufacturers can lead to the appearance of defects in the material
during the forming processes.

A. Rękas (2015) at al. [9] analyzed the influence deformation range, plasticity mar-
gin, and strain-hardening factor on the efficiency of the process. They also checked the
influence of the number of defects on the amount of worn tools. They proved that the
increased plasticity margin (yield strength divided by ultimate tensile strength, YS/UTS)
and strain-hardening factor causes an increase of the spoilage. Another conclusion was
that decreasing the elongation increases the amount of damaged products. Additionally, in
another article [10], they compared mechanical properties of aluminum series 3XXX from
six coil suppliers to find the differences and the best coil manufacturer. Similar topics were
raised also by other authors [11,12]; however, the above studies do not contain a practical
analysis of what parameters of the workpiece, and to what extent, affect the formation
defects in a real technological process.

Due to the difficulty of deterministic prediction and unambiguous determination
of the impact of all parameters on the product, the statistical method was used for the
analysis. This method focuses on observing the actual production, gathering information
on the number of horizontal press jams caused by material loss, and finding relationships
between material parameters and the number of defective products. Basing our study on
statistical calculations will allow for considering the influence of input parameters on the
result, taking into consideration all the phenomena occurring during the can manufacturing
process. The test determines the influence of the chemical composition and basic mechanical
parameters of the material on the number of defects.

The aim of the study is to present which of the physicochemical parameters have the
greatest impact on the occurrence of the “short can” defect in question and which ranges of
values contribute to increasing or reducing damage to the product.
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Additionally, thanks to the use of statistical methods, on the basis of the cause-and-
effect analysis, it is possible to predict what results will be generated by the material with
defined parameters. The use of such a method is very helpful during production planning,
at its preliminary stage, i.e., before loading the material in a coil on an uncoiler in front of
the production presses.

2. Materials and Methods
2.1. Material

It is important to analyze the influence of material parameters on the number of
jams. Beverage can production is mostly using aluminum alloy 3xxx series. Most of the
production is performed with 3104 aluminum alloy, which is provided in H19 temper.
Based on PN-EN 515:1996 standard, temper H19 strain-hardened extra hard material.
Standard thickness of aluminum coils is in the range of 0.260–0.235 mm. Aluminum sheet
is supplied in a rolled form called a coil. All the coils need to meet the specification based
on the norm related to DWI (Draw and Wall Ironing) cans technology. The tables below
(Tables 1 and 2) show the range of mechanical parameters and chemical composition for
3104 aluminum alloy for H19 tamper. There is a comparison between parameter values
based on the norm and 203 coils used for research purposes. All materials used for research
are in range of the norm for 3104 aluminum alloy.

Table 1. Mechanical parameter range for aluminum alloy 3104 and for tested material.

Aluminum Alloy Temper
Material

Thickness
(mm)

UTS
(MPa)

YS
(MPa) Elongation A50

(% min.)
Application Condition

Notes
Min. Max. Min. Max.

EN AW-3104
EN AW-Al

Mn1Mg1Cu
H19 0.15–0.50 290 330 270 310 2 DWI cans Cold rolled

Aluminum alloy
3104 coils used in

research
H19 0.260 299 323 273 298 4.0–6.5 DWI cans Cold rolled

Table 2. Chemical composition of aluminum alloy 3104 and for tested material.

Aluminum Alloy Si
(%)

Fe
(%)

Cu
(%)

Mn
(%)

Mg
(%)

Cr
(%)

Ni
(%)

Zn
(%)

Ti
(%)

EN AW-3104
EN AW-Al Mn1Mg1Cu 0.6 0.8 0.05–0.25 0.8–1.4 0.8–1.3 - - 0.25 0.1

Aluminum alloy 3104 coils
used in research 0.195–0.294 0.41–0.526 0.147–0.23 0.86–1.005 1.045–1.272 - - - -

