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Abstract: This paper presents the application of a reinforcement learning (RL) algorithm, concretely
Q-Learning, as the core of a decision support system (DSS) for a steelmaking subprocess, the Compo-
sition Adjustment by Sealed Argon-bubbling with Oxygen Blowing (CAS-OB) from the SSAB Raahe
steel plant. Since many CAS-OB actions are selected based on operator experience, this research aims
to develop a DSS to assist the operator in taking the proper decisions during the process, especially
less experienced operators. The DSS is intended to supports the operators in real-time during the
process to facilitate their work and optimise the process, improving material and energy efficiency,
thus increasing the operation’s sustainability. The objective is that the algorithm learns the process
based only on raw data from the CAS-OB historical database, and on rewards set according to the
objectives. Finally, the DSS was tested and validated by a developer engineer from the CAS-OB
steelmaking plant. The results show that the algorithm successfully learns the process, recommending
the same actions as those taken by the operator 69.23% of the time. The algorithm also suggests a
better option in 30.76% of the remaining cases. Thanks to the DSS, the heat rejection due to wrong
composition is reduced by 4%, and temperature accuracy is increased to 83.33%. These improvements
resulted in an estimated reduction of 2% in CO2 emissions, 0.5% in energy consumption and 1.5% in
costs. Additionally, actions taken based on the operator’s experience are incorporated into the DSS
knowledge, facilitating the integration of operators with lower experience in the process.

Keywords: machine learning; reinforcement learning; Q-learning; steelmaking process CAS-OB;
decision-support system; optimisation algorithm

1. Introduction

The Composition Adjustment by Sealed Argon-bubbling with Oxygen Blowing (CAS–
OB) is a secondary steelmaking process developed in the 1980s by Nippon Steel Corpo-
ration [1]. The main goals during this process are homogenisation, temperature control
and composition adjustment [2]. As a result, CAS-OB has become one of the relevant
buffer stations in the secondary metallurgy of steelmaking thanks to its capability of good
chemical composition control, steel homogeneity, and reheating [3]. Furthermore, the
process enables the consistent correction of high alloy composition and the reheating of the
steel using the exothermic reaction between oxygen and aluminium. The study presented
has been done under the MORSE project (Model-based optimisation for efficient use of
resources and energy) [4] funded by the European Commission within its Horizon 2020
framework programme. The case under investigation pertains to the SSAB Europe Oy
Raahe steel plant with two CAS-OB stations [5], which provided the data for performing the
training of the algorithms and then performed the validation of the final developed DSS.
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1.1. Motivation

In large-scale production, such as steelmaking, even small changes in resource and en-
ergy consumption can make a difference. Hence, the steel industry is continuously looking
to enhance sustainability, as stated in similar studies concerning aluminium reduction and
energy efficiency [6,7].

Additionally, besides the efficiency of the plant, it is crucial to consider the high impact
of those processes on the environment [8]. Energy consumption constitutes up to 40% of
the cost of steel production [9]. Specific energy consumption at Raahe steelworks in 2016
was 17.8 GJ/t of steel and specific CO2 emission 1650 kg/t of steel. One of the objectives
of this study is to reduce those numbers and, in consequence, enhance the efficiency and
sustainability of the process.

With that purpose in mind, the first step is to minimise the rejected products, and the
second is to provide support to the operators. Many of the actions taken by the operators
are based on their own experience, which makes the integration of the new staff into the
workforce difficult. Therefore, another objective is to gather that knowledge based on
operator experience into the DSS, for the ease of new workers’ integration.

These kinds of processes usually lack digitalisation and integration of AI-based
techniques. Thanks to the advances in those fields in the last years, the objectives can
be achieved by replacing the classic control techniques with novel control techniques
strengthened by machine learning algorithms, such as an adaptive controller based on
Q-Learning [10]. This can speed up the transformation towards industry 4.0 and all its
benefits [11], such as the enhancement of the steelmaking process’s efficiency [12] and
facilitating the work of the operators while accommodating them to digitalisation [13]. A
review of the latest methods and tools for improving the steelmaking process was presented
by T. Rotevatn et al. in 2015 [14]. Some of these methods have already been applied and
have given excellent results [15], which also served as motivation, and provides evidence
that this is the right path.

1.2. Methodology and Goals

This research aims to develop a decision support system (DSS) to assist the operator
in taking the proper decisions since many CAS-OB actions decisions are made based on
operator experience. The DSS includes self-learning ability thanks to the core based on
Q-Learning, which has already been stated to give excellent results in similar studies of
different metallurgic processes [16]. Furthermore, the algorithm will adapt and learn new
features while working, improving its suggestions and achieving the goals defined, thanks
to the high impact of the self-learning ability [17].

The guidance is expected to reduce additional corrective actions, reduce duration time
and minimise failed operations. Furthermore, the Q-Learning algorithm used as the core of
the DSS will learn the process from the historical data of two CAS-OB stations provided
by SSAB Europe Oy. This way, it is possible to develop an RL algorithm based only on
raw data. The steps followed during this research to achieve the objectives proposed are
presented in the following list:

1. Select the most suitable RL algorithm. There are many RL algorithms [18], and each
one suits a different kind of problem. Therefore, this step involves analysing the
available algorithms and selecting the most suitable for the process’s features.

