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Abstract: Pyraclostrobin is a fungicide extensively used for the control of various fungal diseases
and is frequently detected in environmental samples. Natural systems, such as constructed wetlands
(CWs) and gravity filters, are effective and environmentally friendly treatment systems, which can
reduce or eliminate pesticides from the environment. The aim of this study was to investigate the
capacity of two pilot-scale CWs (porous media: cobbles and fine gravel, planted with Phragmites
australis) and six gravity filters (filling material: bauxite, carbonate gravel and zeolite) to remove
pyraclostrobin from polluted water originating from spraying equipment rinsing sites. For this,
experiments were conducted to test the performance of the above natural systems in removing this
fungicide. The results showed that the mean percent pyraclostrobin removal efficiencies for cobbles
and fine gravel CW units were 56.7% and 75.2%, respectively, and the mean percent removals for
HRTs of 6 and 8 days were 68.7% and 62.8%, respectively. The mean removal efficiencies for the
bauxite, carbonate gravel and zeolite filter units were 32.5%, 36.7% and 61.2%, respectively, and
the mean percent removals for HRTs 2, 4 and 8 days were 39.9%, 43.4% and 44.1%, respectively.
Regarding the feeding strategy, the mean removal values of pyraclostrobin in gravity filter units were
43.44% and 40.80% for continuous and batch feeding, respectively. Thus, these systems can be used
in rural areas for the treatment of spraying equipment rinsing water.

Keywords: pesticides; fungicide removal; phytoremediation; hydraulic residence time; constructed wetlands

1. Introduction

Modern agriculture depends on the use of pesticides to increase crop yields, but their
residues may pose a serious threat to aquatic and terrestrial ecosystems. Pesticides may
end up in different environmental compartments through diffuse or non-point and point
sources. The amounts of fungicides applied to large-scale crops have increased rapidly
over the last two decades [1].

Synthetic strobilurin fungicides are analogous to the natural products isolated from
the fungi of the genus Strobilurus; due to their high efficacy, they have quickly become
the most important chemical group of fungicides [2,3]. Pyraclostrobin is a strobilurin
fungicide discovered by BASF in 2000; it has been registered to protect grapes, peppers,
tomatoes, wheat, potatoes, sugarbeets, carrots and soybeans against diseases caused by
ascomycetes, basidiomycetes, deuteromycetes, and oomycetes [4]. The main mode of
action of pyraclostrobin involves the inhibition of mitochondrial respiration by blocking the
electron transfer at the outer side of the cytochrome-bc1 complex. Moreover, pyraclostrobin

Processes 2022, 10, 414. https://doi.org/10.3390/pr10020414 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr10020414
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0002-1685-6394
https://orcid.org/0000-0002-1434-1338
https://doi.org/10.3390/pr10020414
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr10020414?type=check_update&version=1


Processes 2022, 10, 414 2 of 14

application is related to the activation of the physiological regulation of plants and the
promotion of plant growth [5,6]. Following its first inclusion in Annex I of Directive
91/414/EEC in 2005, pyraclostrobin was registered in more than 50 countries, and with
sales of more than 1 billion US$ in 2016, it was the best-selling fungicide [7]. Because
of the extended application, pyraclostrobin is also one of the most frequent residues in
food [8,9] and environmental matrices (soil, water, sediment and biota) [10–15]. The
environmental fate and dissipation of pyraclostrobin depend on the exposure conditions
(DT50(field) = 33.3 days) [4]. Various metabolites were identified during pyraclostrobin
hydrolysis and photolysis, and some of them could be more toxic, compared to their parent
compound [16,17]. Pyraclostrobin is applied to crops throughout the growing season,
which may result in the exposure of non-target organisms within or near agroecosystems.
Various laboratory and field studies have reported that pyraclostrobin may accumulate and
be toxic to fish, amphibians, amphipods, algae, Daphnia magna and mussels [7,18–26] at
environmentally relevant concentrations, and has been classified among the 10 compounds
with the highest risk to aquatic organisms [27]. In addition, pyraclostrobin can negatively
impact honey bee and other pollinators [28–30]. Recently, various nanomaterials were
tested for the controlled release of pyraclostrobin and the reduction of its environmental
impact [31–33].

