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Abstract: Polycystic ovarian syndrome (PCOS) is an endocrine disorder that is characterized by
hyperandrogenism. Therefore, information about androgen-induced molecular changes can be ob-
tained using the tissues of patients with PCOS. We analyzed two microarray datasets of normal
and PCOS muscle samples (GSE8157 and GSE6798) to identify androgen-responsive genes (ARGs).
Differentially expressed genes were determined using the t-test and a meta-analysis of the datasets.
The overlap between significant results of the meta-analysis and ARGs predicted from an external
database was determined, and differential coexpression analysis was then applied between these
genes and the other genes. We found 313 significant genes in the meta-analysis using the Benjamini–
Hochberg multiple testing correction. Of these genes, 61 were in the list of predicted ARGs. When the
differential coexpression between these 61 genes and 13,545 genes filtered by variance was analyzed,
540 significant gene pairs were obtained using the Benjamini–Hochberg correction. While no signifi-
cant results were obtained regarding the functional enrichment of the differentially expressed genes,
top-level gene ontology terms were significantly enriched in the list of differentially coexpressed
genes, which indicates that a broad range of cellular processes is affected by androgen administration.
Our findings provide valuable information for the identification of ARGs.

Keywords: polycystic ovarian syndrome; hyperandrogenism; muscle; microarray; androgen-responsive
gene; meta-analysis

1. Introduction

Androgens are hormones that play a role in maintaining masculine characteristics in
humans and other vertebrates [1]. Since androgens are necessary for the development of
secondary sexual characteristics and male reproductive organs, they are also related to the
development of prostate cancer and the prognosis of breast cancer [2,3]. Therefore, it is
important to identify the molecular and cellular effects of androgens for the treatment of
such diseases.

It is well known that the cellular effects of androgens are mediated via the DNA-
binding domain of androgen receptors (ARs) [4]. When an androgen binds to the AR,
an androgen–AR complex is formed. This complex, in turn, binds to the transcription
initiation region of the target genes, and transcription is initiated via the corresponding
polymerase enzymes. In addition to their DNA-binding activity, the ARs can activate genes
via non-DNA binding-dependent actions [5].

Molecular and genomic analyses have identified androgen-responsive genes (ARGs)
that are transcriptionally activated by androgens. The DNA motifs to which the androgen–
AR complexes bind have been determined using gel shift assays [6–9]. In these previous
studies, electrophoretic mobility shift assays were applied to identify the DNA fragments
that interact with the androgen–AR complexes. With the advent of omics technologies,
such as microarray and next-generation sequencing (NGS), whole-genome searches for
ARGs have been performed. A previous study used the gene expression microarray data
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of LNCaP cells, which are androgen-sensitive human prostate adenocarcinoma cells. In
total, 28 ARGs were found using an analysis of differentially expressed genes (DEGs) and
DNA motifs of androgen-response elements (AREs) [10]. In another study, 692 ARGs
were identified with a meta-analysis of three microarray datasets [11]. Bolton et al. per-
formed microarray and quantitative polymerase chain reaction analyses and confirmed
108 androgen-responsive DEGs. They also performed a chromatin immunoprecipitation
(ChIP)-on-chip microarray analysis to identify AREs that are located at the transcrip-
tional start site of the ARGs. These ARGs were found to be related to the proliferation,
communication, and differentiation of prostate cancer cells [12]. The ChIP microarray
experiment also identified novel ARGs that were involved in prostate cancer cell growth
and survival [13]. In another study, the AREs were determined using ChIP sequencing,
which involves a combination of ChIP and NGS experiments. The transcriptional activities
of the identified sequence motifs were validated using microarray data. Moreover, the
motifs were found to be degenerated in an androgen-resistant prostate cancer cell line,
compared with an androgen-sensitive one [14]. In addition to the ChIP-seq, ChIP followed
by selective isolation of chromatin-associated proteins (ChIP-SICAP) was used for the
identification of nuclear proteins that are involved in androgen-receptor coregulation in
the castration-resistant prostate cancer cell line [15].