2. Transform CAS-OB process into a Markov Decision Process (MDP). This task in-
volves an exhaustive analysis of the process, including an analysis of historical data
from it. Once done, the process’s discretisation is undertaken, defining representative
states and actions based on the analysis results.

3. Train the algorithm. In this study, the objective is to train an RL algorithm only with
experimental data. Therefore, historical data is used from the process. The data will
be transformed according to the discretisation set before, and episodes will be defined
to “feed” the algorithm.
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4. User interface (UI). The next step is to incorporate the DSS on the plant and facilitate
access through a user interface.

5. Test. The DSS is tested in the CAS-OB steel plant station by development engineers.
The test includes validating the correct behaviour of the DSS and gathering data for
performance measurement.

2. Reinforcement Learning
2.1. Origin

Machine learning (ML) main areas are supervised learning and unsupervised learn-
ing [19,20]. Nevertheless, a third area has been gaining popularity in the last decade:
Reinforcement Learning (RL). What distinguishes it from the other main areas is that it
does not rely on correct behaviour examples, as supervised learning does. On the other
hand, unlike supervised learning, its objective is not finding common or hidden patterns
on data, neither classify.

Reinforcement learning’s [21] origin rests on the idea of learning by interaction. RL
algorithms aim to solve a problem by direct interaction with the environment, learning by
trial and error, based on the consequences of the actions in terms of rewards. Practising
and exploring new ways of doing something produces a wealth of information about each
action’s effects, and it helps define the best action path for solving the problem. Figure 1
presents a scheme with the RL methodology.
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RL’s popularity increased greatly thanks to its application on games defining agents
capable of surpassing human abilities, such as Go [22] and Dota 2 [23]. Nevertheless, the
RL algorithm can go beyond winning games [24]. Nowadays, thanks to the wide variety of
algorithms developed, the applic ation area has greatly expanded due to its advantages over
classic control techniques. The classic control techniques and RL algorithms are frequently
compared [25].

2.1.1. Reinforcement Learning Elements

In Reinforcement Learning, the main elements are the agent and the environment,
which interact with each other. However, the interaction involves some other subele-
ments [21]:

• Agent. The learner and decision-maker.



Processes 2022, 10, 434 4 of 20

• Environment. What the agent interacts with, comprising everything outside the agent.
The interpreter defines the state of the environment and gives rewards as feedback to
the agent.

• State (S). A sample of the environment’s features involved in the case under study. It
defines the situation of the environment and works as feedback.

• Action (A). A control signal of the environment. The defined actions must be those
that change the states involved in the problem.

• Episode. A succession of steps, composed of the state of the environment and the
action taken by the agent. In the case under study, the step ends when the action
changes the environment status. At the end of the step, a reward is received based on
the new state achieved. These episodes are used to train the RL agent. The format of
an episode can be seen in Figure 2.

• Policy (π). The core of the RL agent, which defines how the agent behaves in each
state, based on what has been learned as the best action. It can be a simple function
or a lookup table, although it can involve extensive computation depending on the
problem’s complexity.

• Reward (R). The reward defines the goal of the problem. Each state gets a reward as
feedback on how well the RL agent did when taking the previous actions. The RL
agent will define a policy maximising the rewards obtained. Therefore, the rewards
must be set according to the objectives of the process. Rewards assignment is a critical
task because agent behaviour will rely on them.

• Value function. There are two types, value-functions and action-value functions. The
difference is that the first one calculates the values of the states only, and the second
one calculates the values for pairs of state and action. Moreover, in both cases, the
formulas have modifications depending on the algorithm. The algorithm applied in
this study, Q-Learning, uses an action-value function. The values calculated determine
the best action, considering long-term consequences.
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The way the value function is updated is what distinguishes one RL method from
another. It is done by following an update rule which depends on the RL method because
each one estimates the new values differently. The generic update rule is formulated as in
Equation (1):

NewEstimation← OldEstimation + StepSize[Target−OldEstimation] (1)

where Target is the estimated accumulative reward in each state, and the expression [Target
− OldEstimate] is an error in the estimation. Moreover, the variable StepSize, known as
alpha(α), controls how much the agent learns about its experience. This parameter is
between 0 and 1, and it may be constant or variable.

2.1.2. Markov Decision Process

The Markov decision process is a classical definition of sequential decision-making,
where actions influence immediate rewards and subsequent states, and therefore those
future rewards. It is a substantial abstraction of the problem of goal-directed learning from
interaction. It proposes that any problem can be reduced to three signals that provide com-
munication between the agent and the environment. This concept is used as a mathematical
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form of the reinforcement learning problem [26]. However, it is used in many other fields,
such as medicine [27] and robotics [28], among many others.

Aiming to frame the problem of learning from interaction, MPDs are the base and a
requirement of most of the RL algorithms, amongst them the Q-Learning, used in this case
study. In the MDP framework, the learner and decision-maker are called agents, and what
they interact with is called the environment. The interaction is done through actions, and the
environment responds with its new state, and the consequences, namely rewards, are set
according to the goal. Further on, the agent will aim to maximise the rewards through its
actions and the knowledge learned. Figure 3 illustrates the structure of an MDP.
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The boundary between agent and environment represents the point beyond which
the agent lacks absolute control and knowledge. However, the border does not have to
be physical; it can be located at different places depending on the goal. This boundary is
defined once the states, actions and rewards are defined. Then, the interaction is divided
into steps (t), and the sequence generated depends on the actions selected and the dynamics
of the environment.

