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Abstract: Recently, global energy consumption has increased due to industrial development, resulting
in increasing demand for various energy sources. Aside from the increased demand for renewable
energy resources, the demand for fossil fuels is also on the rise. Accordingly, the demand for resource
development in the deep sea is also increasing. Various systems are required to efficiently develop
resources in the deep sea. A study on an in-line type oil–water separator is needed to compensate
for the disadvantages of a gravity separator that separates traditional water and oil. In this paper,
the separation performance of the axial-flow oil–water separator for five design variables (conical
diameter, conical length, number of vanes, angle of vane, and thickness of vane) was analyzed.
Numerical calculations for multiphase fluid were performed using the mixture model, one of the
Euler–Euler approaches. Additionally, the Reynolds stress model was used to describe the swirling
flow. As a result, it was found that the effect on the separation performance was large in the order of
angle of vane, conical diameter, number of vanes, the thickness of vane, and conical length. A neural
network model for predicting separation performance was developed using numerical calculation
results. To predict the oil–water separation performance, five design parameters were considered, and
the evaluation of the separation performance prediction model was compared with the multilinear
regression (MLR) model. As a result, it was found that the R square was improved by about 74.0% in
the neural network model, compared with the MLR model.

Keywords: in-line axial oil–water separator; swirl generator; separation efficiency; machine learning

1. Introduction

Recently, due to the increase in worldwide energy consumption and the decrease in
the production of fossil fuels (oil, gas, etc.) on land and offshore, the demand for resource
development in the deep sea is increasing. Resource development in the deep sea was
carried out in the 200 m depth in the early 1990s, but with the continuous development
of exploration technology and resource plant technology, it has recently become possible
to develop resources even at depths of over 3000 m. Traditionally mined crude oil was
separated into solid, liquid, and gas phases by gravity separation. However, in the case of
the deep sea, there is a limitation in using a traditional gravity separator having a relatively
large volume. Due to the relatively large volume, there are limitations on the installation
area and the need for a robust design to withstand high pressure. To improve on these
shortcomings, research on in-line-type separators capable of efficiently separating in the
deep sea is being actively conducted. In-line-type separators have the advantages of being
used in the deep sea, as well as increasing production efficiency and enabling compact
plant design.

The swirl generator is installed in the oil separator, and the working fluid is separated
into water and oil with different densities through the swirl flow. Studies using swirl
flow for multiphase separation are being actively conducted. Numerical calculations and
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experimental studies on the separation performance of the gas–solid phase using a cyclone
separator have also been conducted.

Wang et al. [1] conducted numerical analysis and experiments on particle behavior
for a typical Lapple cyclone. The researchers conducted a numerical analysis using the
Reynolds stress model and verified it through experiments. Chu et al. [2] calculated the
effect of the various mass flow rate of particles flowing into the cyclone separator on
pressure drop using the discrete element method (DEM). Klujszo et al. [3] analyzed the
effect of various design parameters on dust collection performance by applying a fixed
guide vane. Zhou et al. [4] analyzed the numerical and experiments on the behavior of ultra-
light particles in a cyclone separator. In addition, a study on optimizing the configuration
of a cyclone separator to increase the separation efficiency was conducted [5]. Mikulcic
et al. [6] calculated numerically using the large eddy simulation (LES) for particle behavior.
In the gas–liquid phase, Liu and bai [7] performed numerical analysis and experiments
on the swirl decay in a straight pipe with a swirler applied. Xiong et al. [8] visualized the
effect of the flow pattern on the flow characteristics in the separator through numerical
experiments. Rocha et al. [9] studied the flow characteristics according to various Reynolds
numbers. Hung et al. [10] analyzed the effect of various configurations of swirlers on flow
characteristics through numerical analysis and experiments. Hreiz et al. [11] visualized the
flow characteristics in the separator according to various shapes and boundary conditions.
Swanborn [12] conducted a study of various separators used in the oil industry. Yue
et al. [13] et al. performed numerical analysis and experiments on a gas–liquid cylindrical
cyclone separator. Wang et al. [14] performed an experiment for flow characterization of
a multistage separator. Liu et al. [15] observed the change in the swirling flow with time.
In the liquid–liquid phase, Delfos et al. [16] compared the hydrocyclone axial averaged
slice (HAAS) model and the commercial code (Fluent) results, and similar calculation
results were found. Amini et al. [17] performed numerical calculations and experiments on
separators of various configurations. In addition, the effect of oil droplet size and flow rate
on efficiency was analyzed. The performance of the cyclone separator was analyzed through
numerical calculations and experiments using a Reynolds stress model, which is excellent
for anisotropic flow prediction [18,19]. Husveg et al. [20] experimented to analyze the effect
of changing the flow rate on hydrocyclone performance. The experiments were conducted
to validate the numerical calculation of the oil-water separator [21–24]. The effects of the
various configurations of the separator and various boundary conditions of working fluid
on the separation performance were analyzed [25–28]. In addition, optimization studies
were conducted to improve the separation performance. Young et al. [29] and Al-kayiem
et al. [30] conducted studies on the optimal design of the swirl generator. Zeng et al. [31]
analyzed the effect of separator chamber geometry on separation performance. It was
confirmed that the conical chamber was more effective for separation than the cylinder and
diffuser chamber.