Several studies have been performed to identify ARGs, but most of them used prostate
cancer cell lines. However, two gene expression microarray datasets of muscle samples
from patients with polycystic ovarian syndrome (PCOS) were used in this study. PCOS is an
endocrine disorder that is characterized by insulin resistance and hyperandrogenism [16].
As hyperandrogenism is one of the diagnostic criteria for PCOS, patients have the same con-
dition of higher androgen exposure than the normal population. Thus, muscle samples from
patients with PCOS may have transcriptional signatures that represent androgenic effects
on muscle gene expression. Using DEG and differentially coexpressed gene (DCE) analyses,
combined with previous knowledge, tentative ARGs were determined in this study.

2. Materials and Methods

Figure 1 shows the overall analysis flow of the current study. For the identification of
muscle genes that are affected by the hyperandrogenic status of patients with PCOS, gene
expression microarray data were collected from the Gene Expression Omnibus database [17].
When the search terms “polycystic ovarian syndrome”, “human”, “muscle”, and “GSE”
were applied to the database, seven datasets were retrieved. The term “GSE” indicates
all of the gene expression data used in a study. Of the datasets, only two microarray
datasets, GSE8157 and GSE6798, included the gene expression profiles of human vastus
lateralis muscles from controls and patients with PCOS. The findings of the analyses of
these datasets were published previously [18,19]. The dataset GSE8157 consists of 43 muscle
samples of obese patients with PCOS [18]. Thirteen of the samples were obtained from
the normal control population, and 10 from obese patients with PCOS. The remaining
20 samples of this dataset were obtained from 10 patients with and 10 patients without
pioglitazone treatment. These samples were excluded from the present study. In this study,
PCOS was diagnosed based on the following criteria: (1) irregular periods with a cycle
length > 35 days during the last year; (2) free testosterone level above the reference interval
(>0.035 nmol/L); and/or (3) hirsutism. The dataset GSE6798 comprised microarray gene
expression data from 13 controls and 16 patients with PCOS [19]. The diagnostic criteria for
PCOS for this dataset were the same as those for the GSE8157. The controls of both datasets
had obesity.
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Figure 1. Flowchart of analysis. Two PCOS datasets were collected from the GEO database. After data
preprocessing and normalization, differentially expressed gene (DEG) and differentially coexpressed
gene (DCE) analysis were performed. Using the p values from the DEG and DCE analysis, a meta-
analysis was performed with the p value combination. For identification of biological mechanisms
underlying the analysis results, functional annotation was applied.

The microarray data analysis included normalization, identification of DEGs and
DCEs, and meta-analysis. The normalization was performed to extract true signals of gene
expression by subtracting background signals of the microarray platform and removing
possible technical biases between samples. For adjusting the background signals, the robust
multichip average (RMA) method was applied [20]. Quantile normalization was then used
for eliminating bias between samples [21]. After normalization, the t-test was applied
to identify DEGs. The Bonferroni and Benjamini–Hochberg (BH) methods were used for
multiple testing correction [22]. The p-values from the DEG analysis of the two datasets
were combined using Fisher’s p-value summation method [23].

χ2
2k ∼ −2

k

∑
i=1

log(Pi) (1)

In the above equation, Pi indicates the p-value of the t-test in the i-th study, and k
indicates the number of studies. The statistics of the p-value summation were tested using
chi-square distribution with 2k degrees of freedom.

The differential coexpression was computed using Pearson’s correlation coefficient
(PCC) and tested with the difference of the correlations between conditions [24]. The PCC
between two genes was obtained from samples of each condition (Equation (2)).