2.2. Reinforcement Learning Algorithms

RL methods have the advantage that they can learn from direct experience of the
process. If the system’s operations are saved on a database, these can be used as training
data. This also brings up probably the most significant advantage of the RL, continuous
training. Moreover, this learning allows the agent to adapt to changes in the process without
designing the method again.

The most relevant tabular methods have been studied to find the most suitable RL
method for the problem. These methods are briefly described below. Their description also
helps clarify the method used.

• Dynamic programming (DP) [29]: this is an assemblage of algorithms capable of
computing optimal policies if a perfect environment model is given. This requirement,
together with the tremendous computational cost, limits the utility of DP algorithms.

• Monte Carlo (MC) methods [30,31]: these methods are an improvement compared
to dynamic programming because their computational expenses are lower, and a
perfect model of the environment is not necessary. This last feature means that
knowing the environment’s dynamics is not required to attain the optimal policy; the
agent learns from direct interaction. Instead, these methods only need a simulated
or real experience of this interaction in the form of state-action-reward sequences.
Another distinctive feature of these classes of techniques is that they estimate values
functions by averaging sample returns. Thus, MC methods are very suitable for
episodic tasks, since they base their estimations on the final outcome and not on
intermediary outcomes.
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2.3. Self-Learning Algorithm: Q–Learning

Temporal difference (TD) learning is the most significant thread in RL [32]. It is a
combination of DP and MC. TD methods, just like MC, are model-free, and additionally,
they can learn from raw experience [33]. On the other hand, they assimilate with DP on how
the estimation is updated. The values are updated based on previously known estimations,
performing the calculation on the fly. Consequently, in contrast with MC methods, TD
methods do not have to wait until the end of the episode to determine the value states. TD
methods only need to wait until the next time step, and the update is done in “transition”.
This is why TD methods are so popular. There is no need to know how the episode will
end; the agent learns from its estimations. If the estimation were very wrong, it would
learn much more. Further on, convergence is still guaranteed. Moreover, TD methods have
been proved to be the fastest.

The Q–Learning [34] method is one of the most known and used methods of RL. It is
a model-free method and uses an off-policy approach. A side effect of being model-free
and a temporal difference method is the capacity of being used online. It can be used
online because it is unnecessary to know the episode’s ending to update the values. This
feature is essential in the problem studied because, in the final version, the agent should be
online and recommend actions in real-time during the steelmaking process, adapting to
each situation. Besides, this method also can handle stochastic problems, as in the problem
treated in this project.

Moreover, Q-Learning is a control method, so it is based on an action-value function,
which suits perfectly the problem in hand. The function used approximates directly to the
optimal action-value function. Furthermore, it converges faster because it always aims for
taking the best action. The duration will primarily be determined by the size of the state
and action space. The action-value function used in Q-Learning is shown in Equation (2). It
is used to calculate the value of each pair of states and actions. Afterwards, based on these
values, the most suitable action, the one with higher value is selected.

Q(St, At) = Q(St, At) + α

Rt+1 + γ max
a

Q(St+1, a)︸ ︷︷ ︸
Target

−Q(St, At)

 (2)

• The sub-index t indicates the step during the episodes.
• α ∈ (0, 1], the step size or learning rate determines to what extent newly acquired

information overrides old information. The value could vary during the training, so
we learn a large amount at the beginning, and at the end, when the optimal values are
reached, there is no override.

• γ ∈ [0, 1], the discount rate, indicates the importance of the next reward, or in this
case, the value of the next possible state and action pair.

The pseudocode of Q-learning algorithm is presented in the Algorithm 1 [35]:

Algorithm 1. Q-learning (off-policy) for estimating π ≈ π∗

Algorithm parameters: step size, α ε (0, 1], γ ε (0, 1]
Initialise Q (s, a) for all s ∈ S+, a ∈ A(s), arbitrarily except that Q (terminal, ) = 0
Loop for each episode:
Initialise S
Loop for each step of the episode:
Choose A from S using policy derived from Q
Take action A, observe R, S′

Q(St, At) = Q(St, At) + α[Rt+1 + γ ∗maxaQ(St+1, a)−Q(St, At)]

S← S′

Until S is terminal
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2.4. Comparison with Classic Control Techniques

Classic control efficiency is mainly limited by the model reliability. The control method
is designed to control the model. Moreover, the control design will not adapt to changes in
the process. Any modification on the process means defining a new model and developing
a new controller.

