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Abstract: Urban areas are the fastest growing land type worldwide. By 2060, it is expected that
approximately 70% of the human population will live in cities. With increased urban population
growth, food sovereignty and security issues have gained more attention, resulting in a drastic
increase in urban food production activities including, urban farming and gardening. The extent
to which urban farms function, their social, ecological and economic composition, and their overall
impact on local food security has become an often overlooked, but important topic. From 2014 to
2017, we partnered with 29 urban farms in the San Francisco Bay Area for a broad-scale survey of
urban farm characteristics. Findings reported in this research focused on local (on-farm) characteris-
tics, including management practices, on-farm spatial composition, and estimated productivity. We
implemented open-ended surveys for farm managers to better understand management practices,
measured on-farm elements, including yields, crop biodiversity, weed composition and abundance,
and measured spatial characteristics such as area of production, non-crop area, and proportion of
infrastructure to better understand how urban farms were spatially configured. We found trends
regarding spatial composition, including a large proportion of farm area dedicated to infrastructure
and underutilized potential production space. All farms surveyed had adopted a breadth of agroeco-
logical management practices, including cover cropping, crop rotations, intercropping, and a range
of soil conservation practices. Measured farms are incredibly productive, with estimated seasonal
yields of 7.14 kg/square meter. Estimated yields were comparable with actual yields as measured at
two participating farms.

Keywords: urban agriculture; urban agroecology; yield; management practices; food production

1. Introduction

Urban agriculture (UA) sites, herein identified as urban farms, are co-created by the
immeasurable factors that occur in the built environment. Not only do ecological factors,
such as soils, and climate impact their function, but social and economic processes shape
their location, size and even what they produce [1,2]. These farms occur in vacant lots,
schools, city parks and other underused urban spaces; and span a variety of typologies,
including institutional urban farms, small allotment style gardens, collectively managed
spaces and many distinct combinations in between [3,4]. Each urban farm has a network of
social and economic support structures situated in a unique ecosystem that, in sum, influ-
ence form and function [3,5,6]. Despite UA’s prevalence in the modern urban landscape,
little is known about on-farm composition, management and function; or whether trends
exist across these different categories.

The San Francisco Bay Area is a historical focal point for urban agriculture initiatives,
often affiliated with food sovereignty and food justice organizations that currently operate
urban farms throughout the East Bay. To better understand the form and function of urban
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agriculture systems, we initiated the Urban Agroecology survey in 2014 and engaged with
urban farms and their managers in the East Bay of the San Francisco Bay area for three
years. Our research goal was to better describe urban agriculture’s local composition and
practices by investigating the on-farm characteristics of urban farms, including landscape
composition, prevalence of management practices and a variety of production measures,
including estimated yields, biodiversity and disposition of harvests.

1.1. On-Farm Composition

Investigations regarding local and landscape spatial features of urban farms have been
mainly constrained to three foci: the overall size, surrounding landscape and ecological
composition of the farm, especially in the context of species abundance or diversity and
species-mediated biodiversity and ecosystem services (B&ES) [7]. Urban farms are often
framed as potential habitats (i.e., habitat patches) in urban areas and are studied from the
existing literature on species–area relationships in fragmented landscapes [8]. Generally
speaking, species diversity is reduced in urban and peri-urban landscapes, and the abun-
dance of urban-tolerant species increases [9–11]. These dynamics are incredibly complex
and confound research regarding species occurrence, persistence, and species moderated
ecosystem services in urban environments [8,12]. Despite conflicting results regarding
species–area relationships and B&ES in fragmented landscapes, the size of urban farms has
been a significant explanatory variable for a variety of measured ecological phenomena.
Farm size has been found to influence ecological function, especially provisioning of regu-
latory ecosystem services such as biological control services and mediation of abundance
and diversity of natural enemy and herbivorous pest species [13–25].

Landscape analysis is also common and similarly framed from a B&ES approach to
and from urban farms with urban arthropods and resulting regulatory ecosystem services.
These studies typically measure surrounding imperviousness at varying distances and re-
sulting impacts to natural enemy abundance and diversity [13,15,21,22,26–28], herbivorous
pest abundance and diversity [19,27,29–31], or focus specifically on regulatory ecosystem
services [7,23]. Despite the obvious utility of these studies in understanding ecological
function on urban farms, regulatory ecosystem services, and overall urban landscape ecol-
ogy, the available landscape data are often criticized for their low resolution. The available
technology cannot discern the fine detail of off- or on-farm composition [32], necessitat-
ing an on-the-ground approach to complement further research and better understand
on-farm composition.