In this paper, a machine learning model study on the separation performance of an
in-line oil–water separator was performed using computational fluid dynamics (CFD)
results. Although relatively high cost is required for CFD calculation of various design
parameters, machine learning has the advantage of efficiently calculating complex nonlin-
ear mathematical models based on data. Machine learning, which has the advantages of
efficient calculation, is also used in the field of predicting cyclone separator performance
based on swirl flow. Elsayed and Lacor [32] accurately predicted complex nonlinear rela-
tionships between performance coefficients and design parameters and showed that it is a
powerful approach to optimization for performance improvement. Safikhani [33] and Park
et al. [34] conducted studies on improving separator performance through CFD results and
various algorithm combinations. However, previous studies have focused on predicting
gas–solid separation performance. Therefore, in this study, a machine learning algorithm
was applied to the development of a predictive model for liquid–liquid separation per-
formance using swirling flow. Figure 1 shows the flowchart of this study. First, based on
the design-of-experiment (DOE) method, various design points for the swirl generator
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were created. Next, CFD calculation was performed on the created design point, and a
machine learning model was developed using the CFD calculation result data. Finally, the
developed model evaluated the predictive performance, compared with the traditional,
multilinear regression (MLR) model.
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2. Model Description

Figure 2 shows the in-line oil separator used in this study. The total length of the
oil–water separator was 2440 mm, and the swirl generator was installed 200 mm away
from the inlet. The outer diameter (D) of the swirl generator was 100 mm, and the total
length was 240 mm. Additionally, the swirl generator consisted of the nose section, the
vane section, and the tail section, and they were 80 mm (Lnose), 80 mm (Lvane), and 80 mm
(Ltail), respectively.

Figure 3 shows the grid system of the oil separator. The grid system was composed of
polyhedrons and hexahedrons using ANSYS Fluent Meshing. The maximum and minimum
sizes of the grid were set to 6 mm and 0.02 mm, respectively. The maximum skewness of
the grid was 0.7, and the minimum orthogonal quality was 0.2. A scalable wall function
was used as the near-wall treatment, and the y+ value was set to y+ > 11. The residual
values of the turbulence equation and the separation efficiency criteria for evaluating CFD
convergence were set to 10−3, respectively. The number of grid elements was calculated
by changing from 700,000 to 3,500,000, and as a result, the change in separation efficiency
was insignificant from about 2,200,000 (Figure 4). The oil separator consisted of one inlet
and two outlets for discharging oil and water. The boundary conditions for numerical
calculation were defined as velocity inlet and outflow. The central and annulus outlets
were set as outflow, with the central outlet flow split of 30%. The relatively heavy phase
was pushed outward by centrifugal force, and the light phase was directed toward the
center. Therefore, the annulus outlet was set as a heavy phase outlet (HPO) because the
fluid of the relatively heavy phase exits, and the central outlet was set as the light phase
outlet (LPO) because of the fluid of the relatively light phase exits. The volume fraction of
the mixture flowing into the separator was set to 0.8 for water and 0.2 for oil. Additionally,
a no-slip boundary condition was applied to all walls.
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In this study, a mixture model, one of the Euler–Euler approaches, was applied. the
mixture model treats the different phases as interpenetrating continua and can completely
capture the multiphase. The mixture model has been applied successfully on the simulation
of oil–water separation [31,35,36]. and this model solves the momentum equation of
the mixture and describes the discrete phases by relative velocity. The continuity and
momentum equation can be represented as follows, respectively:

∇·
(

ρm
→
v m

)
= 0 (1)