Point-source and diffuse pesticide contamination in water has become a serious en-
vironmental problem, which is increasing due to the absence of effective and low-cost
remediation techniques. Agricultural wastewater from the mixing, loading and washing of
spray equipment and improper handling of tank mix leftovers contribute to point-source
pollution [34–37]. Several treatment technologies have been suggested for the removal of
pyraclostrobin, such as photocatalytic degradation with TiO2 as a photocatalyst [38], UV ra-
diation [16], ozone and solar still decontamination systems [20], and simultaneous microbial
decomposition and Fenton oxidation [39]. However, their high operation and maintenance
costs make these technologies non-sustainable and non-preferable options. Therefore, alter-
native, more environmentally friendly technologies are recommended. The use of natural
treatment systems, such as constructed wetlands (CWs), gravity filters, vegetated buffer
strips and ponds, provides an effective practice of mitigating or eliminating nutrients, pesti-
cides and emerging pollutants in an environmentally friendly manner [40–50]. Constructed
wetlands (CWs) constitute an effective natural treatment technology, with low operation
and maintenance cost, simple operation, and low environmental impact [43,51]. CWs have
been successfully used for the treatment of several pollutants, and there are several studies
in the literature regarding their performance and removal mechanisms [47,48,50]. In the
wetland environment, pesticide removal occurs through physical (settling, adsorption),
chemical (oxidation, hydrolysis, photolysis) and biological (plant uptake, metabolism,
microbial degradation) processes. In the literature, there are studies regarding the removal
of some pesticides from surface runoff using CWs [34–37,48]. However, there is lack of
research regarding the treatment of water contaminated with pyraclostrobin by using CWs
and gravity filters.

The aim of this study was to investigate the removal efficiency of pyraclostrobin
originating from spraying equipment rinsing sites by the use of the following: two mature
pilot-scale constructed wetlands (CWs) containing fine gravel and cobbles as porous media,
planted with common read (Phragmites australis); and six gravity filters with filling materials
of bauxite, carbonate gravel and zeolite.

2. Material and Methods
2.1. Properties of Pyraclostrobin

Pyraclostrobin (IUPAC name: methyl-N-[2-[[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl]
phenyl]-N-methoxycarbamate) is a wide spectrum and effective fungicide used to control
major plant pathogens in cereals (including wheat, barley, and oat) and other crops (forage
and grain maize, triticale, sugarbeet, potatoes, vegetables including brassicas, carrot, beans,
vining peas, fruits including strawberry, etc.). It acts against a wide range of fungal dis-
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eases, including powdery mildew, Septoria, Rusts, leaf blight, anthracnose and brown spot.
The behavior of pesticides and their distribution among the environmental compartments
(i.e., water, soil, air, plants and other biota) is a complex process, affected by the applica-
tion strategy and the physicochemical properties of pesticides, such as water solubility,
octanol–water partition coefficient (LogKow), vapor pressure, soil adsorption coefficient
(Kd or Kf or Koc) and degradation time. Based on its physicochemical properties (Table 1),
pyraclostrobin is characterized as non-volatile (Henry’s Law constant is lower than 0.1 Pa
m3/mol), moderately persistent (soil degradation DT50,field is between 30 and 100 days)
and highly bioaccumulating, as its LogKow value is higher than 3.0 [4]. Concerning its
toxicological profile, pyraclostrobin exhibits high (fish, invertebrate) to moderate (sediment
dwelling organisms, aquatic plants, algae) aquatic ecotoxicity.

Table 1. Pyraclostrobin properties.

Parameter Value

Formula C19H18ClN3O4
Substance group Strobilurin

Molecular structure
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1 half-life for field studies.

2.2. Experimental Systems Description and Operation

Two pilot-scale horizontal subsurface flow (HSF) CWs and six porous media filters
(gravity filters) were used. Figure 1a presents a schematic section of each pilot-scale unit,
which was a rectangular tank of dimensions 3.0 m long, 0.75 m wide and 1.0 m deep.
The thickness of the porous media was 45 cm. The CW units with code names FG-R and
CO-R contained fine gravel (code name FG: D50 = 6 mm) and cobbles (code name CO:
D50 = 90 mm) as porous media, respectively, which were igneous rocks obtained from a
riverbed. The pilot-scale CW units were both planted with Phragmites australis (code name:
R) and were described in more detail by Akratos and Tsihrintzis [52].