Previous studies that have measured landscape effects on urban agriculture ecosystem
function have also incorporated local, on-farm, structural factors such as the height of
and canopy cover of perennials and overall structural diversity [7,13,15,19,21,22,30,31].
Incorporation of these structural factors and other features commonly associated with
management practices such as floral provisioning into their analysis have shown significant
effects on species occurrence, but these factors are often measured in isolation of other
spatial composition and land uses in UA.

While landscape and local factors demonstrably have an impact on ecosystem function,
to the authors’ knowledge, no studies expressly incorporate the “patches within patches”
concept in UA and include on-farm land-use composition (i.e., the area of production,
infrastructure, unused spaces or areas set aside for natural habitat) in their analysis. In
short, existing literature that accounts for both on- and off-farm effects on ecosystem
function treats on-farm spatial composition as homogenous. Failure to account for spatial
composition in landscape ecology studies can have significant implications for the validity
of explanatory factors in these investigations as density-dependent, and species–area
relationships should depend on the farm’s spatial composition [33]. Furthermore, the size
and production capacity are essential factors for the planning and design of urban farms, as
urban agriculture is a persistent and growing land use in urban spaces that directly impacts
urban food security [34,35]. How these patches of agricultural production are managed in
urban areas can have significant consequences regarding the future of UA and ecological
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studies within these systems. For this research, we investigate the preliminary aspects of
these future research questions, seek to determine the overall spatial composition of urban
farm land use, and investigate whether specific trends regarding land-use types exist in
our participating farms.

1.2. On-Farm Management Practices

Urban farms exist within a landscape that has been co-created through social, eco-
nomic, and ecological processes. Not unique to but prevalent in urban farms are a variety
of abiotic and biotic conditions that offer unique challenges for urban farmers. Often,
farmers can mitigate or adapt to challenges encountered while urban farming by imple-
menting specific agroecological practices. Our survey sought to understand better how
urban farmers manage their farms from an agroecological perspective and the extent to
which management practices have been adopted or utilized in these unique landscapes.
Implementing specific diversification and management practices can directly impact soil
quality and mediate regulatory B&ES essential for ecological management of soils, pests
and weeds.

Urban farmers are often practicing on ruderal or underused urban landscapes that
often have a variety of factors that decrease urban soil biodiversity and function [36]. Urban
soils typically have a higher bulk density, lower amounts of organic matter, and higher
levels of debris and contamination [37]. Moreover, urban soils have lower levels of nutrient
cycling due to disruptions or reductions in biological materials such as leaf-litter and water
cycling [38]. Of note, areas where urban agriculture may be most impactful from a food
security standpoint, are also areas with lower levels of tree canopy and greenspace [39,40],
important aspects of nutrient cycling in natural ecosystems. These factors often create poor
conditions for agricultural production and require intensive management to restore soil
quality and fertility.

Several agroecological practices have been shown to have significant impacts on
soil composition and function in non-urban agroecosystems, including the application of
organic matter (compost, manure and other organic amendments) [41], crop rotations [42],
cover cropping, and no-till practices [43,44]. The extent to which these practices have been
implemented in urban agriculture has been understudied. Still, urban farmers have widely
adopted these practices under the auspices of restoring the ecological function of urban soils.
In addition to these practices creating favorable conditions in agroecosystems, they also are
primarily rooted in indigenous agricultural practices that rely on ecological management,
eschewing chemical inputs such as synthetic fertilizers and pesticides. Reducing the need
for off-farm inputs and focusing on ecological management practices are essential aspects
of UA ethics that focus on ecological and individual health.

