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Abstract: Theoretically, the sand flux will not change after the wind-driven sand particle transport
reaches the saturated state. However, it has been found in many wind-tunnel experiments that
the sand flux will gradually decrease with time in long-term particle transport duration and will
eventually reach a new stable state. In this work, we used numerical simulations to study the source
of this kind of decrease and found it is caused by the sand ripple on the bed surface. The ripple
index showed a strong correlation to the sand flux, and it decreased during the initial stage of the
ripple formation. With a simplified theoretical model, we found the linear relationship between the
Shields number and the particle transport load holds. However, the slope of this relationship and the
dynamic threshold of particle entrainment decreased with the ripple index. As the sand flux scales
linearly with the particle transport load, we finally derived an expression that describes how the sand
flux on the ripple bedform varies with the wind strength. From this expression, we found the sand
flux increases with ripple index, and it was easier to be influenced by the ripple bed form in small
wind strength.

Keywords: numerical simulation; discrete element method; sand flux; sand ripples; ripple index

1. Introduction

While subject to a continuous wind, small particles in the granular bed can always be
transported by the means of suspension, saltation, or reptation. As illustrated in Figure 1,
comparing to the suspension particle who drifts a very long distance without touching
the ground (usually in the scaling of kilometers), saltation and reptation particles interact
with a local bed surface more frequently, i.e., they bounce forward along the wind direction.
Saltation particles and reptation particles dominate the magnitude of the total particle flux
in the wind-blow-particle situation [1]. The only difference between them is that the former
inherits more energy from the wind, making it rebound after every impact and moving
forward continuously. Because of these reasons, we realize that the local topology of the
bed surface can seriously influence the aeolian particle transport. On the other hand, the
bed surface consists of grains that can be modified by the particle transportation as well.
Among all the aeolian-caused bed forms, the sand ripple is the most observed one. Its
morphological characteristics are stripes perpendicular to the wind direction and almost
symmetrical in the transverse direction. The ratio between the ripple’s wavelength and the
amplitude is called the “ripple index.” For ripples on earth, this value ranges from 15 to 25,
with a standard value of 18 for sand ripples and 15 for granule ripples [2].

The influences on sand flux from the aeolian sand ripple surface have been seldom
studied systematically. The incipient ideas come from the observation on wind tunnel
experiments in which the initial sand bed is always flat, since the ripple bedform emerges
and grows quickly after particles’ transport starts. It is obvious to speculate that this kind
of surface deformation will cause changes on the trajectory of hopping particles, which
in turn would adjust the transport flux. By assuming this, Rasmussen and Mikkelsen [3]
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observed the sand flux changing upon a pre-rippled sand bedform in a wind tunnel and
found the sand flux was constant during the first 30 min; then, it decreased after 40 min.
After 75 min, the flux had dropped to about 75% of the initial rate. However, this result
was deduced from a uniform time sampling with vertically stacked traps, which has poor
accuracy on the temporal resolution and mass flux quantity. What is more, as this work
used polydisperse dune sand as the base material, influences from the surface particle size
distribution were added into the results. In order to reveal more on the long-term stability
of mass flux upon erodible sand surface, Rasmussen et al. then tested the flux changing of
the uniform sand by using a particle image velocimetry (PIV) technique [4]. Starting with
a flat surface, sand transport first increased to reach the saturated state. Then, sand flux
continuously decreased until the ripple surface developed to a fully developed state. The
total decrease quantity of mass flux was between 75% and 90% for all the situations they
covered. They believe this decrease comes from the slight increase in ripples’ from drag,
but this theory has not been verified yet. Wang et al. in their wind tunnel experiments also
found an obvious sand flux variation during the development of sand particle transport [5].
However, they did not relate it to the ripple formation at the bed surface. Tong and Huang
directly simulated the sand particle transport over a ripple surface by coupling every
particle’s movement to the large-eddy simulation wind field [6]. They brought a very
different result that the ripple bedform in their work enhances the value of sand flux. This
distinct result may be because of the unreal ripple amplitude, which is as high as 2 cm.
The bumps in their work are about ten times larger than that of the normal aeolian sand
ripples on earth. No matter for wind tunnel experiments or for numerical simulations,
these bumps perform more like sand dunes than sand ripples.
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Figure 1. A sketch of the main particle transport forms in the aeolian particle transport system.

Then, we turned to look at the studies on sand ripples’ development. It has been
intensively studied for many years. The seminal work was established by Bagnold who
predicted that the emergence and development of sand ripples are caused by nothing
but the interaction between bouncing particles and the erodible bedform [1]. Since then,
many experimental works [7–10], theoretical analyses [2,11–16], and numerical simula-
tions [17–19] were done to study the development of sand ripples. However, within all
these works, no one has studied the relationship between the ripple morphology and the
sand particle transport.