PCC =
∑n

i (xi − x)(yi − y)√
∑n

i (xi − x)2
√

∑n
i (yi − y)2

(2)

In the above equation, x and y indicate gene expressions, and i is the number of samples.
The transformation of the PCCs was then performed according to Equation (3), and the
difference between the PCCs was tested using the statistics estimated by Equation (4) and
standard normal distribution. In Equation (4), z and n indicate the transformation of the
PCC and the number of samples in a condition, respectively. The subscripts of z and n
represent different conditions.

z = 0.5log((1 + PCC)/(1 − PCC)) (3)
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dz =
z1 − z2√

1/(n1 − 3) + 1/(n2 − 3)
(4)

In addition to single gene-wise DEG analysis, the global test was applied to determine
the differentially expressed gene sets between normal and PCOS [25]. The global test
modified the generalized linear model to test the differential expression of gene sets having
more genes than samples. The KEGG pathway information was used for the gene set
analysis [26]. The p-values from the global test were applied to the meta-analysis of the
p-value combination.

To determine whether the number of ARGs in the DEGs was a random event or not,
enrichment analysis using Fisher’s exact test was performed.

p =

(
a + b

a

)(
c + d

c

)
(

n
a + c

) (5)

In Equation (5), a indicates the number of probes that are both DEGs and ARGs; b
indicates the number of overlaps between DEGs and non-ARGs; c indicates the number of
overlaps between non-DEGs and ARGs; and d indicates the number of remaining probes.
All computations are performed with in-house scripts of the R statistical program [27].

3. Results
3.1. Normalization and Idetnficiation of DEGs

The U133 Plus 2.0 Array platform (Affymetrix®, Santa Clara, CA, USA) has
54,675 probes in total. The signals of these probes were processed to compare between the
PCOS and control groups without the technical biases that occurred during experiments.
The “justRMA” function of the “affy” R package was applied for RMA normalization [20].
Once gene expression signals were extracted, the “normalize.quantiles” function of the
preprocessCore package was used to apply the quantile normalization method [21].

After normalization, single-linkage hierarchical clustering was applied to the datasets
to determine the overall proportions of DEGs in the total number of probes of the platform.
In both datasets, there was a tendency that the control and PCOS samples were separated.
However, when the total population was divided into two clusters, the control and PCOS
muscle samples were mixed in the clusters (Supplementary Figure S1). These findings
indicate that the number of genes showing substantial expression changes was low in each
expression dataset, which possibly results from the small sample sizes of the datasets.

In the DEG analysis of the GSE8157 data, two significant results were obtained using the
Bonferroni correction (Figure 2 and Supplementary Table S1, adjusted p-value < 9.14 × 10−7).
When the BH correction was applied, 15 significant results were obtained (Supplementary
Table S1). The proline/arginine-rich end leucine-rich repeat protein (PRELP) gene expres-
sion showed the most significant difference between controls and patients with PCOS. The
mean expression value for the controls was 7.16, and for the patients with PCOS, it was 7.36
(p-value = 3.90 × 10−7). In the GSE6798 data, no significant results were obtained using the
same methods.

3.2. Meta-Analysis of DEG Analysis

For the meta-analysis of the DEG analysis data, p-values were extracted from the
t-test results and summed using Equation (1). In this analysis, the results were considered
significant when the differences between the means of the two datasets had the same sign,
which indicated the consistency of the results for each dataset. When the BH correction was
applied, a total of 1598 probes were determined to be significant. Considering the p-value
threshold of 0.05, the number of false-positive results was expected to be approximately 80
(≈1598 × 0.05). To reduce the number of possible false-positive results, the p-value cutoff
was decreased to 0.01. Consequently, 313 genes were determined to be significant, which
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indicated that the number of false-positive results was expected to be approximately 3
(≈313 × 10−2). When the Bonferroni correction was applied, 26 probes were found to be
significant (Figure 3, adjusted p-value < 9.14 × 10−7).
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Figure 2. Heatmap of significant genes from the differentially expressed gene (DEG) analysis of the
GSE8157 dataset. Probe names are used for annotation in cases where no genes were mapped to the
probes. The genes are ordered according to the ascending order of t-statistics. Normal and PCOS
groups are divided using a black line. PCOS—polycystic ovarian syndrome.
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Figure 3. Heatmaps of DEGs that were found to be significant upon using the Bonferroni correction
of the meta-analysis results. As in Figure 2, probe names are used for annotation in cases where no
genes were mapped to the probes. The genes are ordered according to t-statistics and the gene orders
are different between the datasets (left: GSE8157, right: GSE6798). Normal and PCOS groups are
divided using black lines.