2.2. Technology

Aluminum beverage cans production consists of many phases, as shown in Figure 2.
At the beginning, the coil is pulled out from an uncoiler, lubricated and transferred

onto the cupper press. There, from the coil, a disc is cut, held by draw pad tools and
drawn into a cup. Next, on the Bodymaker machine, the cup is drawn into a can and
finally cut for a proper can height. Then, the can is washed in several stages, covered
by mobility chemicals and dried. Subsequently, on the decorator machine, the can is
covered by lithography, external lacquer, bottom lacquer and dried in pin oven. Next, the
internal surface of the can is covered using the spray machine and dried again. Finally,
the can is necked, flanged, and checked by the vision system. Ready cans are packed,
protected against dust and other pollutions, and prepared for transportation to brewery.
Simultaneously, on the other line, the lid is prepared, which is joined with the can, after
cleaning and filling, at the brewery plant.
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Figure 2. Aluminum beverage can technology process.

This article focuses on the beginning of the process, especially on the machine called
the Bodymaker. In the Bodymaker, a tool pack is installed which has the task to reduce
the diameter of the cup and the side wall thickness, but to extend the height of the can
(Figure 3).

It happens during drawing of the cup through a set of tools such as redraw, ironing no.
1, 2, and 3 and in the last steps, the bottom of the can is formed. Each ironing has a smaller
and smaller inside diameter, which causes the can wall thickness to decrease. During the
reduction of the side wall thickness, sometimes, the continuity of the material is broken,
generating a defect called the short can (Figure 1). The number of these defects is one of
the more important factors analyzed in this article.

Figure 3. Tool pack sets installed in the Bodymaker.
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2.3. Methods

During three months of production, for every material used for manufacturing the
cans, information regarding material parameters and the amount of the short cans was
collected. Coils received from manufacturers were coming with certificates, where informa-
tion about chemical components content and mechanical parameters values were described.
They reported the content of such chemical elements as Si, Fe, Cu, Mn, Mg, Cr, Zn, Ti, Be,
B, Pb and such mechanical parameters as YS, UTS, Elongation, Ears (unevenness of the
height of the side wall). Chemical composition was measured by a Spark spectrometer
(SPECTROMAX-x) by using the optical emission spectrometry method. Mechanical pa-
rameters were measured by using universal tensile testing machine 50kN (MTS Exceed
E43.504E) according PN-EN ISO 6892-1 norm. Tensile tests were carried out after final cold
rolling in the direction of the sheet rolling.

Simultaneously, information from one of the systems for line parameters monitoring
was collected. For database purposes, it was collected as data on supplier name, coil
number, date and time of production from a given coil, amount of produced cans, amount
of short cans, indicator (short cans/million produced cans).

All those data, both from the certificates and from the production monitoring system,
were collected in one database to allow analyzing the correlation between them.

To find those correlation, we have used the STATISTICA program [13], which allows
for a simultaneous comparison of a large number of data and provides a lot of tools for a
deeper statistical analysis.

First, on the basis of the previously prepared data, it was determined whether there
were correlations between the mechanical properties of the material and the number of
jams, and between the chemical composition of the material and the number of jams.
Then, it was determined whether these connections are statistically significant, and if so,
to what extent. The next step was to find the range of values of these parameters that
classify them into a specific group in terms of the predicted number of jams. Classification
and regression tree (C&RT) was a very good tool that STATISTICA offers. An interactive
regression tree was used to determine the expected number of damaged cans on the basis
of the content of chemical elements and mechanical parameters. The variables (entered
parameters) were discretized (divided into appropriate ranges). Then, the most important
variables were selected—those that have the greatest impact on the result. The second
model was developed with an interactive classification tree. This allowed—on the basis of
the previously added label of sheets—to classify them into “good” and “bad”, based on the
number of damaged cans, to qualify sheets with the given parameters to the appropriate
group.

On the basis of the generated trees (regression one and classification one), it was
possible to create a set of rules that made it possible to assign a coil with the entered
parameters to the range corresponding to the expected number of damaged products.
Based on these rules, a tool has been created to help operators make decisions when
accepting an aluminum coil for production.