On these bases, we find that the study on how the ripple bedform influences the
sand flux is very important. The sand flux observed on a specific ripple bed may perform
differently to that observed on a flat surface. Moreover, the sand ripple has different
development states, which will cause different impacts on the sand flux. Because of the
lack of the attention on the surface bedform while studying the sand flux, the observation
result may become very different if we compare one experiment to another. Thus, we need
to obtain an expression to describe the relation between the ripple topology and particle
transport statistics. It can help us to prevent the ripple-caused inaccuracy.
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In this article, we focus on the numerical simulation of particles’ transport upon sand
ripples in aeolian systems, which will help us learn more about the importance of the
tiny sand ripple structures. Moreover, this study theoretically revealed the source of the
observed decreasing sand flux during wind-tunnel experiments.

2. Methodology

In brief, the numerical model used in this work is a simplified discrete element method
(DEM) model. The full-scale DEM model simulates the movement of all the particles in
the system through a series of calculations considering particle deformability and using
the explicit time integration algorithm to resolve particle collisions. These features lead to
excessive computational requirements, which is unacceptable for the long-time mesoscale
numerical simulations of this work. To avoid this, our model just tracks moving particles
in the air and gains the post-collision velocity components of particles by solving the
momentum equations in connection with Coulomb’s law of friction.

Sand particles were assumed as small spheres. Ignoring the influences of particles’
rotation, the equation of particle velocity components is simplified as

mp
dv
dt

= f f p + fcp + mpg, (1)

where mp is the particle mass; v is the particle velocity; g is the gravity acceleration; and f f p
and fcp stand for the external forces of hydrodynamical and particle collisions, respectively.
In aeolian situations, the density ratio between particles and the fluid, i.e., s = ρp/ρ f , is
very large. Thus, the hydrodynamical force f f p here is simply dominated by the drag force
from the fluid:

f f p =
π

8
ρ f d2Cd|u− v|(u− v), (2)

where d is the particle diameter; u is the wind velocity located at the particle location; and Cd is

the drag coefficient. We used the following approximation that Cd =
(√

C∞
d +

√
Rec

p/Rep

)2
,

where Rep = |u− v|d/ν is the particle Reynolds number; ν is the kinematic viscosity
coefficient of the fluid; C∞

d
∼= 0.5 is the drag coefficient of the grain in the turbulent limit

(Rep → ∞); and Rec
p
∼= 24 is the transitional particle Reynolds number [20].

Collision events take place while the centroid distance between a pair of particles is
smaller than the sum of their radii. Comparing with the iteration time step, the collision
happens during a very short time. Thus, we did not calculate fcp directly but deduced the
post-collision velocity v′1 of a particle by [21]

v′1 = v1 − α(n · v12)n− β[v12 − (n · v12)n], (3)

where the variables with subscript 1 or 2 refer to different particles, and v12 = v1 − v2 is
the relative velocity before collision; n is a unit vector from one particle center pointing to
the center of the other one; α and β are effective restitution coefficients:

α =
1 + ε

1 + η
, (4)

β =
(2/7)(1− µ)

1 + η
, (5)

where ε and µ are microscopic restitution coefficients for the normal and tangential compo-
nents, respectively; η = m1/m2 is the mass ratio of two colliding particles.

In this work, ε = 0.9 and µ = 0 while calculating particle-bed collisions. For mid-air
collisions, the tangential restitution coefficient µ was calculated from [22]

µ = max
(

0, 1−
C f (1 + ε)

2/7
Vn

Vt

)
, (6)
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where C f = 0.4 [23] is the coefficient of friction, and Vn and Vt are relative velocities
between two colliding particles in normal and tangential directions, respectively.

According to Equation (3), Lämmel et al. deduced a splash function after considering
all possible impacting situations [24]. If a particle impacts the bed, its movement after
collision can be quantified in terms of the mean restitution coefficient ē and a distribution
of the rebound angle θ′1. For a given impact angle θ1,

ē =

∣∣v′1∣∣
|v1|

= β−
(

β2 − α2)d2θ1

β(d1 + d2)
, (7)

P
(
θ′1
∣∣θ1
)
=


γ(θ1+θ′1)

θ1
ln
[

2θ1

γ(θ1+θ′1)
2

]
0 < θ1 + θ′1 < 2

√
θ1/γ,

0 else,
(8)

where

γ =
2(d1 + d2)

9d2

(
β

α + β

)2
. (9)

Some bed particles are entrained by the residual energy of the impactor, and their
kinetic energy E2

′ can be drawn from a log-normal distribution

P
(
E′2
∣∣E1
)
=

1√
2πσE′2

exp

[
− (ln E′2 − µE)

2

2σ2

]
, (10)

where E1 = m1v1
2/2 is the energy of the impactor; σ = ln 2

√
2 ln

[
(1− ē2)E1/Ee f f

]
,

µE = ln
[(

1− ē2)E1
]
− a ln 2. Ee f f =

(
1− τf w/τf t

)
m2gd2 is the minimum energy required

for an ejecta considering aerodynamic entrainments [25]. τf w is the wind shear stress
derived from simulation, and τf t is the aerodynamic threshold deduced from reference [26].
The number of entrained bed grains follows the energy balance approach underlying
Equation (10):

Ne = 0.06

[(
1− ē2)E1

Ed2

](2−ln 2) ln 2 ∫ ∞

Ed2

P
(
E′2
∣∣E1
)
dE′2. (11)

The ejection angles of all splashed low energy particles were set to be 90◦, and their
initial positions were randomly distributed near the impact point.