∇·
(

ρm
→
v m
→
v m

)
= −∇p +∇·

[
µm

(
∇vm +∇→v

T
m

)]
+ρm

→
g +

→
F +∇·

(
n
∑

k=1
αkρk

→
v dr,k

→
v dr,k

) (2)

where ρm is the mixture density,
→
v m is the mixture velocity, µm is the viscosity of the

mixture,
→
g is the gravity acceleration,

→
F is the body force, αk, and

→
v dr,k are the volume

fraction and drift velocity for phase k, respectively.
Table 1 describes the physical properties of the mixture applied in this study and

the boundary conditions for numerical calculation. The droplet size of the oil, defined
as the dispersed phase, was set to 100 µm. For the drag law used in the momentum
conservation equation, the Ishii–Zuber model [37] was applied. This drag law model
is characterized by satisfactory agreement for bubble, droplet, and particle motion over
a wide range of concentrations and Reynolds numbers. According to the literature on
swirling flow, complex flows such as vortex breakdown, shortcut flow, circulation flow,
etc. were observed [38,39]. To account for complex flows, the choice of turbulence model is
important. Yang et al. [40] compared the numerical results using the Reynolds stress model
(RSM) with the experimental data. As a result, their findings reveal that the turbulence
model used was agreeable. Cai et al. [41] compared the numerical results of Equation (2)
model (realizable k–ε, RNG k–ε, and k–ω SST) and Equation (7) model (RSM) and confirmed
that the RSM model predicts the swirling flow well through experiments. Therefore, the
RSM was applied in this study. Numerical calculations were performed using ANSYS
Fluent. A workstation equipped with an Intel Xeon CPU process (@ 2.00 GHz, 14 core, X2
process) and 200GB RAM was used for calculations.
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Table 1. Boundary conditions applied in this study.

Value

Calculation type Steady state
Turbulence model Reynolds stress model

Working fluid

Water
Density

[
kg/m3] 1068.7

Viscosity [kg/(m·s)] 1.183 × 10−3

Oil
Density

[
kg/m3] 867

Viscosity [kg/(m·s)] 8.69 × 10−3

Droplet size [µm] 100
Gravity (z-axis) [m/s2] −9.81

Inlet
Velocity [m/s] 2

Volume of fraction
0.8 (water 13.416 kg/s)
0.2 (oil 2.730 kg/s)

Outlet Flow split LPO 0.3
HPO 0.7

Wall No-slip wall
Drag law Ishii–Zuber model

3. Machine Learning Algorithm

CFD simulations that combine various geometrical design parameters have the dis-
advantage of being time consuming. In this paper, it took 20 h for each case to calculate
the CFD and about 10 h to calculate the ML model development. A machine learning
model for separation performance was developed for solving the time cost problem of
oil–water separator design. This model was developed using a backpropagation algorithm
that efficiently learns multilayer perceptron. The backpropagation model is a model with
the advantage of minimizing the error by performing calculations from the input layer to
the output layer (feedforward) and then calculating the slope of the loss function from the
output layer to the input layer. The structure of the neural network (NN) model consists
of several hidden layers between the input and the output, and the output is predicted
according to the input by giving nonlinear characteristics between the design variables
and the output. A function that converts the weighted sum of input data into an output
signal is called an activation function. The rectified linear unit (ReLU) function, which
can supplement the gradient vanishing of the sigmoid function, is used as the activation
function. The ReLU function outputs 0 if the input value is less than 0 and outputs the
input value if it is greater than 0, as expressed in Equation (3).

f (x) =
{

x (x > 0)
0 (x < 0)

(3)

In this study, input variables of the neural network model were set as the five geo-
metrical variables to make a model for predicting oil–water separation efficiency (η). The
separation efficiency is defined as the ratio of the oil mass flow rate through LPO to the
oil mass flow rate at the inlet. The separation efficiency can be calculated by Equation (4)
as follows:

η =
QLPO.oil
Qinlet. oil

(4)

Design points for developing neural network models were created based on the design-
of-experiments (DOE) method. This method has the advantage of creating a design area
where a considerable amount of information can be obtained, and the Latin hypercube
sampling (LHS) method [42] was used. Table 2 shows the design points generated using
DOE. The machine learning model was trained and evaluated using the numerical results
for these design points. In addition, the neural network of the machine learning model has
hyperparameters such as the learning rate, number of the hidden layer, number of nodes in
the hidden layer, etc. Additionally, an optimization study is needed to reduce the error of
the prediction value. In this study, hyperparameter optimization was performed on the



Processes 2022, 10, 375 7 of 15

number of hidden layers, the number of nodes in each hidden layer, and the learning rate,
and Python was used for the machine learning model and hyperparameter optimization.

Table 2. Design points of LHS.