Table 1 presents the highly significant results of the meta-analysis. The probe 218982_
s_at for mitochondrial ribosomal protein S17 (MRPS17) showed the most significant result
(meta-analysis p-value = 2.62 × 10−9). The result for MRPS17 was significant after multiple
testing correction in the GSE8175 data (p-value = 4.77 × 10−7), while it was only marginally
significant in the GSE6798 data (p-value = 2.30 × 10−4). The mean expression value of
MRPS17 was higher in the normal group than in the PCOS group for both datasets (Table 1).
The gene LOC10192715 showed the second most significant result. It showed marginal
significance in both datasets (p-value = 8.65 × 10−6 in GSE8175 and 9.08 × 10−5 in GSE6798)
but showed an augmented significance in the meta-analysis (p-value = 1.73 × 10−8).
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When the significant genes were compared with the predicted ARGs, 61 DEGs were
found in the list of predicted ARGs (Supplementary Table S2). The ARGs were defined
using information from a previous database, and 2502 genes were included in the list of
ARGs [28]. The current microarray platform has the 6504 probes that were mapped to the
ARGs, and the probes were used for the ARGs in the enrichment analysis. The results of
the enrichment analysis indicated that the ARGs were significantly enriched in the DEGs
(odds ratio = 1.8, p-value = 1.03 × 10−4).

Table 1. Top 10 significant results in the meta-analysis of differentially expressed genes.

Probe ID Gene Symbol
GSE8173 GSE6798

Stat
Meta.

p-ValueNormal PCOS p-Value Normal PCOS p-Value

218982_s_at MRPS17 8.50 8.24 4.77 × 10−7 8.39 8.20 2.30 × 10−4 45.87 2.62 × 10−9

1569478_s_at LOC101927151 7.03 7.22 8.65 × 10−6 6.80 6.98 9.08 × 10−5 41.93 1.73 × 10−8

228775_at EMC3 8.29 7.91 3.21 × 10−5 8.27 7.93 2.77 × 10−5 41.68 1.94 × 10−8

37022_at PRELP 7.16 7.36 3.90 × 10−7 7.02 7.13 2.94 × 10−3 41.17 2.47 × 10−8

223417_at RAD18 4.75 4.57 5.55 × 10−6 4.60 4.47 2.52 × 10−4 40.77 2.99 × 10−8

201343_at UBE2D2 9.11 9.27 5.11 × 10−5 9.09 9.25 4.25 × 10−5 39.90 4.55 × 10−8

240493_at NA 5.47 5.80 5.63 × 10−6 5.15 5.38 7.42 × 10−4 38.59 8.49 × 10−8

220950_s_at KANSL3 5.93 6.19 4.71 × 10−6 5.88 6.03 2.01 × 10−3 36.95 1.84 × 10−7

204361_s_at SKAP2 4.43 4.17 5.94 × 10−4 4.25 3.98 1.84 × 10−5 36.67 2.11 × 10−7

239623_at C5orf63 5.68 5.45 5.71 × 10−5 5.60 5.41 2.20 × 10−4 36.38 2.41 × 10−7

NA—not available, Stat—statistics of Fisher’s p-value summation; Normal—normal population; PCOS—
polycystic ovarian syndrome; Stat—statistics of p-value summation meta-analysis; Meta. p-value—p-value
of the meta-analysis.