Many of these practices are beneficial to restoring the tilth to urban soils and have
many beneficial effects on pest and weed management. Herbivorous pests in urban areas
can be challenging to manage due to increased urban temperatures [45], stressed urban
plants [46–49], and the prevalence of disturbed areas often colonized by weedy alternative
host species [10]. In addition to being beneficial to soil health, diversification practices
such as intercropping, crop rotations, and floral provisioning have been shown to have
beneficial effects on natural enemy populations, reduce herbivorous insect abundance, and
decrease crop damage [50,51]. Moreover, soil management practices are inexorably linked
to biological control of weed species, especially granivory, disruption of, and competition
of weed species [52–54].

The extent to which agroecological management practices regarding soil health, pest
and weed management, have been adopted and practiced by urban farmers is unclear.
Understanding adoption of and implementation of these practices can be of great impor-
tance to understanding how urban agroecosystems function and how urban farmers can
overcome challenges unique to the built environment.
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1.3. Productivity and Crop Biodiversity

Urban agriculture is often considered within the context of a production paradigm,
value derived from urban farms is contextualized in a production mindset despite the
myriad of measured benefits to the community who engage with these spaces [34,35].
While productivity is not explicitly a goal of most urban agroecosystems [55], it is an
important aspect of food security [35]. That being said, production capacity is often cited
when both justifying and criticizing UA’s efficacy and continues to be a salient topic in UA
discussions [56,57]. Many studies have attempted to address productivity, both through
direct measurements of yields and yield estimates in an effort to better understand urban
agroecosystem production capacity [58–61].

Agricultural yields in urban agroecosystems have been notoriously difficult to measure.
Because these spaces often operate outside of traditional crop planning, harvesting often
occurs sporadically and outside the scope of top-down farm management, making it
difficult to capture overall yield of each plant. Moreover, many crops grown in UA systems
are harvested repeatedly throughout the growing season, so one engagement with the
plant is unlikely to represent its true yield. Another difficulty often encountered in this
process is that removing crops for measurement is a significant impact to the farm. Several
strategies have been implemented in the previously cited studies, including estimates and
direct counting and weighing of crops. While estimates are not a particularly effective way
of understanding true production, they can be a useful tool for estimating potential yields.
For the purpose of this research, we used the estimated productivity per plant to create a
productivity measure per unit of area to gain a better understanding of overall potential
yields in UA.

Related to productivity, disposition of harvest is an important factor connecting
productivity to food security. Most often, research that has measured productivity on
urban farms has failed to gain insight into where harvests go, and how they are utilized.
Most literature regarding urban food production and distribution rely on theorized or
hypothetical scenarios but fail to understand how and if urban farm production impacts
food insecurity or alleviates food impoverishment [35]. In this research we worked directly
with farm managers through open-ended surveys to gain insight on the ultimate fate of
urban farm production.

1.4. Research Efforts

Despite these differences and typologies, and myriad of challenges and benefits
derived from such systems, little is known about the prevalence of certain management
practices, on-farm spatial composition or trends regarding the productivity of these spaces.
This agroecological survey attempts to clarify these aspects of urban farming to gain a
better insight into urban agroecosystem function, composition, and productivity—this
information will hopefully be of great utility to urban planners, urban farming advocates
and ecologists studying these important and complex managed ecosystems.

2. Methods
2.1. Study Design

Initial outreach to local urban farms in the East Bay area of San Francisco started
in 2014. Potential community partners were identified through a review of local news,
social media and websites that identified urban farmers and community gardens that were
impacting local food security. After initial contact, an initial meeting was scheduled for
researchers and farm managers. During the first visit, researchers administered an open-
ended interview that included 54 questions based on management practices, social and
economic factors, and ecological phenomena (see Appendix A). Research questions qualify
as exempted from Institutional Review Board approval as per the criteria on research set
forth by the Committee for Protection of Human Subjects (CPHS) and Office for Protection
of Human Subjects (OPHS) [62]. Additional community partners were identified during
this process during research visits and referrals from initial contacts. Research partners



Processes 2022, 10, 558 5 of 17

and affiliated urban agriculture sites were asked to be community partners if they met
two criteria: 1. level of community engagement (i.e., operations were open to community
participation and community members derived some benefit) and 2. they were not explicitly
for-profit, production-centric operations. Some selection bias probably occurred during
this time as organizations that had a full or part-time farm manager were more likely
to sustain contact with researchers. Nineteen sites were identified for research in year
one. Researchers visited several times throughout the summer and fall growing season as
approved by farm managers.

