Effect of Aging Time on the Composition of the Volatile Components of An–tea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Preparation
2.2. Primary Instrument
2.3. SPME Extraction Method
2.4. GC/MS Analysis
2.5. Identification of Volatile Components
2.6. Data Processing
3. Results
3.1. Composition of Volatile Substances in An–tea of Different Aaging Times
3.2. Relative Compositions of Volatile Compounds in Differently Aged An–tea Samples
3.3. Principal Component Analysis of Volatile Substances
4. Discussion
4.1. Aroma Components of Aged An–tea
4.2. Medicinal Analysis of Volatile Compounds in An–tea
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shen, S.; Huang, J.; Li, T.; Wei, Y.; Xu, S.; Wang, Y.; Ning, J. Untargeted and targeted metabolomics reveals potential marker compounds of an tea during storage. LWT 2022, 154, 112791. [Google Scholar] [CrossRef]
- Huang, J.; Wang, Y. Studies on the quality and chemical constituents of An–tea. China Tea Process. 2009, 29–31. (In Chinese) [Google Scholar] [CrossRef]
- Han, A.; Li, L.; Xu, X. Analysis of quality and chemical components of An–tea. J. Tea Bus. 2016, 38, 79–83. (In Chinese) [Google Scholar] [CrossRef]
- She, X.S.; Gan, Z.T.; Li, K.; Yao, T.; Wang, S.Q.; Zhang, B. In Determination and difference analysis of aroma compounds in An–Tea with different aging time. In Proceedings of the 5th International Conference on Advances in Energy, Environment and Chemical Engineering (AEECE), Shanghai, China, 16–18 August 2019. [Google Scholar]
- Gan, Z.; Wang, S.; Zhang, P.; Yao, T. The content and spatial distribution of soil heavy metals in the typical tea gardens of An–tea production in southern Anhui Province. J. Shaanxi Norm. Univ. (Nat. Sci. Ed.) 2018, 46, 112–119. (In Chinese) [Google Scholar] [CrossRef]
- State Administration for Market Regulation of China. Announcement of the General Administration of Quality Supervision, Inspection and Quarantine on Approving the Protection of Geographical Indication Products for Leijiadian Thin-Skinned Walnuts and Other Products (No. 190 of 2013). 2013. Available online: https://m.cqn.com.cn/zj/content/2014-01/21/content_2109718.htm (accessed on 19 January 2022). (In Chinese)
- Wang, M.Q.; Zhu, Y.; Zhang, Y.; Jiang, S.; Zhi, L.; Peng, L.H. A Review of Recent Research on Key Aroma Compounds in Tea. Food Sci. 2019, 40, 341–349. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, L.; Zeng, Z.; Zhao, C.; Kong, H.; Lu, X.; Xu, G. A comparative study of volatile components in green, oolong and black teas by using comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry and multivariate data analysis. J. Chromatogr. A 2013, 1313, 245–252. [Google Scholar] [CrossRef]
- Xu, Y.Q.; Wang, C.; Li, C.W.; Liu, S.H.; Zhang, C.X.; Li, L.W.; Jiang, D.H. Characterization of Aroma-Active Compounds of Pu-erh Tea by Headspace Solid-Phase Microextraction (HS-SPME) and Simultaneous Distillation-Extraction (SDE) Coupled with GC-Olfactometry and GC-MS. Food Anal. Methods 2016, 9, 1188–1198. [Google Scholar] [CrossRef]