3. Results

First, it was checked if there were differences between sheets that generate a large
amount of short cans and those that do not create problems during production. For this
purpose, 10 sheets were selected from all 203 coils with the largest short cans/million
(SC/million) index and called bad ones. Similarly, 10 coils with the smallest SC/million
index were called good ones. The mechanical parameters and chemical composition of
both groups were visually compared in Figure 4. Red balls illuminate the sheet with a high
SC index and blue balls show coils with a low SC index. The comparison was performed in
the Paraview program. The comparison was made in the spatial coordinate system x, y, z
replaced by the content of the elements Si, Fe, Mn.
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Figure 4. Visual comparison between coils with a high and a low short can index.

This method shows visually that we can separate “good” coils from “bad” and that
increasing the Si value has an influence on generating the defects, but does not provide
information about the values of all parameters and does not show their impact on the
amount of defects. That is why another program was used—STATISTICA, where it was
possible to draw a conclusion based on a statistical analysis. One of the most important
parameters which was analyzed was the correlation between mechanical parameters and a
number of short cans, shown in Table 3. Numbers written in red (p ≤ 0.05) mean that this
correlation is statistically significant.

Table 3. Correlation between the mechanical parameters and the index of short cans for all coils.

Variable Number of Short Cans/Million

YS
0.1664

p = 0.018

UTS
0.1189

p = 0.091

Elongation −1.767
p = 0.12

Ears
0.0488

p = 0.489

For visualization for Table 3, Figure 5 was prepared. The left side of the figure presents
p value for correlations of all mechanical parameters and the right side of the figure presents
the value of the correlations. Solid blue line represents p value = 0.05, which means that
properties below this line are statistically significant.
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Table 4 shows a direct correlation between the chemical components and the index
of short cans, but also an indirect correlation in the influence of chemical elements on
mechanical properties, such as yield strength, ultimate tensile strength and elongation.

Table 4. Correlation between the chemical components and the index of short cans, YS, UTS and
elongation.

Variable Number of Short
Cans/Million

YS
(MPa)

UTS
(MPa)

Elongation
A50 (% min.)

Si
0.1771 0.2262 0.1357 −0.0258

p = 0.012 p = 0.001 p = 0.053 p = 0.715

Fe
0.02272 −0.2673 −0.3626 −0.0285

p = 0.001 p = 0.001 p = 0.000 p = 0.686

Cu
0.1212 −0.2852 −0.2634 0.1822

p = 0.085 p = 0.000 p = 0.000 p = 0.009

Mn
−0.0542 0.4926 0.4868 −0.0902
p = 0.442 p = 0.000 p = 0.000 p = 0.200

Mg −0.099 −0.0384 0.0156 0.257
p = 0.160 p = 0.586 p = 0.825 p = 0.000

To better understand the above correlations, the Table 4 was made in two graphical
presentations shown in Figures 6 and 7. Figure 6 shows the correlation between chemical
composition and amount of short cans, while Figure 7 shows the correlation between
chemical composition and mechanical parameters.

Figure 6 shows that only Silicon (Si) and Iron (Fe) have statistically important influence
for generation of short cans. The other components, although having a better correlation,
are not statistically significant.

Table 3 shows that Yield Strength (YS) has the biggest influence for generation of short
cans. From Figure 7 it can be read, that Manganese (Mn) has the biggest influence for (YS)
parameter, so it can be concluded that Yield Strength (YS) also has an indirect effect on the
number of short cans.
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The determination of the correlation showed which parameters have the greatest
impact on the number of defects, but on this basis, we cannot predict the impact on the
number of defects for coils with different parameters. To determine this, we used an
algorithm of induction of regression trees C&RT.

The C&RT algorithm was used to predict the average number of short cans. Such
a tree divided the values of the number of defects into ranges, taking into consideration
both the influence of the chemical composition and the mechanical parameters. Results are
shown in Figure 8.
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Figure 8. Interactive regression tree for the amount of the short cans, C&RT Model.

In general, the purpose of the tree-building analysis is to find a set of logical if-
then division conditions that lead to an unambiguous classification of objects. The range
of classification and regression trees (C&RT) allows for the construction of models for
solving regression problems (where the dependent variable is a quantitative feature) and
classification (qualitative dependent variable) [12].

The idea of C&RT trees is to split input data into ranges where the differences are the
most divergent and predict the amount of damaged cans. Every leaf (every last node in
Figure 8) of the tree provides one rule, which can be used for prediction.