3.3. Results of Differential Coexpression Analysis

In the gene expression microarray data, a large number of probes were present that
represented the expression abundance of the corresponding transcripts (n = 54,675). There-
fore, when the coexpression analysis between the probes was performed, a large number
of statistical tests were required, which required higher statistical significance than the
nominal p-value of <0.05. Thus, two inclusion criteria were used for the differential co-
expression analysis to reduce the number of the statistical tests, which led to a relaxation
of the significant p-value threshold for the multiple testing correction. First, among the
transcripts that were found to be significant in the DEG meta-analysis, the 61 genes that
were also found in the list of the ARGs from the external database were used for the
differential coexpression analysis. Then, the transcripts other than these 61 DEGs were
filtered according to the degree of variance. The probes with variances > 75th percentile of
total probes, except the 61 DEGs, were selected from each dataset. The overlapping probes
between the two datasets were then determined, and 13,654 probes were selected. Finally,
differential coexpression analysis was performed for the 61 × 13,654 gene pairs.

When the differential coexpression analysis was independently applied to the PCOS
muscle data, few significant results were obtained using the Bonferroni correction (adjusted
p-value = 6.00 × 10−8). In the GSE8157 dataset, the pair of genes encoding glycerol-3-
phosphate dehydrogenase 1 (GDP1; probe 213706_at) and popeye domain-containing 2
(POPDC2; probe 219647_at) showed the most significant result (Figure 4 and Supplemen-
tary Table S3, p-value = 2.84 × 10−8). In the GSE6798 dataset, the pair of genes encod-
ing Ras homolog family member A (RHOA; probe 200059_s_at) and OTUD6B antisense
RNA 1 (OTUD6B-AS1; probe 227765_at) showed the most significant result upon using
the Bonferroni correction (Figure 5 and Supplementary Table S3, p-value = 1.44 × 10−10).
OTUD6B-AS1 encodes a long non-coding RNA.
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Figure 4. Differential coexpression of GPD1 and POPDC2 in GSE8157. Note that signs of the
correlations between the genes are opposite. PCOS—polycystic ovarian syndrome; PCC—Pearson’s
correlation coefficient.

On applying Fisher’s method to the results of the differential coexpression analyses,
31 gene pairs were found to be significant upon using the Bonferroni correction (Table 2
and Supplementary Table S3). For the identification of more gene pairs that were likely to
be involved in androgen-responsive biological processes (BPs), the p-value threshold was
relaxed using the BH correction, as in the DEG meta-analysis. When the adjusted p-value
threshold was set to 0.05, a total of 3513 significant gene pairs were obtained. Considering
the methodology of BH correction, the number of false-positive results in the list of gene
pairs was expected to be approximately 176 (≈0.05 × 3513). Therefore, to decrease the
number of possible false-positive results, the p-value threshold was set to 0.01. With this
threshold, 540 gene pairs were found to be significant (Supplementary Table S3), and the
number of possible false-positive results could be reduced to approximately 5 (≈540 × 0.01).
The 540 gene pairs were used in the functional annotation. In the meta-analysis of the
differential coexpression analysis data (differential coexpression meta-analysis), the RHOA–
OTUD6B-AS1 pair showed the most significant result, as in the GSE6798 dataset (Table 2).
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Table 2. Top 10 Significant results of differentially coexpressed genes in meta-analysis.

Probe A Gene A Probe B Gene B
GSE8157 GSE6798 META-Analysis

NC PCOS NC PCOS Stat p-Value

200059_s_at RHOA 227765_at OTUD6B-AS1 −0.95 0.25 −0.96 0.63 66.61 1.18 × 10−13

201144_s_at EIF2S1 1556082_a_at NA 0.87 −0.67 0.95 −0.60 63.10 6.45 × 10−13

210990_s_at LAMA4 209807_s_at NFIX −0.83 0.69 −0.83 0.75 50.77 2.49 × 10−10

210990_s_at LAMA4 237981_at CMYA5 −0.83 0.69 −0.91 0.57 50.72 2.55 × 10−10

202309_at MTHFD1 227329_at ZBTB46 −0.83 0.71 −0.89 0.52 47.18 1.40 × 10−9

202154_x_at TUBB3 241497_at NA −0.88 0.63 −0.81 0.68 47.02 1.51 × 10−9

210990_s_at LAMA4 1557994_at TTN −0.83 0.57 −0.87 0.67 46.62 1.83 × 10−9

40524_at PTPN21 212804_s_at GAPVD1 −0.81 0.86 −0.87 0.31 46.52 1.92 × 10−9

40524_at PTPN21 219980_at ABHD18 −0.78 0.92 −0.78 0.24 45.45 3.21 × 10−9

210990_s_at LAMA4 1555567_s_at LMOD3 −0.85 0.44 −0.82 0.75 44.71 4.28 × 10−9

NC—normal controls; NA—not available; PCOS—polycystic ovarian syndrome; Stat—statistics of p-value
summation; meta-analysis; p-value—p-value of meta-analysis.