In 2015 we saw some attrition from previous farms due to low response rates and
difficulty in scheduling. Four additional research partner sites were included in 2015. All
measures except open-ended surveys were repeated in 2015. Subsequently, in proceeding
research years six additional sites were added for a total of 29 farms that participated in
this research (Figure 1). Due to variability in support, turnover of garden managers, and
a variety of other factors, some farms only participated in portions of the research (see
Appendix A). During the duration of the urban agroecology survey, six of our community
partner sites were abandoned and/or developed.
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2.2. On-Farm Composition

To determine on-farm composition of research sites, we physically measured urban
farm size, area of production, non-crop areas and areas used for infrastructure. Total farm
size was measured using Google Earth Pro and ground-proofed during site visits. Farm
production space was measured by hand and included all space in the gardens used for
producing crops (both annual and perennial). Not all production occurred in-ground,
therefore, the overall estimate of area used for production included both raised garden beds
and in-ground production. Non-crop areas are defined as managed areas not primarily
used for food production and were often set aside as pollinator or natural enemy habitat.
These spaces included a variety of perennials and annuals, flowers, and other non-crop
features. Infrastructure was defined as the area not being used for production, or conserved
for non-crop habitat (includes buildings, pathways, etc.) and can generally be considered
areas utilized for other on-farm uses. These measurements were translated into proportions
of total farm area for analysis (Table 1).
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Table 1. Farm size and land use composition.

Farm Size and Land Use Composition (n = 19)

Site Total size (m2) Production (m2) Non-crop (m2) Infrastructure (m2) Production (%) Non-Crop (%) Infrastructure (%)

1 95 10.6 12 72.4 0.11 0.13 0.76

2 117 31.3 31 54.7 0.27 0.26 0.47

3 140 24.1 24 91.9 0.17 0.17 0.66

4 175 58.36 30 86 0.33 0.17 0.49

5 394 255 12 127 0.65 0.03 0.32

6 522 296.72 100 125.28 0.57 0.19 0.24

7 537 25 25 487 0.05 0.05 0.91

8 566 42 0 524 0.07 0.00 0.93

9 664 300 49 315 0.45 0.07 0.47

10 728 136 119.75 472.25 0.19 0.16 0.65

11 778 96.5 106.7 574.8 0.12 0.14 0.74

12 964 184 0 780 0.19 0.00 0.81

13 1367 867 90 410 0.63 0.07 0.30

14 2348 760 188 1400 0.32 0.08 0.60

15 2443 511 200 1732 0.21 0.08 0.71

16 2603 405.18 440 1757.82 0.16 0.17 0.68

17 3105 973.5 800 1331.5 0.31 0.26 0.43

18 4477 966 595 2916 0.22 0.13 0.65

19 8016 7775 0 241 0.97 0.00 0.03

Average 1581 722 149 710 0.32 0.11 0.57

2.3. Productivity and Distribution

Estimated Productivity (EP) was measured by randomized quadrat counts of land
in agricultural production. All crop plants within the quadrat were identified to cultivar.
Each quadrat was also identified for production practices, whether the bed was raised or
in-ground, and type of irrigation (drip irrigation or hand watered). Estimated productivity
was measured by the number of plants per quadrat. Per plant yields were limited by
available data and a diversity of sources were used to estimate yields including How to
Grow More Vegetables [63] and yield data from field trials at the Oxford Tract Research
Station at UC Berkeley [64]. The methodology used to estimate the average potential yields
per square meter are based on prior work in urban agriculture [58,59,64–66]. Distribution
of harvests were self-reported by farm managers during open-ended questionnaires. Farm
managers were asked to report proportions of harvest that went home with people who
worked on the farm or were donated to farm neighbors, crop sales through farmers markets
and donations to community food organizations such as food banks.

2.4. Crop Diversity and Weed Occurrence

Crop biodiversity was measured using two methodologies, productivity quadrats
and eight-meter transects, to account for in-bed diversity as well as on-farm diversity.
Both methodologies counted all visually identifiable crop plants and non-crop plants
(flowers). Iterations of transect counts were determined by overall farm size with larger
farms requiring six to nine transect counts and smaller farms only three. Crop biodiversity
was measured five times on each farm over the duration of the research. Weed abundance
and diversity were measured using in-bed quadrat counts and categorized as broadleaf
and/or grasses. More developed weeds were identified to morphospecies.