Design Point
Conical

Diameter
(D1) [mm]

Conical
Length

(L1) [mm]

Number of
Vanes (n)

Angle of
Vane
(θ) [◦]

Thickness of
Vane

(t) [mm]

Training set

1 48.00 500 9 65.00 3.0
2 41.93 420 5 46.70 2.6
3 42.22 461 7 72.20 2.9
4 40.15 502 8 66.70 2.3
5 47.85 543 6 73.30 3.1
6 46.37 583 7 60.00 2.3
7 46.96 624 7 50.00 3.4
8 42.52 665 7 64.40 4.0
9 41.33 706 8 51.10 3.7
10 47.26 746 7 47.80 3.8
11 47.56 787 8 68.90 2.7
12 43.11 828 7 57.80 2.1
13 45.48 869 8 55.60 3.4
14 41.04 909 9 61.10 3.5
15 43.70 950 6 65.60 2.8
16 46.67 991 9 53.30 2.2
17 40.74 1031 6 45.60 2.4
18 44.30 1072 8 71.10 2.9
19 46.07 1113 8 48.90 3.0
20 40.44 1154 6 67.80 2.6
21 45.78 1194 6 62.20 3.3
22 44.89 1235 5 63.30 3.2
23 44.00 1276 5 52.20 3.9

Test set

24 41.63 1317 9 56.70 3.6
25 42.81 1357 6 70.00 3.1
26 44.59 1398 8 74.40 3.7
27 43.41 1439 7 54.40 2.5
28 45.19 1480 6 58.90 2.0

4. Results and Discussion
4.1. Results of Computational Fluid Dynamics

To ensure an accurate numerical simulation, the simulation results are usually associ-
ated with those of similar previous validated numerical studies. The numerical calculation
results in this study were compared with the calculation and experimental results by Slot
et al. [22]. Figure 5 shows the result of comparing the axial velocity at a distance of 0.44 m
from the swirl generator. The trend of predicted axial velocity in both studies, numerical
results of Slot et al. [22] and the present study, is identical, with a mean deviation below
15%, which denotes an acceptable agreement. The maximum deviation was found to be
r/D 0.31. This deviation is considered to be caused by the difference in the geometry of the
separator, the size of the incoming oil droplet, and the grid system.

Table 3 shows the CFD results by design points. Figure 6 shows the tangential velocity
at a distance of 2D downstream of the ISE. Figure 7 shows the distribution of tangential
velocity at six vanes of the swirl generator. The maximum tangential velocity appears in
the exit region of the vane. As the angle of vane increased, the magnitude of the maximum
tangential velocity increased, and the position of the maximum tangential velocity tended
to be closer to the wall of the separator. The two regions of the forced vortex and free vortex
can be divided into points with maximum tangential velocity. This appears similar to the
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Rankine vortex structure [43]. In the forced vortex region, the tangential velocity appeared
proportional to the radius, and in the free vortex region, the tangential velocity decreased
along the radius. The tangential velocity rapidly decreased near the wall, because of the
wall friction. In addition, the maximum tangential velocity was found to be faster, as the
vane angle of the swirl generator was larger.
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Test set

24 41.63 1317 9 56.70 3.6 132.23 0.830
25 42.81 1357 6 70.00 3.1 203.36 0.835
26 44.59 1398 8 74.40 3.7 610.18 0.892
27 43.41 1439 7 54.40 2.5 74.25 0.820
28 45.19 1480 6 58.90 2.0 75.07 0.826
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Pearson correlation coefficient (PCC) [44] was used to evaluate the effect of geometrical
variables on oil–water separation efficiency. The Pearson correlation coefficient quantifies
the linear correlation between the random variable X and the output Y and is expressed
as a value between −1 and +1. A Pearson correlation coefficient of 1 indicates a perfect
positive linear correlation between two variables, a value of −1 indicates a perfect negative
linear correlation, and a value of 0 indicates no linear relationship. Figure 8 is a PCC matrix
heatmap showing the effect of geometrical variables on the separation efficiency. The effect
on the separation efficiency was shown in the order of angle of the vane, conical diameter,
and the number of vanes.
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Figure 9a shows the results for the pressure drop and separation efficiency, with the
pressure drop defined as the pressure difference between the inlet and HPO. The separation
efficiency tended to increase as the pressure drop increased, and as shown in Figure 9b, the
magnitude of the pressure drop tended to be greater with the increase in the angle of the
vane (θ). The large vane angle induced a strong swirl, so a larger shear loss likely occurred
in the wall of the separator.
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4.2. Separation Efficiency Prediction Model Development Using Neural Network Algorithm