Pyraclostrobin-enriched water at a concentration of 1.3 mg/L, which was used to
simulate agricultural wastewater from point sources of pollution, was prepared every day
and was used for loading the CW units. Based on our previous experience in respective
experiments (i.e., removal of pesticides and pharmaceuticals using CWs), two hydraulic
residence times (HRTs) of 6 and 8 days were applied [34–36,53–55]. The loading period
lasted from April 2015 to October 2015 with daily loading of 53 and 40 L to achieve HRT of
6 and 8 days, respectively. The design and operational characteristics of the CW units and
gravity filters are summarized in Table 2. For the acclimatization of the units, sampling
started one month after loading i.e., from May 2015. Water samples from the inlet and
outlet of each CW unit were taken every 10 days from May 2015 and were analyzed to
determine pyraclostrobin concentration. In order to find the fungicide accumulation in
the plants, at the end of the experimental period, roots, shoots and leaves from plants of
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both FG-R and CO-R units were collected and analyzed to determine the pyraclostrobin
concentrations.
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The six gravity filters were cylindrical tanks of diameter 31 cm, height 53 cm and
nominal volume 40 L; three of them were used for continuous feeding (named: FB-C, FC-C
and FZ-C) and the remaining three (named: FB-B, FC-B and FZ-B) for periodic (batch)
feeding. A flow control valve was installed at the base of the batch-feeding filters, which
was always closed and opened only for emptying the filter. In the continuous feeding
filters, a vertical pipe was connected to the bottom of the tank and ended at the height of
the surface of the porous media (Figure 1b). The tube was always open and was used to
maintain the water level in the filter tank at the upper level of the porous media at all times.
So, all filters operated at full saturation conditions, as the water level was always up to the
surface of the porous media. For each type of filter, three different porous media were used,
i.e., fine bauxite (FB: D50 = 6 mm; range 2.5–16.0 mm), fine carbonate gravel (FC: D50 = 6 mm;
range 2.5–16.0 mm) and fine zeolite (FZ: D50 = 6 mm; range 2.5–16.0 mm). The volumes of
the filter material and the pore water were 26 and 8 L, respectively. Pyraclostrobin-enriched
water at a concentration of 1.3 mg/L was added to the top of the filters. The continuous
feeding filters were loaded daily with volumes of 4.0, 2.0 and 1.0 L in order to achieve HRTs
of 2, 4 and 8 days, respectively (Table 2). Regarding the batch feeding filters, they were
loaded once with 8 L of the above solution, which remained in the filter tank for HRTs of
either 2 or 4 days (Table 2). Then, the valve at the bottom of the tank was opened to drain
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the solution (water enriched with pyraclostrobin). The tank filter was then refilled with 8 L
of fresh solution.

Table 2. Design and operational characteristic of HSF-CWs and gravity filter units.

Constructed Wetlands

CW Unit Porous
Media

Plant
Species HRT (d) Qin (L/d) HLR (mm/d)

CO-R Cobbles Phragmites
australis

6 53 23.6
8 40 17.8

FG-R Fine gravel Phragmites
australis

6 53 23.6
8 40 17.8

Gravity Filters

Continuous Feeding Periodical (batch) Feeding

Filter Unit Porous
Media HRT (days) Filter Unit Porous

Media HRT (days)

FB-C Bauxite 2, 4, 8 FB-B Bauxite 2, 4
FC-C Carbonate 2, 4, 8 FC-B Carbonate 2, 4
FZ-C Zeolite 2, 4, 8 FZ-B Zeolite 2, 4

HRT: hydraulic residence time, Qin: influent rate, HLR: hydraulic loading rate.