- Xu, S.; Zeng, X.; Wu, H.; Shen, S.; Yang, X.; Deng, W.-W.; Ning, J. Characterizing volatile metabolites in raw Pu’er tea stored in wet-hot or dry-cold environments by performing metabolomic analysis and using the molecular sensory science approach. Food Chem. 2021, 350, 129186. [Google Scholar] [CrossRef]
- Ou, Q.H.; Li, J.M.; Yang, X.E.; Yang, W.Y.; Liu, G.; Shi, Y.M. Identification of Pu’er raw tea with different storage years by infrared spectroscopy. J. Food Process. Preserv. 2021, 45, 16103. [Google Scholar] [CrossRef]
- Tian, X.; Wang, J.; Deng, Y.; Luo, L.; Liang, Z. Characteristic aroma components analysis of raw Pu’er tea at different storage time. Food Ferment. Ind. 2016, 42, 194–202. (In Chinese) [Google Scholar] [CrossRef]
- Wei, L.; Su, M.; Chen, S.; Wu, Y. Research on Quality Changes of Liubao Tea in Different Storage Time. Southwest China J. Agric. Sci. 2015, 28, 376–380. (In Chinese) [Google Scholar] [CrossRef]
- Yang, X.; Li, Y.; Liu, Z.; Mao, Q. Analysis of aroma components in green brick tea. Food Sci. Tech. 2015, 40, 68–72. (In Chinese) [Google Scholar] [CrossRef]
- Lv, S.D.; Wu, Y.S.; Li, C.W.; Xu, Y.Q.; Liu, L.; Meng, Q.X. Comparative Analysis of Pu-erh and Fuzhuan Teas by Fully Automatic Headspace Solid-Phase Microextraction Coupled with Gas Chromatography-Mass Spectrometry and Chemometric Methods. J. Agric. Food Chem. 2014, 62, 1810–1818. [Google Scholar] [CrossRef] [PubMed]
- Lv, H.P.; Zhong, Q.S.; Lin, Z.; Wang, L.; Tan, J.F.; Guo, L. Aroma characterisation of Pu-erh tea using headspace-solid phase microextraction combined with GC/MS and GC-olfactometry. Food Chem. 2012, 130, 1074–1081. [Google Scholar] [CrossRef]
- Lin, J.; Dai, Y.; Guo, Y.N.; Xu, H.R.; Wang, X.C. Volatile profile analysis and quality prediction of Longjing tea (Camellia sinensis) by HS-SPME/GC-MS. J. Zhejiang Univ. Sci. B 2012, 13, 972–980. [Google Scholar] [CrossRef] [PubMed]
- Lv, S.D.; Meng, Q.X.; Xu, Y.Q.; Liu, S.H. Recent progress in aroma analysis methods and aroma active compounds in Pu-erh tea. Food Sci. 2014, 34, 292–298. (In Chinese) [Google Scholar] [CrossRef]
- Guo, Q.; Wu, W.; Massart, D.L.; Boucon, C.; de Jong, S. Feature selection in principal component analysis of analytical data. Chemom. Intell. Lab. Syst. 2002, 61, 123–132. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, W.; Liu, T.; Dong, M.; Yu, Z. Modeling for Quality Evaluation of Dongting Biluochun Tea Based on Principal Component Analysis. Food Res. Dev. 2018, 39, 15–22. (In Chinese) [Google Scholar] [CrossRef]
- Zheng, P.C.; Liu, P.P.; Gong, Z.M.; Wang, S.P.; Teng, J.; Wang, X.P.; Ye, F. Analysis of Characteristic Aroma Components of Hubei Black Tea. J. Tea Sci. 2017, 37, 465–475. (In Chinese) [Google Scholar] [CrossRef]
- Sun, B.G.; Chen, H.T. The Technology of Food Flavoring, 3rd ed.; Chemical Industry Press: Beijing, China, 2017. [Google Scholar]
- Li, W.N.; Guo, C.F.; Zhang, Y.X.; Wei, J.P.; Li, Y.T. GC-MS Analysis of Aroma Components of Apple Juice Fermented with Lactic Acid Bacteria. Food Sci. 2017, 38, 146–154. (In Chinese) [Google Scholar] [CrossRef]