2.5. Management Practices

Information on common land management and farming practices (see Appendix A)
such as crop rotations, cover cropping, use of mulch, intercropping, on-site composting, soil
management practices, pest control strategies, weed management were collected during



Processes 2022, 10, 558 7 of 17

the open-ended survey (Table 2). Confirmation of practices implemented on the farm were
ground-truthed over several visits to the farm. In some cases, community farms were managed
individually rather than collectively. In most cases we observed common practices among
plots and generalized these as commonly used on the site, however, not all participants
can be expected to use uniform management practices, and not all practices are visually
observable, especially in the context of soil amendments and pest management practices
(excluding pesticide use which was always prohibited on all research sites). For analysis,
practices including crop rotations, cover-crops, intercropping, mulching, application of soil
amendments including compost, manure and fish emulsion, composting on-site and no-till
practices were aggregated to create an overall management-intensity index.

Table 2. On-farm management practices.

On-Farm Management Practices (n = 29)

Agricultural practices

Inter-Cropping Cover-Cropping Mulch Rotations Green manure Double-Dig No-Till

27 25 19 18 7 6 1

93% 86% 65% 62% 24% 20% 3%

Soil management

Compost Manure Fish emulsion Compost tea Worm Castings Minerals -

24 11 10 9 5 3 -

82% 38% 34% 31% 17% 10% -

Animal Integration

Bees Chickens Worms Goats Fish Ducks Rabbits

10 7 4 3 2 1 1

34% 24% 14% 10% 6% 3% 3%

2.6. Data Analysis

Data analysis focused on the spatial composition of farms and how spatial composition,
including proportions or production space, natural habitat and infrastructure were related
to the overall farm size. We analyzed on-farm spatial composition using regression and
classification trees (CART) in the package rpart in R [67]. Management practice occurrences
were measured and used as explanatory variables for proportion of weed coverage (weed
density) and estimated productivity (EP). Weed density was checked for normality using a
Shapiro–Wilks Test, and for homogeneity of variance using Levene’s test. Weed data were
analyzed using a non-parametric Kruskal–Wallis test with Dunn’s post hoc analysis.

3. Results
3.1. On-Farm Composition

For analysis we questioned how on-farm land use categories and overall size influ-
enced the proportion of production, natural habitat and infrastructure. We used classifi-
cation and regression trees (CART) to look at predictors of the three land use categories.
CART analysis indicated that the proportion of production was best predicted by overall
proportion of on-farm infrastructure. In total, 85% of farms had over 40% of their overall
area committed to farm infrastructure, and 58% of those farms had infrastructure in excess
of 62% of overall farm size. Infrastructure was by far the largest on-farm land use category,
accounting for an average of (57%) in all farms measured (Figure 2). When accounting for
other non-production land use, an average of 68% of on-farm area was not utilized for food
production. Overall size of farms was a poor predictor of any other land use type.
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3.2. On-Farm Management Practices

Survey results and ground-proofing indicate that agroecological management prac-
tices have been widely adopted throughout East Bay urban farms and gardens. Almost all
farms assessed incorporated inter-cropping as well as cover cropping and applied compost.
Indexed management practices (crop rotations, cover crops, intercropping, compost, ma-
nure, and fish emulsion applications, on-site composting, no-till practices and whether or
not plots were mulched) when compared with mean estimated productivity, weed density
and overall crop biodiversity did not have a significant effect.

3.2.1. Crop and Non-Crop Diversity

Crop richness was measured both using quadrats and transects to better capture
overall farm crop diversity. Mean quadrat diversity (n = 933) was 2.97 crops/m2. Eight-
meter transect count averaged 10.28 crops. Management intensity as indexed by measured
agroecological practices did have a weak correlation with crop biodiversity, but this is
not reported as crop biodiversity was largely a mechanism of crop selection by urban
farmers. Crop biodiversity and management intensity are interesting in the sense that crop
biodiversity on site may be a proxy for agroecological management practices.