Water samples from the inlet and outlet of each filter were collected every seven
days from the continuous filters and on the day of loading from the batch filters for the
determination of the pyraclostrobin concentration. During the experiment, all filter tanks
were kept closed to prevent evaporation. Physicochemical parameters, such as temperature
(T), pH, dissolved oxygen (DO) and electrical conductivity (EC), were measured in situ at
the inlet and outlet of the two CWs and the six filters, using a portable measuring device
(WTW, series 197i, Germany).

2.3. Methodology for Pyraclostrobin Determination

Water samples (200 mL) from the inlet and outlet of the CWs and the filters were first
filtered (0.7 µm), and within 24 h, the solid phase extraction (SPE) was performed by using
C18 (500 mg/6 mL) cartridges, following the method described by Papaevangelou et al. [34].
Instrumental analysis was performed on a HPLC-PDA (Thermo Finnigan, Surveyor system
equipped with LC solvent pump, degasser, auto-sampler and photodiode array detector).
The Hypersil Gold 100 × 4.6, 5 m HPLC column was used for chromatography. The mobile
phase of the HPLC system consisted of an acetonitrile: water gradient program from 20%
to 95% acetonitrile in 11 min followed by a hold period of 9 min, after which the system
was returned to the initial conditions for equilibration. The flow rate of the mobile phase
was 1 mL/min. The acquisition of the data was made at 230 and 275 nm, and quantification
was conducted at 275 nm. The pyraclostrobin limit of detection and limit of quantification
were 0.1 and 1 µg/L. Recoveries were tested at 3 levels (800, 100 and 10 µg/L) and ranged
from 84% to 105% with RSD lower than 10%. Pyraclostrobin concentration on plants of
Phragmites australis was determined by the “QuEChERS acetate” methodology, as presented
by Liu et al. [56] and Gikas et al. [35].

2.4. Statistical Analyses

The SPSS 25.0 statistical package was used for statistical analyses. Levene’s test was
used to test the data for normality and variance homogeneity. The Student’s t-test was
used in order to compare the capacity of the CW units and evaluate the contribution of
porous media and HRT on the overall removal. In addition, the t-test was used to assess
the feeding strategy of filter units. Differences in removal efficiencies of pyraclostrobin
among the three gravity filters (with different porous media) were estimated using the
Kruskal–Wallis test. In cases where the Kruskal–Wallis test indicated significant differences
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between filters, pairwise comparisons were evaluated using the Mann–Whitney U-test.
The statistically significant level was set at p = 0.05.

3. Results and Discussion
3.1. Physicochemical Parameters in Constructed Wetlands

Figure 2 presents box–whisker plots of physicochemical parameters of the inflow and
outflow of CW units. The median value is indicated by the line inside the box, the upper
(75th) and the lower (25th) quartiles are denoted by the caps of the box, and the minimum
and maximum values are indicated by the whiskers of each box. The mean temperature (T)
of the influent water in the CW units was 25.3 ◦C, showing a low increase at the outlet of the
units (Figure 2a). The average temperatures of the effluent water of CO-R and FG-R units
were 27.6 and 27.5 ◦C, respectively. The pH values of water at the inlet and outlet of the
CW units were in the neutral range (7.0 ± 0.4) without remarkable fluctuations (Figure 2b).
The mean pH value of the influent was 7.3, and of the effluent, 7.0 and 6.9 for CO-R and
FG-R units, respectively.
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The EC values of water in the effluent of the CW units were higher than those in the
influent (Figure 2c), which may be attributed to the release of ions in the substrate from the
plant (Phragmites australis) root system, as well as to condensation due to evapotranspiration,
especially in the period (mainly on summer months) when the air temperature is high [54].
The mean EC value of the influent was 509.5 µS/cm, and those of the effluent were
866.5 and 901.7 µS/cm for CO-R and FG-R units, respectively. The mean DO concentration
in the influent (6.6 mg/L) was higher than the values in the effluents of the CW units
(Figure 2d) due to the consumption by microorganisms, even though the plants transfer
oxygen to the rhizosphere [57]. The mean DO concentrations in the effluent were 2.5 and
2.2 mg/L for CO-R and FG-R, respectively.
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3.2. Pyraclostrobin Removal in the CW Units