Meanwhile, RL algorithms, such as Q-Learning, fill the gap limitations of classical
control. The algorithm’s design only requires knowledge about the process, the states that
define it, the actions (control signals), and the consequences of these actions. So, it is helpful
to have a model; however, it is not a requirement. Figure 4 presents a summarised scheme
of the comparison.
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3. Development of the Solution

As already mentioned, the RL agent will use a Q-Learning algorithm. As its features
have already been explained, this section will focus on the actual implementation. Figure 5
shows an overview of the whole developed and integrated solution.
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In the first place, the historical data from the CAS-OB process must be processed,
selecting only the valuable data since the database includes all the information regarding
the CAS-OB process. Once the variables needed for the episode definition and the further
training are designated, the next step is the transformation into an episodic format. As
already explained, the episodic format is necessary due to the MDP nature of the self-
learning algorithm. The algorithm receives the state of the environment as an input, and
instead of following an action based on the policy, it selects the action defined in the
episode. In other words, during the training, the agent will strictly follow the episodes
while calculating the values of each state-action pair.

Once the algorithm finishes the training with the historical data and performs some
validations, it can be introducted into the DSS implemented in the CAS-OB plant and used
by a developer engineer. During this interaction, the algorithm still learns from the data
gathered while it is used. Moreover, developer engineer feedback is crucial at the beginning
for features improvements, corrections of the behaviour or states and action discretisation.

3.1. CAS-OB Steelmaking Process Description

CAS-OB works with liquid steel from a previous process, the Basic Oxygen Furnace
(BOF) [36]. The main goals for this secondary metallurgy process are homogenisation,
temperature control and adjustment of composition. After that, the liquid steel is transferred
to the Continuous Casting Machine (CCM) (see Figure 6).
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Composition adjustment starts in the previous phase, the BOF tapping. Afterwards,
during the CAS-OB process, the homogenisation and adjustment of the composition of
molten steel must be maintained while the temperature is adjusted. Composition adjust-
ment is achieved by adding a stoichiometric proportion of alloys which is calculated using
a composition sample.

Temperature and dissolved oxygen measurements are made before alloying in order to
verify whether these two variables need to be adjusted. Should there be a corrective action
to be taken, it has to be carried out before alloying, in order to ensure no extra oxidation is
needed, as it would alter the composition and therefore a subsequent adjustment would be
needed. Once this alloying is done, composition is deemed to be satisfactory and no more
alloying is necessary, unless a subsequent sample analysis may indicate the need. Liquid
steel temperature can be increased by adding aluminium with oxygen blowing, using the
exothermic reaction between them for reheating. Whenever refrigeration is needed, cooling
scrap is added to decrease the temperature. Likewise, this technique can be used as well
for minor temperature adjustments at the end of the process. Considering steel cleanliness,
the time at which cooling scrap is added is not so critical, the reason for this being that it
does not change the composition significantly, and therefore it can be added whenever it is
needed. Once the goal is achieved, the liquid steel moves forward to the third process, the
Continuous Casting Machine (CCM).
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3.2. Definition of Environment

The process will be transformed into an MDP. This requires defining a finite represen-
tative number of states and actions. The definition of these states and actions is based on
the historical data analysis and the process’s objectives.

3.2.1. Historical Data Analysis and Treatment

The historical data includes all the information from a real CAS-OB plant, gathering
9720 steel treatments, also called “heats”. Only the significant information for the formu-
lation of the problem was extracted from this data, such as the measurements, targets
and actions taken by the operators. Table 1 presents the parameters gathered from the
historical data.

Table 1. Data gathered from CAS-OB historical data.

Treatment Data Measurements Actions Targets

Heat number Measuring time Addition time Composition
Start of treatment Composition, % of each alloy Material Temperature
End of treatment Temperature Quantity, kg
Start of reheating Dissolved oxygen
Reheating time, s
End of reheating

Count of reheating
Total aluminium, including reheating, kg

Cooling scrap, kg
Steel amount

The time when treatment should be ready

Making use of the knowledge on how the plant works and the historical data provided
by the steel factory the process was modelled as an MDP. The data was previously treated
eliminating inconsistencies, outliers and corrupted information, and afterwards the states
and actions were properly defined.

The heat number classifies the steel treatments in the database. Each heat contains
information about measurements, actions, targets and what has been done during the
process. Those are the most important information for the classification of the states and
the actions. Timestamps will help set up the state and action transition chronologically and
generate a complete episode when something has been done.

If some information is missing on some heat, e.g., missing essential measurement or
misleading information, the first option will be to fill the gap if possible to preserve the
episode and not lose data. As an example, there are instances in which steel temperature is
recorded to be at 0 ◦C. This is obviously an impossible value for the process; as a result on
these occasions temperature was removed from the log, but not the other variables. The
missing values of temperature would be inferred manually afterwards.

After cleaning and analysing the data, the classification and definition of states can be
done. The current database consists of 13,800 heats in total. The duration of the episodes
varies depending on how many times reheating has been done. In addition, the data
provide information about the features of the measurements, target, and actions, e.g.,
“adding Al”.

The final dataset is divided based on how many times reheating has been done. This
division is done because depending on the reheats done, the data will be treated differently.
The distribution is presented in Figure 7. The idea of the RL is to generalise. Focusing
excessively on exceptional cases would guide the agent too much. Hence it will not find new
optimised ways of solving the problem. It must discover by itself those exceptional cases.
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3.2.2. States

The states for the CAS-OB use case are defined by five parameters: the dissolved oxy-
gen, the composition status, composition grade, steel mass, and the temperature difference.
These parameters are continuous. Henceforth they must be discretised. If not, the state
space will have infinite size. Below are listed and detailed the discretisation done to all
the parameters.