Notably, in the results of the differential coexpression analysis, some ARGs showed
more interactions than others, which resulted in an increased number of DCEs with a
single ARG (Supplementary Figure S2). Among the 61 ARGs that showed differential
expression in the meta-analysis, PTPN21 had the greatest number of degrees (n = 278),
which means that over half of the significant DCE pairs included PTPN21. GSTO1 was the
second most-included gene in the significant DCE pairs (n = 114). The top five genes that
were most included in the significant DCE pairs together comprised 451 degrees, which is
83.5% of the total degrees.

3.4. Functional Enrichment Analysis of Significant Results

For the identification of biological implications of the DEGs, the Database for Annota-
tion, Visualization and Integrated Discovery (DAVID) was used [29]. Among the gene sets
in the DAVID, BP terms of gene ontology (GO) and transcription-factor binding site (TFBS)
were used for functional annotation of the significant results. After the application of the
significant probes obtained from the DEG meta-analysis into the DAVID, no significant GO
BP terms were obtained. However, marginally significant GO BP terms were found that
appeared to be consistent with the underlying biology. For example, BP terms that were
related to the cellular physiology of muscles were listed in the top 10 results when the BP
terms were sorted in the ascending order of enrichment p-values (Supplementary Table S4).
Such BP terms included “actomyosin structure organization”, “muscle contraction”, “my-
ofibril assembly”, “striated muscle contraction”, and “sarcoplasmic reticulum calcium-ion
transport.” This indicated that the DEGs were closely related to the androgen-induced
pathophysiology of muscles in PCOS. While no significant results were obtained on the
enrichment of the GO BP terms, many significant results were obtained on the enrichment
of TFBS BP terms (n = 41; Supplementary Table S5).

While the enrichment analysis showed no significant BP terms, the global test identi-
fied the biological pathways that seems to be related to the pathophysiology of PCOS. In
total, five KEGG pathways were significant in the meta-analysis of the global test (Table 3).
The propanoate metabolism pathway was the most significant (p-value = 2.39 × 10−7), and
the pathways were related to metabolism.

The functional enrichment test was also applied to the results of the differential
coexpression meta-analysis. For the enrichment analysis, the 540 gene pairs that were
identified using the BH correction were used. In the 540 pairs, there were 515 unique
probes, except the 61 ARGs, and these probes were applied to the enrichment test. In the
result with the GO BP terms, 94 terms were significantly enriched using the BH correction
(Figure 6 and Supplementary Table S6). Interestingly, certain strong tendencies were
observed in the results. First, BP terms that described a broad range of BPs, such as
protein modification processes and negative regulation of cellular and metabolic processes,
frequently occurred in the significant results. Second, BP terms having opposite meanings
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occurred concomitantly. For example, “negative regulation of biological process” and
“positive regulation of biological process” terms were highly ranked by their enrichment p-
values in the result. Third, muscle-related BP terms including “muscle cell differentiation”,
“muscle structure development”, and “cardiac septum morphogenesis” were significant
in the results upon using multiple testing correction, while they were only marginally
significant in the functional enrichment analysis of the DEG analysis results. In the TFBS
enrichment analysis, 137 significantly enriched TFBSs were identified, and they included
the 16 TFBSs of the ARGs from the ARG database (Supplementary Table S7).
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Table 3. Result of global test with KEGG pathways.