3.2.2. Weed Occurrence

Overall weed coverage per quadrat was measured over two years. Average weed
coverage in quadrats was 7%. Broadleaf weeds were found in a greater proportion
than grass weeds. Approximately 40% of sampled quadrats had no weeds (Table 3).
A non-parametric Kruskal–Wallis test revealed that there was a statistically significant
difference in weed percentages per unit of area between intercropped and not inter-
cropped quadrats (H (1) = 7.1671, p = 0.007), and raised bed and in-ground production
(H (1) = 30.434, p = 0.001) (Figure 3).
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Table 3. Weed coverage in production areas.

Weeds (%/m2), n = 933

Average weed coverage (m2)—all quadrats 7%
Quadrats with only broadleaf weeds 31%
Quadrats with only grass weeds 8%
Quadrats with mixed weeds (both broadleaf
and grass weeds) 21%

No weeds present 40%
Processes 2022, 10, x FOR PEER REVIEW 9 of 17 
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(a) H(1) = 7.1671, p = 0.007; (b) H(1) = 30.434, p = 0.001.

3.2.3. Management Practices and Estimated Productivity

Estimated productivity was calculated per square meter quadrat (n = 933) at 20 urban
agriculture sites. Using yield estimates per plant/quadrat, and total farm production
space, we estimate that sampled urban farms produce 7.14 kg/square meter (Figure 4).
As productivity estimates were not measures of true production, we used actual yields
from two large urban farms that recorded total seasonal yield and divided that number
by their overall production area. Our estimates closely matched comparative true yields
(8.6 kg/m2) by weight and area of production on these two farms. Estimated yields were
comparable to previous studies of urban farm production, including Grewal & Grewal
(2010) [68], that estimated on-farm productivity at 6.20 kg/m2 under their intensive urban
gardening scenario. As well as Gittleman et al. (2012) [59] who measured productivity at
over 500 urban farms and found actual yields between 5.85 kg/m2 and 1.6 kg/m2).
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3.2.4. Disposition of Harvest

Aggregated survey data indicate that harvests are distributed in the following pro-
portions: 69% of harvests go to the farmers’ families or the community surrounding the
farm who are affiliated or familiar with the farm operations. In total, 10% of harvests go to
farmers markets or Community Supported Agriculture (CSAs) supporting the organiza-
tions (or members) economically. A total of 10% of the harvest goes to organizations that
are directly helping vulnerable populations (i.e., shelters and community kitchens).

4. Discussion

Developing a better understanding of the agroecological elements of urban farms will
be an important topic in an increasingly urbanized world. Previous analysis suggests that
worldwide urban food production can significantly impact global food requirements [56].
However, as urban populations grow, urban land becomes increasingly valuable, and
the “highest and best use” of vacant urban land may limit the implementation of UA.
Production capability impacts on local food security, and the overall economic efficacy
of UA will be crucial in promoting and prioritizing it in future and current urban food
systems [34,35]. Further, developing a better understanding of the multi-functionality of
UA, including the social, economic and ecological benefits these systems provide, can better
help policymakers and urban planners bolster UA, acknowledging its utility and benefit in
the built environment. Understanding spatial composition trends, management practices
and production potential are important and understudied topics that contribute to our
understanding of urban farms’ form and function. This research provides data and context
that may influence future discussions regarding the viability and efficacy of UA.

4.1. Spatial Composition and Potential Productivity of Urban Farms

A deeper understanding of UA production capabilities, especially in the context of on-
farm land use, is an important topic when questioning the efficacy of urban food production
on high-value urban land. Urban land cycles are largely dependent on rent-seeking and
attempt to exploit rent gaps for profit by landowners and developers [24]. Developing
under-used urban land is often very profitable, counter to UA operations. High land
values consistently challenge urban agriculture systems in the context of “highest and
best” use—the concept that land use should always create the most profit. Urban farms are



Processes 2022, 10, 558 11 of 17

consistently put in a dilemma; they must justify their existence in the context of production.
However, if they are not generating substantial profits, their implementation on high-value
urban land will always be questioned.