• Mass of the steel:

The mass of steel is characterised into two categories, high and low. Its value for most
of the steel heats is around 125 tons. Nevertheless, there are heats with reduced mass. The
mass for these types of steel is 15–20% below the usual value. This must be taken into
account because if the mass is considerably lower than usual, then the amounts of Al and
O2 needed to heat the steel will be lower. A smaller mass requires reduced actions for the
same results. So, the process with liquid steel mass below 110 tonnes will be considered
low, and higher values will be regarded as high.

• Dissolved oxygen (DO):

DO is measured in ppm, and its target value is as close to zero as possible to ensure
steel cleanliness. After the BOF process, the dissolved oxygen content is typically several
hundred ppm. Dissolved oxygen is decreased by adding aluminium into steel first during
BOF tapping and then during the CAS-OB process if needed, according to dissolved oxygen
measurements. Aluminium reacts with oxygen forming aluminium oxide. Ideally, the exact
amount of aluminium required for the reaction should be added.

Nevertheless, sometimes the amount added is not precise, or the reaction did not go
on exactly as expected. From the historical data, the mean calculated value is equal to
5.18 ppm. The discretisation of the DO reduces the possible values to five ranges, all close
to the mean. The discretisation of the DO is presented in Table 2.

• Temperature.

This state is defined as the difference between the target temperature during the
process and the measured temperature. The discretisation is shown in Table 3 and is done
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based on the temperature difference distribution at the end of the process, considering any
waiting time due to the scheduled ending time.

Table 2. Dissolved oxygen discretisation.

Dissolved Oxygen Intervals Codification of the Intervals

DO < 1 0
1 ≤ DO < 2 1

2 ≤ DO < 3.5 2
3.5 ≤ DO < 5 3
5 ≤ DO < 7 4

7 ≤ DO < 10 5
10 ≤ DO 6

Table 3. Difference temperature states.

Temperature Difference Intervals Codification of the Intervals

∆T < −20 −3
−20 ≤ ∆T < −10 −2
−10 ≤ ∆T < −2 −1
−2 ≤ ∆T ≤ 2 0
2 < ∆T < 10 1

10 ≤ ∆T < 20 2
20 ≤ ∆T < 30 3
30 ≤ ∆T < 40 4

40 ≤ ∆T 5

• Composition state.

The composition of the steel processed includes 16 elements: C, Si, Mn, P, S, Al, Nb,
N, V, Ni, Ti, B, Ca, Cu, Cr, and Mo. The measurements taken during the process show
the percentage of each element in the liquid steel, These are compared with the goals for
those percentages, namely, minimum, target and/or maximum. Ideally, each percentage
should reach its target if that is provided. However, if this value is not provided, then the
composition should fit between the maximum and minimum percentage levels by setting
the mean of both as the target percentage. The aimed result is to achieve the type of steel
that is required.

Until the measurement is done, the composition may be considered incorrect. Once
the measurements are taken, if any of the percentages are below the target, the composi-
tion is erroneous, and alloying is necessary., Otherwise, the composition is correct, and
alloying is not necessary. So basically, there are two possible states, correct and incorrect
composition. However, the incorrect composition state is disaggregated in four states:
Very Close, Close, Far and Very Far. However, while the composition is incorrect, the
action will always be “alloying”, and how far the composition is from the target does not
alter that. However, a higher resolution is required to estimate the temperature decrease
accurately. The further the composition is from the target, the more alloys will be added,
which could result in a higher drop in temperature. So, by making that division, the RL
agent will learn that the alloying can reduce the temperature.

• Composition grade.

The grade of steel provides more information about the steel treated and its features.
Some grades require different actions for the same consequences. Hence, the grades have
been categorised into four groups, each with steels of different features.

3.2.3. Actions

CAS-OB process is complex and involves many actions. However, the RL agent will
take into account only the actions, which are mainly based on operator experience and
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whose timing, and the amounts, directly affect the process’s outcome. All the actions are
independent from one another, and there can be one taken per state. The list below details
the actions considered and how they have been discretised:

• Addition of aluminium:

Aluminium is usually added to reduce the dissolved oxygen in the liquid steel or
adjust the composition during the process. Nevertheless, it is also added besides O2 to
increase the temperature, which is called reheating. However, only about 25% of all CAS-
OB heats are reheated. The reheating serves to increase the temperature. Despite added
aluminium, blown oxygen can also react with other alloying elements, consequently spoil-
ing the composition. Therefore, reheating should always be performed before correcting
the composition.

The RL agent recommends when to add aluminium to reduce the dissolved oxygen
and when to add it for reheating. Additionally, it suggests the amount in kilograms of
aluminium that should be added. To recommend the amount of aluminium, this must be
discretised to facilitate the estimation. To do so, it is necessary to know the usual amount
of aluminium added during the process to make those adjustments. For that purpose,
the historical data from the process was analysed. Figure 8 shows how many processes
(episodes) there were for each amount of Al that has been added. It is seen that the usual
quantity is a multiple of ten, and the bigger it is, the fewer times it is added.
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• To perform the same analysis for the aluminium added for reheating, some pre-
processing of the data was needed since the amount added for reheating is not specified
in the historical data. Fortunately, the total amount of Al added during the process is
specified. Hence, by subtracting the Al not added for reheating, the Al for reheating
is obtained. The results of the analysis are similar to the previous analysis. The only
difference is that the interval of amounts added is larger, and more significant amounts
are usually added. Lastly, the RL agent does not specify the amount of O2 added with
the Al for the exothermic reaction, because the operator system directly calculates it.