- Aprotosoaie, A.C.; Hăncianu, M.; Costache, I.-I.; Miron, A. Linalool: A review on a key odorant molecule with valuable biological properties. Flavour Fragr. J. 2014, 29, 193–219. [Google Scholar] [CrossRef]
- Sun, X.R.; Liu, J.R.; Chen, B.Q. Advances in bioactivity of β-ionone. J. Toxicol. 2008, 22, 477–480. (In Chinese) [Google Scholar] [CrossRef]
- Cao, P.; Yang, J.; Yang, X.G.; Yao, J.; Wang, Y.; Wang, G.Y. Organotitanium Compound Catalysts for Transesterification of Dimethyl Carbonate and Phenyl Acetate to Diphenyl Carbonate. Chin. J. Catal. 2009, 30, 65–68. [Google Scholar] [CrossRef]
- Sun, L.H.; Sun, L.M. The research progress of geraniol. Northwest Pharm. J. 2009, 24, 428–430. (In Chinese) [Google Scholar] [CrossRef]
Label | Storage Time (Year) | Degree of Aging | Fresh Leaves Traits | Grade * | Storage Conditions |
---|---|---|---|---|---|
HAS | 12 | High | One bud and one leaf | Gongjian | Indoors |
MAS | 7 | Moderate | |||
LAS | 2 | Low | |||
CK | 1 | New (Control) |
Type | Peak | Compound | Structure | Molecular Formula | Relative Content % (Mean ± SD) | |||
---|---|---|---|---|---|---|---|---|
HAS | MAS | LAS | CK | |||||
Ketones | 9 | Heptan-2-one | | C7H14O | 0.77 ± 0.19 | 0.75 ± 0.09 | 0.27 ± 0.02 | 0.55 ± 0.09 |
18 | Octan-3-one | | C8H16O | 1.39 ± 0.59 | - | 0.33 ± 0.03 | 0.43 ± 0.02 | |
19 | Octane-2,3-dione | | C8H14O2 | - | 0.69 ± 0.08 | 0.70 ± 0.02 | 1.06 ± 0.48 | |
21 | 6-Methylhept-5-en-2-one | | C8H14O | 2.27 ± 0.26 | 2.36 ± 0.12 | 2.34 ± 0.06 | 1.50 ± 0.23 | |
27 | Nonan-2-one | | C9H18O | - | 0.39 ± 0.02 | - | - | |
35 | 3,4-Dihydroxyacetophenone | | C8H8O3 | - | 1.25 ± 0.14 | - | - | |
39 | Decan-2-one | | C10H20O | - | - | 0.37 ± 0.03 | 0.49 ± 0.01 | |
52 | Jasmone | | C11H16O | - | 0.87 ± 0.01 | 2.27 ± 0.06 | 1.19 ± 0.01 | |
53 | 2-Butanone | | C13H22O | 3.40 ± 0.35 | 3.24 ± 0.09 | - | - | |
54 | α-Ionone | | C13H20O | 2.05 ± 0.16 | 2.26 ± 0.01 | 2.94 ± 0.01 | 2.13 ± 0.01 | |
55 | Geranylacetone | | C13H22O | 2.19 ± 0.12 | 1.65 ± 0.03 | 4.82 ± 0.11 | 2.31 ± 0.14 | |
57 | β-Ionone | | C13H20O | 5.27 ± 0.84 | 4.92 ± 0.05 | 13.30 ± 0.38 | 6.37 ± 0.44 | |
58 | (E)-4-(2,6,6-Trimethylcyclohexa-1,3-dien-1-yl)but-3-en-2-one | | C13H18O | 1.95 ± 0.19 | 2.72 ± 0.04 | 3.87 ± 0.12 | 2.02 ± 0.14 | |
Aldehydes | 1 | 3-Methylbutanal | | C5H10O | 0.60 ± 0.07 | 0.53 ± 0.10 | 0.38 ± 0.10 | 0.53 ± 0.03 |
2 | 2-Methylbutanal | | C5H10O | - | 0.43 ± 0.01 | 0.51 ± 0.06 | 0.71 ± 0.04 | |
3 | Hexanal | | C6H12O | 1.31 ± 0.03 | 1.38 ± 0.23 | 0.80 ± 0.08 | - | |
10 | Heptanal | | C7H14O | 1.00 ± 0.03 | 1.01 ± 0.15 | 0.54 ± 0.05 | - | |
20 | Benzaldehyde | | C7H6O | 2.65 ± 0.58 | 6.81 ± 0.21 | 5.04 ± 0.25 | 3.11 ± 0.13 | |
22 | Octanal | | C8H16O | 0.66 ± 0.16 | - | 0.50 ± 0.21 | 0.36 ± 0.05 | |
24 | (2E,4E)-Hepta-2,4-dienal | | C7H10O | 2.76 ± 0.05 | 2.09 ± 0.19 | 1.05 ± 0.03 | 0.62 ± 0.12 | |
26 | Phenylacetaldehyde | | C8H8O | 1.65 ± 0.58 | 1.95 ± 0.21 | 1.87 ± 0.14 | - | |
28 | Nonanal | | C9H18O | 1.90 ± 0.84 | 1.37 ± 0.05 | 2.67 ± 0.23 | 0.93 ± 0.17 | |