The mean absolute error MSE (Mean squared error) for this tree is 31.75 (Table 5).
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Table 5. Goodness of the fit of the tree model summary.

Goodness of Fit Parameters Parameter Values

Mean of squared residuals 3304.97
Mean squared error (MSE) 31.75

Relative mean square error (RMSE) 0.49
Relative mean deviation 0.44
Correlation coefficient 0.55

Coefficient of determination R2 0.30

This error is calculated according to the formula:

MSE =
1
n

n

∑
i=1

(Yi − Ŷi)
2 (1)

where MSE—mean squared error, n—number of data points, Yi—observed values; Ŷi—
predicted values.

The remaining measures of fit presented in Table 5 also allow us to assess the differ-
ences between the observed values and the predicted values by the model, and these are
commonly accepted measures of the model, and the method of their calculation can be
found in the textbook for statistics [12].

Because the mean squared MSE error is high, the quality of the tree is not satisfying, we
extended our knowledge about the dependance by building the next tree—a classification
tree. All rules from both trees will be combined into one interference mechanism.

The fit of the graph (Figure 9) for low values is fairly good, but the fit for high values
is divergent, thus the coefficient of determination at higher values is weak as the tree does
not predict those values well. For lower values, we made predictions from this tree, but for
higher values we had to use a different tool—a classification tree (Figure 10).

Figure 9. Scatter plot of predicted and observed values for the C&RT regression tree model.

In this case, all the coils were divided according to the number of short cans into BAD
and NORMAL in such a way that 50% of the items with the highest number of defects
(values above the median) were considered as BAD and the 50% with the lowest number
of defects were considered as NORMAL. It means that 50.5 defects/million produced
cans and more was considered as BAD. Less than 50.5 defects/million was considered
as GOOD. This classification was called 2Q, because the amount of normal coils is two
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quartile (median). This tree, like the regression tree, divides the number of short cans into
areas but takes into consideration the BAD and NORMAL classifications of aluminum coils.
The areas that predict the predominance of a large or a small number of defects are very
visible. Moreover, we can determine the credibility and rule support.

Figure 10. Interactive classification tree for the amount of short cans (2Q), C&RT Model.

The classification matrix (Figure 11) shows the number of cases (N.obs.) that have
been correctly classified by the program for both NORMAL and BAD classes. Analyzing
the classification matrix, it can be noticed that while the tree correctly recognizes cases in
the NORMAL class, the error in the BAD class is very large, which means that the model
has not learned to detect errors. To increase the strength of erroneous cases, another model
was created in which cases only from the upper quartile of the number of damaged cans
are considered to be erroneous.
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Figure 11. Classification matrix for the classification tree (2Q).

Figure 12 below shows the same kind of classification tree but the amount of normal
coils is contained in three quartiles and called 3Q. It means that 83 defects/million produced
cans and more was considered as BAD. Less than 83 defects/million was considered as
GOOD. This tree shows as BAD only the worst coils (upper quartile) which can pose the
greatest risk to production.

Figure 12. Interactive classification tree for the amount of short cans (3Q), C&RT Model.

When analyzing the classification matrix (Figure 13), it can be seen that the model
is still not satisfactory in the BAD case class, although the global model error is much
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smaller. For this reason, all three models were used, selecting certain rules from them (those
with the highest confidence), creating a set of rules used in the hybrid model of inference
(Figure 14).

Figure 13. Classification matrix for the classification tree (3Q).

Figure 14. Tool for predicting the number of short cans for new coils.

Finally, rules were created for each leaf of each tree, based on the division into areas.
It allows for forming a tool for predicting the amount of short cans for new coils. After
entering the mechanical parameters values and chemical composition content, the program
returns the result based on rules coming from three trees (Figure 14).

This tool consists of two parts. On the left side of the table in the Figure 14, the
mechanical parameters of the material and the chemical composition are entered. On the
right side of the table, the program generates three priorities of responses, which are the
results of reasoning on the basis of the ruleset achieved from the models. From the most
important to the least important. The highest priority response is taken into account in the
first place during coil approval for production.