A total of 26 discretised actions (15 for reheating, 11 for DO reduction) regarding
the addition of aluminium will be considered, either for reheating or dissolved oxygen
(Table 4).

Table 4. Aluminum addition discretisation.

Aluminium for Reheating Aluminium for DO Correction

O2 + Al 150 kg Al 100 Kg
Between 135 and 145 kg of Al + O2 Al between 85 and 95 Kg
Between 125 and 135 kg of Al + O2 Al between 75 and 85 Kg

. . . . . .
Between 15 and 25 kg of Al + O2 Al between 6 and 15 Kg

Less than 15 kg of Al + O2 Al less than 6 Kg
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• Cooling Scrap:

This action is used to reduce the temperature of the steel when needed. It is essential to
mention that the RL agent may recommend cooling down the steel and ending the process
faster. Nevertheless, the operator can refuse it if there is plenty of time for the steel to cool
down by itself. The operator calculates the cooling scrap amount based on the temperature
decrement desired.

• Alloying:

This action corrects the composition and drastically reduces the temperature of the
steel. The current control system of the plant provides the amount of alloying the process
needs, and this action indicates to the operator the best time to add the alloys calculated by
this control system.

3.2.4. Problem Size

Considering all the combinations between the sub-states of the parameters defined,
the size of the state space is 2520. In other words, there are 2520 possible states. The size
is quite large; however, many states will hardly ever occur if the physical nature of the
problem is taken into consideration. On the other hand, summing all the possible actions,
considering the discretisation of each one, there are 28 possible actions. To conclude, this
results in a Q table of 2520 × 28 size, hence 70.560 Q-values. Many Q-values will probably
not be calculated. Nevertheless, that is not a problem for the optimisation problem because,
as mentioned with the states, many combinations of states and actions would make no
sense in the real process, and just as the operator would do, the RL agent will directly
discard those options.

3.2.5. Rewards

As explained before, rewards are the feedback for the agent indicating how well it is
performing. This step is essential, as the behaviour of the agent will be based on how these
rewards are assigned. The rewards must define the goal of the process correctly to achieve
proper training and, in consequence, the correct functioning of the RL. If rewards are not
appropriately set, the agent will not learn correctly how to optimise the process. Rewards
must represent the goal of the process, hence the objective of the RL. As explained before,
the RL will try to achieve the maximum value reward. With all this in mind, the rewards
must be placed beneficially for the goal.

A reward will be set for all the possible end states, which in this case, means all of
them as every state could be an end state. The reward will be selected depending on the
end temperature, DO and composition status. Ideally, the temperature should be equal or
very close to the target, DO approximately zero and the composition correct. Therefore, the
reward for the ending status which such characteristics will be set with a maximum value,
and rewards for approximate states with lower values. An incorrect composition will be
determined directly as a bad ending, independently of the other states, and the RL agent
will be penalised. The rewards will be placed as presented in Figure 9.

If the process ends with incorrect compositions, the “reward” is−100. Thus, almost all
the rewards have their opposing pair for a negative end. By doing this, the categorisation
and calculation of the values are more effective. Besides, for each incorrect action taken,
there is a minor penalty (negative reward). The consequence of that constant minor negative
reward will train the RL agent to finish faster and achieve the objectives in the minimum
number of actions. Moreover, this penalty varies depending on the state. For example, the
penalty is bigger if the temperature is much lower than the target, consequently, the RL
agent will prioritise heating.

To summarise, the rewards will be set as follows:

• Maximum reward for the final states on the goal
• Intermediate reward for final states close to the goal, for example, good composition

and temperature but a high dissolved oxygen level.
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• High negative reward if the end composition is wrong.
• Intermediate negative reward for correct composition but wrong temperature or high DO.
• A small negative reward for each action taken to favour ending faster and reducing

the number of actions taken.
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4. Implementation and Validation
4.1. Training Data

The training of the algorithm is done through the historical data of the process by
SSAB. However, the data is not discretised and is not in the required format to be used as
training data for the Q-learning algorithm. The first step is the discretisation of the data in
state and actions. How is done has already been detailed above. The second step, detailed
in this section, is the transformation of the data into episodic format and with the structure
needed by the Q-learning formula (Figure 2).

Each episode will correspond to a heat, which is already classified. Regarding the
discretisation, the data is transformed into the states and actions defined before. Once
done each state must be associated with the action taken taken in that state, unless it is the
ending state. The procedure followed is explained through an example of a real heat. After
the discretisation, the format of the states of the heat is shown in Table 5 and of the actions
in Table 6. However, some adjustments are required.

Firstly, the composition status is not entirely correct. In the process, once the alloying
is performed, it is assumed that the composition is right and no further measurements of
the composition are made, unless if the operator decides they are needed. Consequently,
the composition status is not updated and, thus, the state is always “Close”, hence incorrect
composition. This first problem is solved by checking when the alloying action has been
performed and uploading all the composition states that follow it to “Good”.