A neural network method was used to develop a prediction model for the separation
efficiency of the axial oil–water separator. The prediction performance of neural network
algorithms depends on hyperparameters, and hyperparameter optimization is required to
develop a prediction model. In this study, the number of hidden layers constituting the
neural network, the number of nodes in the hidden layer, and the learning rate were used as
hyperparameters. Depending on the number of hidden layers and the number of nodes in
the hidden layer, an overfitting problem can occur or consume considerable learning time,
so it is necessary to determine the optimal number of hidden layers and nodes. The learning
rate refers to the amount to learn when updating the model’s weights. A random sampling
method was used to derive the optimal hyperparameter, and the number of sampling
was set to 500. Feature scaling was performed with min–max normalization for input
variables of different sizes. Ridge regularization was used to prevent overfitting the model
by keeping the model weights as small as possible. Figure 10 shows the hyperparameter
optimization results. The right end of Figure 10 is the quantification of the prediction
performance according to the hyperparameter combination. Mean absolute error (MAE),
mean absolute percentage error (MAPE), and R square (R2) were used as indicators for
quantitative evaluation of the model. MAE is an index that indicates the difference between
the predicted value and the actual value and is an index that can objectively evaluate the
performance of a neural network model. MAPE is the percentage of MAE. It is widely
used as an evaluation indicator for predictive models and has the advantage of scale
independence. The closer the MAPE value is to 0, the more the predicted value matches the
actual value. R2 is an indicator of the degree of agreement between the actual value and
the predicted value. The closer the R2 value is to 1, the more the predicted value matches
the actual value. Table 4 shows the optimal hyperparameter combinations.

Based on the optimal hyperparameter, CFD calculation results were divided into
train set and test set to develop and evaluate a neural network model. MLR results
were compared to evaluate the performance of neural network models. Figure 11 shows
the prediction results of the neural network model and the MLR model. Since complex
nonlinear relationships occur between design variables and separation efficiency of oil-
water separators, the neural network model shows better prediction results than the MLR
model. Table 5 shows quantitative indicators of predictive models. As a result of the neural
network model prediction, the model performance was improved by about 79.2%, 71.9%
and 74.0%, respectively, in MAE, MAPE and R2 compared to the MLR model.
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Table 4. The optimized hyperparameters.

Optimized Parameters Value

Learning rate 0.09883
Number of hidden layers 6

Number of nodes 28/32/28/16/28/12
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Table 5. Neural network prediction model performance, compared with MLR results.

MLR Model Neural Network Model Improvement

MAE 0.0129 0.00268 79.2%
MAPE 0.0146 0.0041 71.9%

R2 0.566 0.985 74.0%

5. Conclusions

In this paper, a neural network model was developed to analyze the effect of various
design variables on the separation performance of an axial-flow oil–water separator and to
predict the separation performance. The following conclusions are drawn:
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(1) Among the various design variables, the effect of vane angle on the separation perfor-
mance of axial oil–water separator was significant. When the value of the vane angle
was large, the efficiency was relatively high, and it was confirmed that the magnitude
of the pressure drop was also large.

(2) The neural network model was developed using the CFD results for the design points
created by the DOE method. Hyperparameter optimization was performed, and the
neural network prediction model improved about 79.2% in MAE, 71.9% in MAPE,
and 74% in R2, compared with the traditional MLR. Therefore, the neural network
model using the CFD results can be efficiently applied to the design of the axial-flow
oil–water separator.

In a future study, a more accurate neural network model will be developed through
various hyperparameter optimization methods, and a separation performance prediction
model using various boundary conditions such as inlet and outlet will be investigated.
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Jea Kim); supervision, Y.-J.K. (Youn-Jea Kim). All authors have read and agreed to the published
version of the manuscript.
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Nomenclature

D Diameter of separator inlet
D1 Diameter of the conical section
Dsg Diameter of the swirl generator
→
F The body force
→
g The gravity acceleration
L1 Length of the conical section
L2 Length of cylinder section at downstream
Lnose Length of swirl generator nose section
Lvane Length of swirl generator vane section
Ltail Length of swirl generator tail section
n Number of swirl generator vanes
QLPO.oil Mass flow rate of oil at LPO
Qinlet.oil Mass flow rate of oil at the inlet
t Thickness of vane
→
v dr The drift velocity
→
v m The mixture velocity
θ Angle of vane
η Separation efficiency
ρm The mixture density
µm The viscosity of the mixture
α The volume fraction
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