Pathway Name N GSE8173.pval GSE6783.pval Meta.stat Meta.pval

Propanoate metabolism 119 1.77 × 10−4 7.04 × 10−5 36.40 2.39 × 10−7

Pyruvate metabolism 119 1.05 × 10−3 6.64 × 10−5 32.96 1.22 × 10−6

Cysteine and methionine metabolism 130 8.51 × 10−4 1.04 × 10−4 32.48 1.52 × 10−6

Valine, leucine and isoleucine degradation 82 3.20 × 10−4 2.10 × 10−3 28.42 1.02 × 10−5

Glycolysis/Gluconeogenesis 93 1.08 × 10−3 8.21 × 10−4 27.87 1.33 × 10−5

pval—p-value; Meta.stat—chi-square statistics of meta-analysis; N—number of genes in a pathway. Bonferroni’s
correction is applied (adjusted p-value < 2.20 × 10−4).

4. Discussion

In this study, ARGs in muscles were identified using the muscle gene expression
data of controls and patients with PCOS. As PCOS is diagnosed based on whether hy-
perandrogenism is present or not, muscle samples of patients with PCOS have molecular
signatures similar to those after androgen administration to muscles. Practically, muscle
samples are difficult to collect. Therefore, fewer datasets with data from muscle samples
are available in the Gene Expression Omnibus database. Thus, a meta-analysis is necessary
to improve the statistical power that is required for the identification of genes associated
with hyperandrogenism.

ARs are transcription factors that affect gene expression. In general, even a single
transcription factor can modulate the expression of a large number of genes. Androgen
administration to human tissues can induce many genes by the binding of the androgen–
AR complex to the TFBSs in these genes. Thus, it was hypothesized that DEG analysis
could provide information about the ARGs. The findings of the enrichment analysis of the
meta-analysis results supported this hypothesis. The odds ratio and significance of the
enrichment were high, which indicated that the occurrence of DEGs in the list of ARGs was
not a random event. The other genes that were not included in the list of ARGs might also
be ARGs, and this can be validated using other experimental techniques such as ChIP. In
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addition to such genes, other genes that were related to the enriched TFBSs in the functional
annotation can be used as supportive clues to classify the ARGs in future studies.

In the functional enrichment analysis of results from the DEG analysis, only the
marginal results were identified. However, the global test showed five significant pathways
that are related to metabolic processes. It is well known that PCOS has abnormal metabolic
pathways. Higher incidence of abnormal glucose intolerance and diabetes are one of the
main features of PCOS [30], and the glycolysis/gluconeogenesis pathway was significant
in the global test. Moreover, the resting pathways are related to PCOS [31,32]. Therefore,
the pathways seem to be associated with androgen effects to the muscles of PCOS patients,
and a regulatory mechanism between the pathways will provide integral information for
the development of treatment strategies.

Of the genes that were found to be significant in the DEG meta-analysis, some genes
were closely related to the pathophysiology of PCOS. For example, PTPN21 expression
was found to be upregulated in the PCOS muscle samples (Table 1). PTPN21 was defined
as one of the ARGs based on sequence analysis. It is a member of the protein tyrosine
phosphatase (PTP) family, and some of the PTPs are known to have a role in the regulation
of insulin signaling [33,34]. Therefore, PTPN21 may be one of the effector genes for insulin
resistance that are activated by androgen stimulation, which is a major symptom of PCOS.
In addition, the gene encoding iron-responsive element-binding protein 2 (IREB2) or iron-
regulatory protein 2 (IRP2) can be related to insulin resistance. This protein is known to
control the cellular metabolism of iron [35], disruption of which can cause diabetes through
the induction of abnormal proinsulin processing and reduction in insulin secretion [36].
Although IREB2 was not defined as an ARG based on the sequence analysis, this gene
may be responsible for impaired insulin secretion in PCOS [37], which is initiated by
hyperandrogenism. In the enrichment analysis, no significant result was obtained using
multiple testing correction. However, GO BP terms related to muscle differentiation and
myofibril assembly were found to be marginally significant in the enrichment analysis. This
finding indicates that genes that are overexpressed in the muscles of patients with PCOS
might be involved in the muscle cell remodeling and lean muscle mass that are observed in
PCOS [38,39].