Urban farms also suffer from a fundamental misalignment with “highest and best
use” objectives; previously published survey data indicate that urban farm goals are often
focused on social goods and food security [55]. Generating profits is often a tertiary goal at
best. Despite this misalignment and lack of financial support, estimated yields per unit area
are high, with approximately 7.14 kg/square meter of fresh vegetables being grown. Urban
farms also significantly impact local food security, with approximately 69% of on-farm
production going to the local community.

Our findings indicate that increasing overall production capacity in UA, an important
consideration in urban land use, can be linked to on-farm land use. Despite high yields per
unit of area, our on-farm spatial analysis found that an average of only 32% of available
area is being utilized for production. With land being such a limiting factor of UA adoption,
we found that UA sites may not be maximizing potential production area. These findings
indicate that overall urban farm size is not a limiting factor to increased production. Two
possible explanations may influence underutilization of production area. Firstly, these
farms often exist on volunteer labor and often lack consistent funding to pay farm managers
and employees [55]. Investment, infrastructure and labor may be limiting full production
potential. Moreover, these spaces are serving residents more than markets. If local food
needs are met there may be less incentive to put additional land into production. Conversely,
spatial composition, especially in the context of production area, may be influenced by
management practices. The three farms with the highest proportion of production area all
utilized in ground management practices. Contrariwise, UA sites with the most significant
proportion of infrastructure (and minimal production area) all utilized raised beds in their
production systems.

Raised-bed production is often linked to concerns about soil health or security of
tenure. Raised-bed production can help mitigate potential soil contamination issues, often
found in UA. This production practice is also modular and can be broken down and
moved in cases of insecure tenure. In summary, UA production is not limited by yields
per unit of area but more explicitly linked to social–ecological factors that prohibit the full
implementation of long-term, in-ground production systems.

4.2. Agroecological Management Practices on Urban Farms

We found that implementation of sustainable farming practices is widespread among
urban farmers and practiced across measured sites. Intercropping, cover-cropping and soil
building practices are common and often practiced simultaneously (Table 2).

Adoption of sustainable farming practices may be in response to abiotic and ecological
challenges faced by converting impacted urban land into productive farms. Crop rotations,
cover-cropping, mulching and manure and compost application were often cited during
interviews with farm managers as strategies to remediate impacted urban soils. Manage-
ment practices were also frequently cited as strategies used in response to pest and weed
pressures. Weeds were prevalent in all measured sites, but broadleaf weeds were most
pervasive and were especially abundant for in-ground production systems as opposed to
raised beds. Average weed coverage in quadrats was reduced by the implementation of
intercropping. These results have important similarities to findings in rural agricultural
systems and show that these practices can be implemented at small scales in novel urban
agroecosystems.

5. Conclusions

Our findings help us better understand urban farm spatial composition and manage-
ment practices. We found that urban farms are diverse in spatial composition, have adopted
a broad spectrum of agroecological management practices, are highly productive and di-
rectly impact local food security. We were unable to link specific practices to increased
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production per area unit, but we found that intercropping can decrease weed occurrence.
Underutilization of available farm area for production was prevalent. We propose that
production limits are linked to social and economic factors that prohibit urban farms from
developing high-yielding, in-ground production systems. Our findings on UA form and
function give us a better understanding of how urban farms function in the landscape.
However, they are often under-supported and often suffer from insecure tenure, limiting
their potential impact [55,69]. Despite these limitations, UA systems continue to impact
local food security and provide a myriad of social goods to local communities. Changing
perspectives of how UA systems function and their social and economic benefits will be of
great importance for their continued existence in high-cost cities.

Summary: UA sites are incredibly productive and have the potential to provide a
suite of both social, economic and ecological services to surrounding communities. This
research addresses some of the enduring questions about urban agroecological form and
function, and details information valuable to planners, policy makers, urban ecologists and
urban farmers.
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Appendix A

Table A1. Scheme. Survey questions.

Scheme. Survey Questions.

1. Name of garden/farm

2. Date

3. Interviewee name

4. Relationship with farm?

5. When was the farm established and by who?

6. What is the mission of the farm?

7. Can you offer a brief history of this farm?

8. What are the economic goals of the farm?

9. What is the relationship with the legal landowner?

10. Do you pay any form of rent?
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Table A1. Cont.

Scheme. Survey Questions.