Figure 3 presents the concentrations and the percent removal of pyraclostrobin at the
inlet and outlet of the CO-R and FG-R units throughout the experimental period. The
influent and effluent pyraclostrobin concentrations did not indicate any seasonal fluctuation.
The influent pyraclostrobin concentration range for both CW units was 1.01–1.40 mg/L and
the effluent concentration range was 0.40–0.59 mg/L and 0.20–0.38 mg/L for CO-R and
FG-R units, respectively. The mean influent value for both CW units was 1.21 mg/L, and
the mean effluent values for CO-R and FG-R units were 0.52 and 0.30 mg/L, respectively.
The two pilot-scale units showed satisfactory pyraclostrobin removal throughout the
experimental period. Mean removal efficiencies were 56.7% and 75.2% for CO-R and FG-R
units, respectively. Box–whisker plots of removal capacity (Figure 4a) showed a difference
between the two units for the entire period. The t-test analysis indicated statistically
significant differences for the mean removal efficiencies between CO-R and FG-R units
(p < 0.05). This means that the CW with fine gravel as the porous media was more effective
in removing pyraclostrobin than the CW with cobbles, indicating that the grain size of the
porous medium is an important design parameter in the CWs.
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Figure 3. (a) Variation of pyraclostrobin concentration in pilot-scale CW influent and effluents;
(b) removal efficiencies (%).

The effectiveness of constructed wetlands is affected by HRT, with higher removal of
pesticides relating to longer HRT, particularly for hydrophobic compounds (LogKow > 4).
High HRT favors processes such as adsorption of pesticides on porous media and precipita-
tion, resulting in their removal from the aqueous phase [58]. In the present study, two HRTs
of 6 and 8 days were applied. Figure 4b presents the pyraclostrobin removal in the two
pilot-scale CW units for HRTs of 6 and 8 days. The comparison of the two HRTs is valid
because there was minor difference in the water temperature at the effluent of the CW units,
with the mean temperatures being 28.2 and 25.7 ◦C for HRTs of 6 and 8 days, respectively.
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The box–whisker plot shows that there was a minor difference between removals with
mean percent removals of 68.7% and 62.8% for HRTs of 6 and 8 days, respectively. The
t-test showed that there was no statistically significant difference in removals between
the two HRTs (p > 0.05). These results suggest that 6-day HRT may be sufficient for pyra-
clostrobin removal (Figure 4b). Similar results were reported for boscalid, terbuthylazine,
S-metolachlor and fluopyram with LogKow of 2.96, 3.4, 3.05 and 3.3, respectively [34–36,55].
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In the constructed wetlands environment, the main processes for pesticides elimination
or removal are physicochemical processes, such as volatilization, hydrolysis, photolysis and
adsorption on substrate, and biological processes, such as plant absorption and biodegrada-
tion [54,59]. Therefore, in the present study, the removal of pyraclostrobin due to volatiliza-
tion is considered negligible, as the Henry’s Law constant is less than 0.1 Pa m3/mol and
the vapor pressure < 5.0 mPa (Table 1), indicating that pyraclostrobin is nonvolatile [4].

Hydrolysis experiments in aqueous solution of pyraclostrobin at concentration of
10 mg/L and at pH 5.0, 7.0, and 9.0, and in rain water with pyraclostrobin concentration of
5 mg/L and pH 6.2 to 7.9 were conducted by Zeng et al. [16]. The results indicated that
pyraclostrobin was very stable at pH 5.0. The half-life values of pyraclostrobin in aqueous
solutions at pH 7.0 and 9.0 were 99.02 and 46.21 days, respectively. In rain water, the half-
life was 115.5 days, and the presence of microorganisms did not affect the pyraclostrobin
hydrolysis rate. In the present study, the pH values of water in the CW pilot-scale units
ranged between 6.6 and 7.4 (Figure 2b), and the HRT was 6 and 8 days; therefore, the
removal of pyraclostrobin by hydrolysis is considered negligible.