Assessment of the Inference Mechanism

To verify the correct operation of the program for predicting the number of damaged
cans, the monthly production was taken into consideration, and 20 random sheet coils
were selected from it, which were then monitored. The number of damaged cans predicted
by the program was compared with the actual number of damages caused during the
production (Table 6).
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Table 6. Comparison of the predicted number of damaged cans with the actual value.

Coil
nr.

Damaged
Cans/Million

(Base on
Production

Reports)

Program
Trustability

1–3

Priority 1 Priority 2 Priority 3

Predicted
Number of
Damaged
Cans/Mln

Standard
Deviation

Predicted
Number of
Damaged

Cans below
50.4 with

Trustability

and Rule
Support

Predicted
Number of
Damaged

Cans above
50.4 with

Trustability

and Rule
Support

Predicted
Number of
Damaged

Cans below
82.6 with

Trustability

and Rule
Support

Predicted
Number of
Damaged

Cans above
82.6 with

Trustability

and Rule
Support

1 142 1 70 192 0 0 100 2.4 0 0 62.5 3.9
2 115 1 175 579 0 0 100 2.4 0 0 72.7 5.4
3 108 1 70 192 0 0 83.3 17.7 0 0 72.7 5.4
4 91 1 175.0 579.0 0.0 0.0 83.3 17.7 0.0 0.0 72.7 5.4
5 78 1 70.0 192.2 0.0 0.0 100.0 2.4 0.0 0.0 62.5 3.9
6 59 3 19.0 60.2 96.4 13.8 0.0 0.0 100.0 15.2 0.0 0.0
7 48 2 175.0 579.0 96.4 13.8 0.0 0.0 0.0 0.0 72.7 5.4
8 46 2 19.0 60.2 96.4 13.8 0.0 0.0 0.0 0.0 72.7 5.4
9 46 1 19.0 60.2 96.4 13.8 0.0 0.0 100.0 15.2 0.0 0.0

10 41 1 19.0 60.2 96.4 13.8 0.0 0.0 100.0 15.2 0.0 0.0
11 39 2 19.0 60.2 96.4 13.8 0.0 0.0 0.0 0.0 72.7 5.4
12 39 2 175.0 579.0 96.4 13.8 0.0 0.0 0.0 0.0 72.7 5.4
13 38 1 19.0 60.2 96.4 13.8 0.0 0.0 100.0 15.2 0.0 0.0
14 29 1 19.0 60.2 96.4 13.8 0.0 0.0 100.0 15.2 0.0 0.0
15 27 1 19.0 60.2 96.4 13.8 0.0 0.0 100.0 15.2 0.0 0.0
16 25 2 175.0 579.0 96.4 13.8 0.0 0.0 0.0 0.0 72.7 5.4
17 24 1 19.0 60.2 96.4 13.8 0.0 0.0 100.0 15.2 0.0 0.0
18 19 1 19.0 60.2 96.4 13.8 0.0 0.0 100.0 15.2 0.0 0.0
19 16 1 19.0 60.2 96.4 13.8 0.0 0.0 100.0 15.2 0.0 0.0
20 13 1 19.0 60.2 96.4 13.8 0.0 0.0 100.0 15.2 0.0 0.0
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To distinguish between the results, a three-level “Program trustability” scale was
established, where the best prediction is marked as 1 and the worst prediction is marked as
3. For a value of 1, the program results for each of the three responses coincide with the
actual number of damaged cans. Value 2 means compliance of priority 1 and 2, while value
3 means compliance of priority 1 and 3, but non-compliance of priority 2, which is more
important than 3. The comparison shows that 14 out of 20 examined circles show 100%
compliance between the production and the prediction of the program, which is 70% of the
results. A total of 5 coils are in agreement for priority 1 and 2, which is 25% of the results,
and one coil for priorities 1 and 3, which is 5% of the results. Based on the verification,
it can be concluded that the program predicts the number of damaged cans correctly in
most cases, 25% of cases are also well-predicted for responses with priority 1 and 2. Only
one case could be misleading when making the decision to release the coil for production,
which may result from an insufficiently big database and, consequently, a low precision
of the statistical calculations. This would suggest extending the database in the future to
obtain more precise results.