Secondly, if we compare the addition times with the measuring times, it can be ob-
served that several actions are taken between two state updates (those are marked on
orange in the tables). Even if that can be done in practice, the configuration of the RL
algorithm proposed does not allow taking several actions at the same time. Therefore, those
states must be separated accordingly, associating an action to each one, so that they can
be used as training data for the Q-learning algorithm. In order to correct this, the conse-
quence of each action will be considered, in other words, how each action between those
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measurements would change the state. Based on that, the state will be divided, as many
times as actions taken, and its substates will be updated according to the consequences of
the actions, previously identified. In the example shown in the tables, the actions taken
were “Al” and “Cooling Scrap”. The purpose of these actions was to reduce the DO and
the temperature. Therefore, the state is divided into two and is updated sequentially, as if
the actions had been performed separately.

Table 5. Example of heat’s state format after discretisation.

Measuring Time T T Difference DO Comp. STATE

01-01-2019 01:32:53 40 ≤ ∆T 79 5 ≤ O2 < 10 Close S0
01-01-2019 01:42:29 40 ≤ ∆T 48 5 ≤ O2 < 10 Close S1
01-01-2019 01:51:15 20 ≤ ∆T < 30 23 3.5 ≤ O2 < 5 Close S2
01-01-2019 01:56:13 10 ≤ ∆T < 20 14 3.5 ≤ O2 < 5 Close S3
01-01-2019 01:59:53 2 ≤ ∆T < 10 4 O2 < 3.5 Close S4

Table 6. Example of heat’s actions after discretisation.

Addition Time Material Amount, kg Action
01-01-2019 01:33:45 Al 39 Al between 35 and 45 kg
01-01-2019 01:33:45 Cooling Scrap - Cooling Scrap
01-01-2019 01:36:45 Cooling Scrap - Cooling Scrap
01-01-2019 01:44:54 Al 11 Al between 6 and 15 kg
01-01-2019 01:44:54 Cooling Scrap - Cooling Scrap
01-01-2019 01:47:42 Alloying - Alloying
01-01-2019 01:57:02 Al 10 Al between 6 and 15 kg
01-01-2019 01:57:02 Cooling Scrap - Cooling Scrap

Thirdly, there are also states without actions, intermediate measures done to check the
status and if the actions taken have achieved their purpose. If this problem overlaps with the
previous problem presented, the information gathered from the additional measurements
is used as additional support in the procedure followed in the previous problem.

Finally, sometimes, although not frequently, there are actions taken after the last
measurement. In these cases, the end state is estimated in function of the consequences of
the action taken.

The example presented does not include a reheating sequence. However, same prob-
lems may occur and same procedure is followed. It is only necessary to add the reheating
action between the already defined actions. The addition is done by comparing the sample
times with the reheating start time.

In conclusion, all these problems leave gaps in the episode which must be filled. Once
the gaps are filled, episodes with MDP structure are available and ready to be used as
training data for the algorithm. The result of the procedures is presented in the following
section, because they also serve as check on the work done so far.

Validation of Environment Transformation

The objective of this task was to validate if the CAS-OB process has been correctly
transformed into an MDP and, hence, to validate the training data transformation. This
validation is crucial since the agent’s training is pointless if the data does not represent
CAS-OB’s process. To achieve the validation, the fact that every process gathered from the
CAS-OB historical data was correctly transformed into an episodic format was checked.

Table 7 below includes the final result of heat transformation into MDP format. There-
fore, the data can be used for training.
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Table 7. Final result of episodes generation.

∆T DO Comp. Action

40 ≤ ∆T
5 ≤ O2 < 10

Close Al between 35 and 45 kg S0–A01
Close Cooling Scrap S01–A02
Close Al between 6 and 15 kg S1–A11

3.5 ≤ O2 < 5 Close Cooling Scrap S11–A12
20 ≤ ∆T < 30 3.5 ≤ O2 < 5 Close Alloying S2–A13

10 ≤ ∆T < 20
3.5 ≤ O2 < 5 Good Al between 6 and 15 kg S3–A31

O2 < 3.5 Good Cooling Scrap S31–A32
2 ≤ ∆T < 10 O2 < 3.5 Good F S4

4.2. Training and Validation of the Algorithm

Once the environment is validated, the next step is to validate the algorithm. RL
algorithms are validated by achieving the convergence of the policy during the training
stage. The policy of the Q-Learning algorithm converges if the Q-values remain constant
between different trainings. The convergence proves that there is a solution for solving the
problem. Hence the rewards are coherent with the environment, and the algorithm suits
the problem.

The Q-Learning algorithm’s training consists of following the historical data repeatedly
until the solution is found, or in other words, it converges. The convergence is checked by
calculating the maximum difference between the values from the previous training and the
new ones. If the subtract is lower than the established accuracy parameter, set at 0.001, the
convergence is achieved. Figure 10 illustrates the progress during the training, and the red
line represents the accuracy parameter. Convergence is completed in 89 iterations.
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Once the training ends, the program retains the Q values in a CSV file. Afterwards,
the file is loaded and used to recommend actions. Moreover, it keeps learning and adjusts
the values with the new experience gained. The training with the historical data is an
initialisation of the Q values. Therefore, the DSS will recommend the right actions from the
beginning while learning and enhancing its performance.
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Nevertheless, before implementing the algorithm in the online DSS interacting with
the real process, the policy must be validated. To accomplish this, the policy was validated
by simulating episodes from the historical record following its recommendations. The
validation continued by checking if the action recommended matched or was similar to the
action taken in the historical dataset. The validation concludes when the DSS recommends
coherent actions.