Photocatalytic degradation in an aqueous solution of pyraclostrobin (2.3 mg/L) with
the presence of TiO2 (0.5 g/L) as a photocatalyst and UV light irradiation for 60 min was
conducted by Lagunas-Allué et al. [38]. Results showed that about 99% of pyraclostrobin
was degraded, which was 15 times faster than direct photolysis. Zeng et al. [16] also re-
ported that the degradation rate of pyraclostrobin in aqueous solution under the irradiation
of UV light was faster than that under sunlight. The half-life values of pyraclostrobin in
aqueous solutions at pH 5.0, 7.0 and 9.0 under UV light were 2.42, 1.47 and 1.32, and under
sunlight, they were 11.2, 3.29 and 3.69 h, respectively. In the present study, the loading
solution was prepared daily and shortly before loading the units, and the water level in the
CWs was always below the substrate surface. Moreover, the existing vegetation further
reduced the penetration of sunlight. Therefore, photodegradation is considered to have
little contribution to pyraclostrobin removal in the pilot-scale CW units.

The plant uptake and phytoaccumulation of pesticides are dependent on both the
plant species and the pesticide characteristics, such as octanol/water partition coefficient
(LogKow). Pesticides with LogKow values ranging from 3.0 to 4.0 have higher accumulation
in plant tissue compared to those with a LogKow value greater than 4.0 [13,60]. Additionally,
chemical compounds with LogKow values ranging between 0.5 and 3.0 are more hydrophilic
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and show the best accumulation in plants through root absorption [61]. Pyraclostrobin
with LogKow value of 3.99 (Table 1) is moderately hydrophobic [4], and therefore, high
accumulation on plant tissue of pyraclostrobin is expected. However, research on the
ability of plants to remove pyraclostrobin is limited. At the end of the experimental period,
plant analysis was performed, and the concentration of pyraclostrobin in the roots, shoots
and leaves was determined. The mean pyraclostrobin concentrations were 0.3, 0.7 and
4.9 mg/kg dry weight for the leaves, shoots and roots, respectively, showing that a higher
pyraclostrobin accumulation occurs in the root of Phragmites australis. Previous studies
also reported that the roots of macrophytes (i.e., Phragmites australis, Typha latifolia, etc.)
accumulate the highest amounts of pesticides [36,54,59]. The phytoremediation process
is considered effective when pesticide entrapped in the roots (belowground biomass)
can be translocated to shoots and leaves (aboveground biomass). The ability of plants
to transfer pesticides from underground to aboveground biomass is provided by the
translocation factor (TF = Ca/Cb; Ca and Cb is the pesticide concentration in aboveground
and belowground plant tissues). In the present study, the TF was found to be 0.2 (less
than 1), which means that the pyraclostrobin is accumulated in the belowground biomass
(rhizome). Higher TF values (3.9 and 1.8 for imazalil and tebuconazole, respectively) in
P. australis were reported by Lv et al. [59].

The pyraclostrobin biodegradation half-life of 33 days in soil (Table 1) indicates that
biodegradation may be an important process for pyraclostrobin removal. According to
Chen et al. [62], the microbial metabolism is one of the main pathways responsible for the
degradation of strobilurins (i.e., pyraclostrobin and azoxystrobin) in the soil. Strobilurin-
degrading microbes include Bacillus, Pseudomonas, Klebsiella, Stenotrophomonas, Arthrobacter,
Rhodanobacter, Cupriavidus, and Aphanoascus [63]. Biodegradation studies of pyraclostrobin
by bacteria from orange growing plots were conducted by Biroli et al. [64]. The results
showed that the biodegradation rate is mainly affected by the initial concentration of
pyraclostrobin, which showed a positive contribution, and secondly by the temperature,
which showed a negative contribution. Thus, increasing the concentration of pyraclostrobin
increases the biodegradation percentage, and increasing the temperature decreases the
biodegradation. Considering the previous discussion, adsorption on substrate, phytoac-
cumulation and microbial biodegradation can be key factors in the overall pyraclostrobin
removal in the pilot-scale CW units.