The result of differential coexpression meta-analysis reveals a tentative regulatory
relationship with ARGs. In the 515 genes that are uniquely present in the significant
gene pairs excluding the ARGs, 61 genes are in the list of ARGs from the database. The
proportion of previously identified ARGs in the genes is very low (OR = 0.90) compared
to that of the DEG meta-analysis, and it seems that the results of differential coexpression
analysis provide less information than DEG analysis in the determination of ARGs. Given
the previous research indicating the potency of differential coexpression analysis in the
estimation of the genetic regulatory relationship [40], the differential coexpression rather
provides information about genes that are possibly regulated by ARGs.

In the differential coexpression analysis, several ARGs showed significant relationships
with many genes. In particular, PTPN21 (n = 278) and GSTO1 (n = 114) were included in
most of the gene pairs showing significant differential coexpression. As discussed earlier,
PTPN21 is a protein-tyrosine phosphatase, and it is well known that such phosphatases
regulate various molecular processes in cells, such as cell growth, differentiation, and
oncogenic transformation [41–43]. Therefore, it is reasonable for PTPN21 to be included in
many gene pairs that were found to be significant in the differential coexpression analysis.
In particular, the gene encoding the abhydrolase domain, containing 18 proteins (ABHD18)
and UNC5B, showed significant differential coexpression even upon using the Bonferroni
correction, which uses the most stringent p-value threshold. ABHD18 is related to the
increased prevalence of vaginal yeast infection [44]. Its role in PCOS has not yet been
identified, but it appears to be involved in fatty acid metabolism [45]. UNC5B encodes a
receptor protein that is a member of the netrin family [46]. The intracellular domain of
UNC5B affects the proliferation and metastasis of bladder tumor cells by binding to several
ribosomal proteins [47]. As PTPN21 is one of the ARGs, the PTPN21–UNC5B pair appears
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to be involved in the pathophysiology of bladder cancer. Although the role of this gene
pair has not yet been elucidated in the muscles of patients with PCOS, it appears to be
related to muscle cell proliferation considering the findings of previous studies. GSTO1
encodes glutathione S-transferase omega 1, which is involved in the metabolism of chemical
substances, such as arsenic and α-haloketone [48]. GSTO1 is known to inhibit the apoptotic
response in lung cancer cells [49], and has an anti-apoptotic role in cell resistance to cisplatin
toxicity [50]. In addition, GSTO1 and GSTO2 polymorphisms are found to be associated
with PCOS [51]. GSTO1 is also one of the ARGs that was defined based on sequence
analysis, and had the second greatest number of significantly differential coexpressions
with other genes (n = 114). Thus, it might be one of the major effector genes for molecular
changes in the muscles of patients with PCOS.

In the functional enrichment analysis, top-level terms in the GO hierarchy, such as
“protein modification process”, “negative regulation of cellular process”, and “negative
regulation of metabolic process” were found to be significant. This finding implies that
the hyperandrogenic status of PCOS has an impact on the expression of a wide range of
genes, which results in significant top-level GO terms in the enrichment analysis, i.e., the
androgen stimulation has an impact on a variety of cellular processes. On the contrary,
specific BP terms were also found to be significant. In particular, while muscle-related GO
terms were not significant in the gene list obtained via the DEG meta-analysis, terms such
as “muscle cell differentiation”, “muscle structure development”, and “cardiac septum
morphogenesis” were significant upon using the BH correction. These terms are relevant
to PCOS muscle conditions based on the findings of previous studies [38,39,52].

5. Conclusions

In this study, tentative ARGs in muscles were determined using the gene expression
data of normal and PCOS muscle samples. The DEG meta-analysis identified muscle-
specific ARGs, and the differential coexpression meta-analysis determined genes that have
possible regulatory relationships with the muscle-specific ARGs. The present study’s
findings provide valuable information for the identification of ARGs, and these will be
used in the further studies.
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