11. Is there a limit on your time here?

12. Is the farm affiliated with any particular institution? (e.g., religious organization, housing
site, school, non-profit, network of community gardens)

13. What type of support does the institution provide? (Financial, agronomic, political etc.)

14. How many people farm/work here?

15. What is their relationship to the farm?

16. How do people learn about and get involved in this particular farm?

17. Can community members access the farm at any time?

18. Does the farm have something like “open-hours” or supervised farming periods each week?

19. How does the community interact with this farm? (e.g., people from the community farm
here, neighbors visit the farm, etc.)

20. What impact do you think this farm has had on the surrounding area/neighborhood?

21. How did the farm acquire tools/implements?

22. Where do you get your seeds/seedlings from?

23. Is the farm irrigated?

24. Type of irrigation?

25. How much water is used?

26. Where does the water come from?

27. Do you pay for the water?

28. Is there infrastructure for water harvesting?

29. Are you facing any challenges due to the drought? How are you overcoming those?

30. What do you produce? (Annual/Perennial crops; Flowers/ornamentals; Animals (beehives,
chickens, goats, pigs, etc.) and for what use (honey, wax, meat, milk, eggs, hide, are they just
pets, etc.)

31. What are the main pest problems (by crop family or species)?

32. Methods to prevent pests?
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Table A1. Cont.

Scheme. Survey Questions.

33. Methods to deal with pest infestation/outbreak?

34. What do you think is the effectiveness of these methods? What has worked well or not?

35. Does the farm have native or natural habitat areas?

36. What are the main pathogenic species? Foliar, soil-borne, etc.?

37. Methods used to prevent diseases?

38. Methods used to deal with disease following infestation/outbreak?

39. What do you think is the effectiveness of these methods? What has worked well or not?

40. What are the main weed species? Annual vs. perennial; grasses vs. broadleaves?

41. What do you do to prevent weeds? (e.g., reduce weed seedbank, prevent seedling
germination, avoid weed seed production, etc.)

42. What do you think is the effectiveness of these methods? What has worked well or not?

43. How do you manage soil quality/fertility?

44. Do you use any of these practices? Recycle biomass; add soil nutrients; add organic matter
(mulch and/or compost?)

45. Where do you get amendments?

46. How do you prevent (minimize) nutrient loss?

47. Do you use cover crops?

48. What practices do you use to conserve water and soil moisture?

49. Do you produce compost on site?

50. Has the soil at this site been tested?

51. Do you know what it was tested for?

52. How did you decontaminate soil or avoid soil contaminants?

53. What inputs come from off farm?

54. What do farmers do with their harvest? (e.g., personal consumption, donated, trade/barter,
sold in the market, etc.?)
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Table A2. Farm participation in research (not all farms participated in all aspects of this survey).

Farm Participation (n = 29)

Survey Production Area Size Impervious
Surface (%) Yield Weeds Ground Cover Crop

Biodiversity

25 25 25 12 17 15 13 13
86% 86% 86% 41% 58% 51% 44% 44%

Table A3. Description of on-farm management practices.

Inter-cropping Growing of two or more crops simultaneously in close proximity

Mulch Using organic matter, often fallen leaves or wood chips, to cover
bare soil in production areas

Crop rotations Spatially shifting cultivation of particular crop families seasonally
Green manure Incorporating green crop residues into the soil

Double-digging
Method of incorporating organic matter into garden beds through

hand-tillage. The method is typically attributed to the
French-intensive style of gardening.

No-till

Soil management practices that reduce disturbance of soils. This
technique is regionally associated with soil management practices

similar to those implemented at Singing Frog Farms in
Sebastopol, California

Table A4. Descriptive statistics, Kruskal–Wallis test (Weed %/m2).

Descriptive Statistics, Kruskal–Wallis Test (Weed %/m2)

H DF p-Value Z n Mean sd Min Max % zero

30.434 1 3.45 × 10−8 −5.516696 - - - - - -
Raised bed
production - - - - 372 4.47 6.95 0 40 0.48

In-ground
production - - - - 560 8.36 12.79 0 100 0.34

7.1671 1 7.43 × 10−3 2.677151 - - - - - -
Not intercropped - - - - 97 13.350516 20.26802 0 100 0.38

Intercropped - - - - 835 6.053892 9.080811 0 60 0.4
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