Based on the literature, various metabolites have been identified during pyraclostrobin
hydrolysis, photolysis and biodegradation. Photocatalytic degradation of pyraclostrobin
in the presence of TiO2 as a photocatalyst and UV light irradiation was conducted by
Lagunas-Allué et al. [38]. Based on the results of the experiments, possible photodegrada-
tion pathways were proposed with the main steps as follows: hydroxylation of the aromatic
rings followed by the loss of the N-methoxy group, substitution of chloride atom by a
hydroxyl group, rupture of the pyrazol and phenyl bond, and the scission of the oxygen and
pyrazol bond. In addition, the hydrolysis and photolysis of pyraclostrobin in paddy water
were studied, and the metabolites of pyraclostrobin were identified by Zeng et al. [16]. Two
and three metabolites were detected and identified in hydrolysis and photolysis, respec-
tively, and the results showed that the metabolites have completely different hydrolysis and
photolysis processes. Furthermore, the biodegradation of pyraclostrobin by bacteria from
orange cultivation plots was studied by Birolli et al. [64]. They proposed a new biodegrada-
tion pathway with 15 identified metabolites. The five metabolites with small molecules
from the pyraclostrobin biodegradation produced were 1-(4-chlorophenyl)-1H-pyrazol-3-ol,
phenylmethanol, benzaldehyde, acetamide and formamide.

An operational problem that may occur during the operation of HSF-CWs is the
clogging of the porous media. The clogging is mainly due to suspended solids. The exper-
imental findings of this study can help in designing HSF CWs for treating, for example,
spraying tank rinsing water or agricultural runoff, which is usually discharged untreated
directly to nearby streams. In an actual design project, engineering solutions can be pro-
vided to remove the suspended solids of the spraying tank rinsing water or the agricultural
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runoff. Proper design of the porous media (or pretreatment of the wastewater in case
of high suspended sediment concentrations) can be employed to effectively address this
potential problem and increase the lifespan of the system.

3.3. Pyraclostrobin Removal in the Gravity Filters

Statistics (mean value, standard deviation, minimum and maximum values) of influent
and effluent concentrations of pyraclostrobin in the filter units for each HRT are presented
in Table 3. The mean pyraclostrobin concentration at the inlet of the filters was between
1.15 and 1.25 mg/L; the mean concentrations at the outlet ranged between 0.41 and 0.92 mg/L.
They were generally lower than those at the inlet, indicating the ability of the filters to remove
pyraclostrobin. The lowest mean effluent values for the entire experimental period were
0.48 mg/L (range 0.34–0.70 mg/L) and 0.49 mg/L (range 0.24–0.68 mg/L) in filters FZ-C
and FZ-B, respectively (Table 3). Table 3 also presents the statistics of removal efficiencies of
pyraclostrobin for all filters and for each HRT. The filters with fine zeolite as porous media for
both continuous and batch feeding strategies showed the highest efficiency in pyraclostrobin
removal, which ranged between 49.7% and 69.2% for the FZ-C filter, and between 49.4% and
79.8% for the FZ-B filter. As in the case of the CW units, the removal of pyraclostrobin in the
filter units by volatilization, hydrolysis and photolysis, as well as plant uptake is negligible due
to the absence of plants. Therefore, adsorption on porous media and microbial degradation
can be key processes for pyraclostrobin removal in gravity filters.

Table 3. Statistical data of influent and effluent of pyraclostrobin in filter units.

Continuous Feeding

Influent Concentration
(mg/L) Effluent Concentration (mg/L)

FB-C FC-C FZ-C

2 d 4 d 8 d 2 d 4 d 8 d 2 d 4 d 8 d 2 d 4 d 8 d

Mean 1.23 1.25 1.19 0.82 0.84 0.80 0.80 0.78 0.75 0.52 0.47 0.45
SD 0.13 0.07 0.06 0.12 0.06 0.05 0.08 0.09 0.05 0.10 0.05 0.04

Max 1.40 1.40 1.27 0.95 0.94 0.89 0.94 0.92 0.81 0.70 0.53 0.52
Min 1.01 1.10 1.10 0.63 0.73 0.75 0.70 0.68 0.66 0.34 0.40 0.38

Removal
(%)

Mean 33.10 32.31 32.93 34.95 36.98 37.35 58.32 62.66 62.58
SD 11.10 6.55 6.69 8.18 7.37 4.41 5.84 3.05 3.79