4. Discussion

Table 3 shows that yield strength and elongation have the biggest impact on the num-
ber of damaged cans. With the increase in YS, the number of damaged cans increases. Along
with the decrease in the elongation parameter, the number of damaged cans increases. With
the increase in YS and UTS, the number of damaged cans increases, which confirms that
the greater strength of the material reduces its plasticity and the sheet breaks earlier when
forming the can. The relative elongation, on the other hand, has an inversely proportional
effect on the formation, which is confirmed by the minus sign in front of the correlation
value of the “Elongation” parameter.

These results are consistent with the concept that exists in material engineering. Indeed,
hardening of a material, for example, after cold deformation, (increase YS) is usually
accompanied by a decrease in ductility (Elongation).

Table 4 clearly shows that the increased amount of silicon (Si) is increasing the number
of short cans. Similarly, increase in the amount of iron (Fe) generates a bigger scrap rate.
Additionally, manganese has an indirect impact on the number of short cans by influencing
the YS and UTS with the biggest correlation at the level of 0.493 and very statistically
significant with p < 0.001.

A. Rękas at al. (2015) [9] proved that the increased plasticity margin (YS/UTS) and the
strain-hardening factor causes an increasing number of defects. Another conclusion was
that decreasing elongation increases the amount of damaged product. Their article shows
that YS/UTS and elongation have a significant impact on spoilage but does not provide an
answer as to which parameters have the biggest impact on generating a spoilage. Thanks to
using a statistical method, it was possible to find a correlation and those parameters which
are crucial for the process. Additionally, thanks to using the interactive regression and
classification tree, it was possible to create a tool which can predict the number of short cans
for new coils. The idea of an implemented decision support tool was to apply knowledge
about material, actually owned by the manufacturer without additional tests. There are
also parameters which could have potentially influenced the defect generation, such as
tool wear which was analyzed by A. Rękas at al. [9] anisotropy, orientation distribution
function and crystallographic texture analyzed by Andre Luis Teixeira Martins at al. [14]
and other parameters such as strain-hardening coefficient, roughness, etc., which can be a
good extension of this research in the future.

5. Conclusions

The paper presents the possibilities of applying IT tools, especially decision tree
induction (C&RT) used for the creation of an approximation model of the prediction of
industrial processes of deep drawing of cylindrical thin-walled products from aluminum
sheets. With the current configuration of the process parameters measurements and input
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data, i.e., batch parameters, the statistical analysis showed that the relationships among
the parameters are not significant, and the measured correlations do not allow for the
development of satisfactory regression models. It is an example of forecasting in the reality
of uncertain data (we rely, among others, on data provided by various suppliers with
unknown measurement conditions) and incomplete (a limited number of parameters). A
new point of view in the forming process is to modify the technological process by changing
the input material when too many defects are expected. Thanks to the development of a
tool for predicting the number of defects, it is possible to manage the production process
in such a way that during periods of increased production, coils that pose too high a
risk of a large amount of defective product can be postponed and used in low season for
beverage cans. The aim of the work was not to modify the forming process itself, but to
develop a production forecasting tool. The authors, striving for a possible approximation
of the quality parameter, which was the number of “short cans”, used three decision tree
models, combining into one base the rules with high confidence indices and possibly a
small variance in leaves. This method consisted of developing a regression model, and
then two classification models, on the discretized dependent variable cut off at 2 and 3
quartiles, respectively. This made it possible to develop a model of inference with three
degrees of precision, and then to integrate the result of inference in the form of an ensemble
model, where the decision is given based on the voting of each degree. The obtained result
is still not errorless, but in circumstances where there is a small training dataset so far, it
turned out to be satisfactory. In the long run, when we have larger training datasets, where
the ranges of variability will be covered to a greater extent, these models will allow us
to capture dependencies in a much more precise scope, and thus, inference will enable
generally consistent and unambiguously quantitative results.

The obtained results of the developed inference model enable a rough estimation of
the values of the short-can index on the basis of the relations between chemical components
and the index of short cans, but also of an indirect correlation in the influence of chemical
elements on mechanical properties, such as yield strength, ultimate tensile strength and
elongation.
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