4.3. Online Interface

The online interface aims to facilitate the operator’s work and to support him in
real-time during the process operation. In Figure 11 the interface is shown. The RL UI will
read from an OPC server the necessary data to define the state of the process. Therefore, it
will not be necessary to set the inputs manually (although it is still possible to modify any
input manually). Once the state is defined, the recommended action is shown, and every
time the state changes, the action will change accordingly.
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5. Testing and Results

The testing of the DSS and the gathering of results for performance measurement has
been performed during two months at the CAS-OB plant. At the beginning of the testing,
the focus was on the functionalities offered by the DSS and finding possible bugs. Thanks
to the development engineers’ feedback, it was possible to enhance the DSS by making the
following adjustments to the environment definition and the learning algorithm:

• Adjust the rewards to be stricter on agent learning.
• Correction on composition status calculation.
• Addition of constant states during the process, such as the grade and mass of the steel.
• Higher resolution for dissolved oxygen states and aluminium addition actions.

In the case of the dissolved oxygen, some additional states closer to the target were
added, which resulted in a better performance recommending aluminium to reduce the
dissolved oxygen. Concerning the aluminium addition, the maximum amount that the
system can suggest was increased. Before the change, the maximum amount that could be
recommended was 50 Kg.

Thanks to these changes, the support offered by the DSS was more precise and helpful
for the process. Additionally, it was observed that the RL agent prioritises firstly the
composition and secondly the temperature, in worst scenarios aiming at least to maintain
the temperature above target, which fits perfectly with the goals of the process. Further on,
during all the testing periods, data has been gathered to measure the DSS’s performance.
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First, all the states processed by the DSS are stored together with the recommended
action. Afterwards, these actions are compared with the actions taken by the operator,
available in the historical data. By doing this, it was possible to analyse in detail the policy
of the Q-learning algorithm. The analysis reflected that 69.23% of the time, the action
concurred with the action taken by the operator.

Nevertheless, the 30.76% left does not mean the action recommended was incorrect,
but the operators preferred to follow their experience. However, analysing the end of those
heats, it was observed that many of them do not end ideally. In other words, the actions
taken by the operator were not the best. Additionally, in order to ensure if the recommended
action was better, a process engineer of CAS-OB process from SSAB, analysed the actions
recommended and compared them with the actions taken by the operator. Estimating the
consequences of the actions with the support of an external model, the process engineer
from SSAB concluded that following the actions recommended, the heat would have ended
perfectly in most of the cases. However, since CAS-OB is such a complex process and
the DSS is a novel tool for the operator, it is understandable that experienced operators
would follow their own experience instead of the recommendation of a tool as novel as the
proposed DSS.

Finally, the efficiency of the process is measured with the following key performance
indicators (KPIs) presented in Table 8:

Table 8. Key performance indicators for the RL agent application to the CAS-OB process.

KPI Description Units

Heat rejections The percentage of heat rejections due to the wrong composition %
Temperature hitting
rate of CAS-OB heats

The percentage of heats in CAS-OB with the correct
temperature in continuous casting %

Analysing the episodes generated with the RL agent recommendations during the
testing period, the heat rejections are reduced by 4%. On the other side, 83.33% of the heats
end with the temperature on target or slightly above. The second KPI is expected to increase,
at least to 89% over time with the continuous training of the agent. Additionally, both
results, mainly the rejections reduction, reduced raw materials and energy consumption
(~−0.5%) and, hence, the CO2 emissions (~−2%) and costs (~−1.5%). The estimated
percentages may seem low but given the huge scale of the steel production in the CAS-
OB plant of SSAB, the impact is high. Those estimations were done by SSAB based on
their internal data concerning their production, comparing results before and after the
integration of the DSS.

6. Discussion

To conclude, it has been proved that a DSS using the Q-Learning algorithm can learn
a complex process such as the steelmaking process CAS-OB. Moreover, it was possible
to train an RL algorithm only with raw data from the historical database. Afterwards, it
was validated and tested in the CAS-OB plant with direct interaction with the process.
Additionally, thanks to the self-learning ability of the algorithm used as the core of the DSS,
it will keep training, adapting and improving its performance while it is used.

The RL algorithm has learned how the process works, and the DSS can support the
operator in real-time. Additionally, with constant interaction with the real process, the
agent will learn every detail and improve its performance. In the future, it may even be
possible to operate automatically while being supervised by the operator. Finally, with
this research, the advantages of RL have been demonstrated. Moreover, it remains clear
that RL algorithms, such as Q-Learning, are potent tools capable of learning and solving
even complex steelmaking processes. This statement encourages further investigation in
this direction and application in other steelmaking processes, thus opening a new way of
enhancing the performance and sustainability of the steelmaking industry.
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