Max 54.51 43.58 40.96 47.93 45.53 45.00 69.18 68.00 66.61
Min 17.82 21.00 19.76 25.36 24.18 32.55 49.68 58.90 56.68

Batch Feeding

Influent Concentration
(mg/L) Effluent Concentration (mg/L)

FB-B FC-B FZ-B

2 d 4 d 2 d 4 d 2 d 4 d 2 d 4 d

Mean 1.29 1.15 0.92 0.82 0.86 0.76 0.57 0.41
SD 0.13 0.12 0.05 0.09 0.03 0.08 0.10 0.12

Max 1.50 1.37 0.97 0.96 0.89 0.87 0.68 0.57
Min 1.09 1.01 0.82 0.66 0.79 0.62 0.39 0.24

Removal
(%)

Mean 28.04 28.47 32.51 33.15 56.03 64.49
SD 8.42 7.31 8.04 9.38 6.36 9.59

Max 40.87 39.69 42.82 44.90 68.70 79.84
Min 16.52 19.04 19.72 15.40 49.42 51.24

SD: standard deviation, Max: maximum value, Min: minimum value.
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The effect of the design parameters on pyraclostrobin removal in gravity filters is
presented in Figure 5. The mean removal values of pyraclostrobin in gravity filter units
were 43.44% and 40.80% for continuous and batch feeding, respectively, without statistically
significant differences between them (t-test: p > 0.05). Similar results were reported for the
removal of fluometuron in gravity filters by Gikas et al. [37]. The filters with fine zeolite
showed higher removal capacity than the other filters (Figure 5b). The mean removal
values for FB, FC and FZ filters were 32.5%, 36.7% and 61.2%, respectively. The pyra-
clostrobin removal efficiency in FZ filters was statistically significantly higher than those in
FB (p < 0.05) and FC (p < 0.05). Previous studies indicated that the presence of zeolite in CW
and in gravity filters as porous media increased the pesticide adsorption [37,55,65–67]. In
the present study, three HRTs of 2, 4 and 8 days were applied at the continuous filters and
two HRTs of 2 and 4 days at the batch filters. Figure 5c presents the pyraclostrobin removal
in the filter units at HRTs of 2, 4 and 8 days. The mean removal values of pyraclostrobin
were 39.9%, 43.4% and 44.1% for HRTs of 2, 4 and 8 days, respectively, without statistically
significant differences between them (Kruskal–Wallis test: p > 0.05). The difference in the
mean removal of pyraclostrobin between HRTs of 2 and 4 days was 3.5% and that between
HRTs of 4 and 8 days was 0.7%, suggesting that an HRT of 4 days may be sufficient for
pyraclostrobin removal in gravity filters. These results are in agreement with those of a
previous study on the removal of fluometuron in gravity filters [37].
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4. Conclusions

Two low-cost natural systems—constructed wetlands and gravity filters—were em-
ployed in the removal of pyraclostrobin from polluted water. Plant absorption in CWs,
and microbial degradation and adsorption on the substrate in both CW and filter systems
were the main processes for pyraclostrobin removal, while in both systems, its removal by
volatilization, hydrolysis and photolysis was negligible. The FG-R unit with porous media
fine gravel achieved the highest removal efficiency of pyraclostrobin of 75.2%, indicating
that the grain size of the porous medium is an important design parameter in the CWs.
According to the findings of the present study, pyraclostrobin is accumulated in the rhizome
of Phragmites australis. An HRT of 6 days is sufficient for pyraclostrobin removal. On the
other hand, the filters with fine zeolite as porous media, for both continuous and batch
feeding strategies, showed the highest pyraclostrobin removal; in contrast to the feeding
strategy, the HRT was found to have a great effect on fungicide removal. Hybrid systems
combining CW and filters could be placed in series to increase pesticide removal from
agricultural runoff and improve water quality. The installation and operation of such
systems at point sources of pollution (e.g., sites where equipment for mixing and spraying
pesticides is washed) would be one measure to effectively mitigate the pesticide risk to
surface and groundwaters in agricultural areas at low cost.
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