42 | Decanal | | C10H20O | 1.13 ± 0.05 | - | 1.40 ± 0.60 | - | |
44 | Safranal | | C10H14O | 2.32 ± 0.29 | 2.47 ± 0.19 | 3.02 ± 0.07 | 2.04 ± 0.18 | |
46 | β-Cyclocitral | | C10H16O | 1.74 ± 0.30 | 1.95 ± 0.16 | 3.59 ± 0.07 | - | |
Alcohols | 29 | Linalool | | C10H18O | 6.85 ± 1.20 | 4.24 ± 0.24 | 8.80 ± 0.28 | 9.38 ± 0.34 |
31 | 3,7-Dimethyl-1,5,7-octatriene-3-ol | | C10H16O | - | 3.97 ± 0.11 | 6.86 ± 0.21 | 10.30 ± 0.97 | |
36 | Terpinen-4-ol | | C10H18O | - | 0.31 ± 0.02 | 0.42 ± 0.01 | - | |
47 | Geraniol | | C10H18O | - | 0.78 ± 0.08 | - | - | |
Esters | 8 | Butyl acrylate | | C7H12O2 | - | 0.69 ± 0.07 | 2.23 ± 0.19 | - |
17 | Phenyl acetate | | C8H8O2 | 15.28 ± 1.68 | - | - | - | |
30 | Butyl butyrate | | C8H16O2 | - | - | 0.75 ± 0.05 | - | |
43 | Methyl 2-hydroxybenzoate | | C8H8O3 | 6.88 ± 0.08 | - | 2.63 ± 0.09 | 7.51 ± 0.11 | |
49 | Methyl geranate | | C11H18O2 | - | 1.35 ± 0.06 | - | - | |
50 | Methyl 2-aminobenzoate | | C8H9NO2 | - | 1.22 ± 0.01 | - | - | |
51 | Methyl N-methylanthranilate | | C9H11NO2 | - | 1.64 ± 0.05 | - | - | |
61 | Dihydroactinidiolide | | C11H16O2 | 4.29 ± 0.06 | 1.57 ± 0.01 | 2.35 ± 0.39 | 0.71 ± 0.01 | |
Phenols | 25 | 4-Amino-2-methylphenol | | C7H9NO | - | - | 2.28 ± 0.04 | 12.38 ± 0.60 |
33 | 2-Methoxy-4-methylaniline | | C8H11NO | - | - | - | 3.87 ± 0.21 | |
Hydrocarbons | 5 | Ethylbenzene | | C8H10 | 0.37 ± 0.10 | - | - | - |
6 | 6,6-Dimethylfulvene | | C8H10 | 0.30 ± 0.09 | - | - | - | |
7 | Styrene | | C8H8 | - | - | 0.28 ± 0.07 | - | |
11 | β-Pinene | | C10H16 | - | - | 1.39 ± 0.10 | 0.93 ± 0.02 | |
14 | D-Limonene | | C10H16 | - | 1.85 ± 0.03 | 1.68 ± 0.02 | - | |
15 | Limonene | | C10H16 | 2.55 ± 0.37 | - | -- | ||
16 | D-Limonene | | C10H16 | - | - | - | 1.30 ± 0.15 | |
23 | G-Terpinene | | C10H16 | - | - | - | 0.61 ± 0.16 | |
37 | Naphthalene | | C10H8 | 1.35 ± 0.03 | 0.51 ± 0.02 | 2.03 ± 0.14 | 1.58 ± 0.15 | |
40 | 2-Carene | | C10H16 | - | - | 0.51 ± 0.05 | - | |
41 | α-Terpinene | | C10H16 | 0.78 ± 0.04 | - | - | - | |
48 | 1-Methylnaphthalene | | C11H10 | 0.93 ± 0.24 | 0.34 ± 0.05 | 0.72 ± 0.03 | - | |
59 | 4-Isopropyl-1,1′-biphenyl | | C15H16 | - | 2.59 ± 0.52 | - | - | |
Nitrogen-containing compounds | 4 | 1-Ethyl-1H-pyrrole | | C6H9N | 0.34 ± 0.10 | - | 0.39 ± 0.01 | - |
34 | 1-(1H-pyrrol-2-yl)ethan-1-one | | C6H7NO | 0.59 ± 0.06 | - | 0.87 ± 0.01 | - | |
45 | Benzonitrile | | C8H7N | - | - | - | 4.05 ± 0.14 | |
60 | 1,8-Dimethyl-9H-carbazole | | C14H13N | 0.55 ± 0.05 | - | - | - | |
62 | 3,5-Dimethyl-9H-carbazole | | C14H13N | -- | 2.65 ± 0.42 | - | 0.64 ± 0.01 | |
63 | 2,7-Dimethyl-9H-carbazole | | C14H13N | 4.21 ± 0.69 | - | - | ||
64 | Caffeine | | C8H10N4O2 | 0.30 ± 0.01 | - | - | ||
others | 12 | 2-Pentylfuran | | C9H14O | 1.43 ± 0.50 | 1.27 ± 0.06 | 0.67 ± 0.13 | 0.41 ± 0.12 |
13 | 2-Acetylfuran | | C6H6O2 | - | - | - | 0.82 ± 0.50 | |
32 | 1,2-Dimethoxybenzene | | C8H10O2 | - | 1.59 ± 0.02 | - | - | |
38 | 1,3-Dimethoxybenzene | | C8H10O2 | 2.00 ± 0.63 | 5.04 ± 0.01 | -- | - | |
56 | 5-Methoxy-6,7-dimethylbenzofuran | | C11H12O2 | - | 2.13 ± 0.07 | - | - |
Principal Component | Eigenvalue | Contribution Rate/% | Cumulative Contribution Rate/% |
---|---|---|---|
1 | 3.827 | 47.84 | 47.84 |
2 | 2.480 | 31.00 | 78.84 |
3 | 1.693 | 21.16 | 100.00 |
Volatile Substance | The First Principal Component | The Second Principal Component | The Third Principal Component | |||
---|---|---|---|---|---|---|
Eigenvector | Loading | Eigenvector | Loading | Eigenvector | Loading | |
ketones | 0.136 | 0.937 | −0.218 | −0.339 | 0.391 | 0.087 |
aldehydes | 0.237 | 0.936 | 0.056 | 0.351 | 0.236 | 0.020 |
alcohols | −0.184 | −0.906 | −0.246 | −0.138 | 0.217 | 0.400 |
esters | 0.120 | −0.703 | −0.013 | −0.609 | −0.525 | −0.367 |
phenols | −0.245 | −0.156 | -0.137 | −0.965 | −0.052 | −0.208 |
hydrocarbons | 0.245 | 0.504 | −0.141 | −0.792 | 0.012 | 0.346 |
nitrogenous | −0.132 | −0.458 | 0.319 | 0.032 | 0.204 | −0.888 |
others | 0.041 | 0.519 | 0.389 | 0.540 | 0.123 | 0.662 |
Aging time | F1 | F2 | F3 | F * | Order |
---|---|---|---|---|---|
HAS | 0.732 | 0.063 | −1.308 | 0.096 | 3 |
MAS | 0.086 | 1.331 | 0.686 | 0.598 | 1 |
LAS | 0.621 | −1.052 | 0.870 | 0.155 | 2 |
CK | −1.439 | −0.342 | −0.248 | −0.849 | 4 |
No. | Compound | Fragrance Description | No. | Compound | Fragrance Description |
---|---|---|---|---|---|
1 | Heptan-2-one | aztique | 11 | (2E,4E)-Hepta-2,4-dienal | herbaceous fragrance |
2 | 6-Methylhept-5-en-2-one | aromas of lemongrass and isobutyl acetate | 12 | Phenylacetaldehyde | almond smell, cherry fragrance |
3 | α-Ionone | violet fragrance, elecampane, aztique | 13 | Nonanal | fatty aroma, flowery |
4 | β-Ionone | violet fragrance, elecampane, aztique | 14 | Safranal | elecampane, herbal scent |
5 | Geranylacetone | rose scent | 15 | β-Cyclocitral | aztique, flowery, aroma of green apple |
6 | (E)-4-(2,6,6-Trimethyl-1,3-Cyclohexadien-1-yl)-3-buten-2-one | fruity scent like pear | 16 | Linalool | rose scent, aztique |
7 | 3-methylbutanal | aztique | 17 | Dihydroactinidiolide | elecampane |
8 | Hexanal | smell of oil and grass and apple | 18 | Naphthalene | elecampane |
9 | Heptanal | aztique | 19 | 1-Methylnaphthalene | elecampane |
10 | Benzaldehyde | almond smell | 20 | 2-Pentylfuran | aztique, herbaceous fragrance |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, T.; Wang, S.; She, X.; Zhou, D.; Gan, Z. Effect of Aging Time on the Composition of the Volatile Components of An–tea. Processes 2022, 10, 437. https://doi.org/10.3390/pr10030437
Yao T, Wang S, She X, Zhou D, Gan Z. Effect of Aging Time on the Composition of the Volatile Components of An–tea. Processes. 2022; 10(3):437. https://doi.org/10.3390/pr10030437
Chicago/Turabian StyleYao, Ting, Siqiang Wang, Xinsong She, Di Zhou, and Zhuoting Gan. 2022. "Effect of Aging Time on the Composition of the Volatile Components of An–tea" Processes 10, no. 3: 437. https://doi.org/10.3390/pr10030437
APA StyleYao, T., Wang, S., She, X., Zhou, D., & Gan, Z. (2022). Effect of Aging Time on the Composition of the Volatile Components of An–tea. Processes, 10(3), 437. https://doi.org/10.3390/pr10030437