For the steady and homogeneous fluid field that we considered in this paper, inertia
and the horizontal stress gradients of the fluid were neglected. Regarding x as the stream-
wise direction and z as the vertical direction, the vertical stress gradient of the fluid can be
calculated by

∂τf

∂z
=

Fp,x(z)
1− φp(z)

, (12)

where τf is the airborne shear stress; φp is the volume fraction of particles; Fp = −
〈

∑
Np
i=1 f f p,i

〉
/

Vc is the counter force from Np particles in the cell volume Vc; and 〈.〉 stands for ensemble
averaging.

A Prandtl’s mixing length model with the kinematic turbulent viscosity νt = l2
m|∂u/∂z|

was used in this work. τf then can be expressed as

τf = ρ f (ν + νt)
∂u
∂z

= ρ f

(
ν + l2

m

∣∣∣∣∂u
∂z

∣∣∣∣)∂u
∂z

. (13)

The mixing length scale lm was provided by

lm = κz
[

1− exp
(
− 1

26
zu∗

ν

)]
, (14)
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where κ = 0.42 is the von Karman’s constant; u∗ is the frictional velocity describing the
original wall shear stress of the particle-free fluid field.

The bedform surface in this model was triangulated and expressed by a series of key
points. Elevation variation ∆z at a key point was calculated at every iteration step from the
following equation:

∆z =
1

φb∆g
∑
Ns

πd3

6
, (15)

where Ns is the net number of the particles trapped/escaped from the bed surface near
this point; φb = 0.6 is the average volume fraction of the grain bed. ∆g is the area of one
surface grid.

The terrain generated in this way was not simply a ladder-shaped surface. Connecting
all the key points of the surface generated a realistic micro topography with slopes. During
the splash procedure, the coordinate system of the particle movement was rotated towards
the direction of the slope surface. Additionally, the angle of repose of the sand particles
was taken into consideration. The angle of the slope was not allowed to be larger than 30◦.

Our numerical model implements all the algorithms and equations mentioned above.
A more detailed description of the methodology can be found in reference [19].

3. Results and Discussion
3.1. The Sand Flux Variation During Ripple Formation

Using the numerical method described above, we first simulated the development
of the ripple surface and checked the consequent sand flux variation. It is worth men-
tioning that in this work we used monodisperse particles to avoid the influence of the
particle size distribution. The size of the computational domain was x× y× z = 4000d×
40d× 1200d, and the boundary condition was periodic in the x and the y direction. With
ĝ = g

(
1− ρ f /ρp

)
, the Shields number S = ρ f u∗2/

(
ρp ĝd

)
in all cases ranged from 0.017

to 0.095. Here, we kept S below 0.1, because according to references [19,27,28], for larger
Shields number S, the relationship between sand flux Q and S will no longer be linear. The
range of S for which the linear scaling law Q ∝ S becomes invalid is called the Bagnold-like
region. In this region, the average velocity of the particles in the air is not only related to the
particle’s dynamic thresholds (threshold Shields number Sd or threshold friction velocity
u∗d—they correspond to the smallest wind strength that can maintain the particle transport)
but also controlled by the velocity of particles flying above the transport layer [29]. Except
for the Shields number, particle transport can be influenced by the other two dimensionless
numbers, which are the density ratio s = ρp/ρ f and the Galileo number Ga =

√
sĝd3/ν.

For the subsequent simulations, we fixed these two parameters as s = 2098 and Ga = 38.
At the beginning of our simulations, the sand particle transport was triggered by

randomly distributed inducing particles. These particles arouse other resting grains from
the surface causing chain reactions and eventually leading to a saturated sand flux. Before
calculating ripple development, we reserved enough time (t∗ = t/

√
d/ĝ from 0 to 12,000)

for the system to saturate. Equation (15) was unused during this time, and the sand flux
rapidly reached to a steady value. We used this procedure to make sure that the following
sand flux variation was only caused by the surface deformation. Then, the surface started
to deform. As the space–time diagrams show in Figure 2, small bumps emerged from
the sand bed regularly and migrated slowly in the wind direction. It is obvious that
the wavelength (λ, the horizontal distance from crest to crest) and the amplitude (A,
the vertical distance from trough to crest) of ripples grew with time. To have a clearer
look at the morphological development of sand ripples, we calculated the autocorrelation
Ca(∆λ, t) = 〈z(x, t)z(x + ∆λ, t)〉 − 〈z(x, t)〉2 of the ripple profiles and averaged the results
over the y direction. Then, the average amplitude was calculated from A(t) = 2

√
2Ca(0, t),

and the average wavelength λ(t) corresponds to the x-coordinate of the first peak on
Ca(∆λ, t). As the results show in Figure 3, the ripple wavelength and the amplitude both
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increased with time. Moreover, the growth rate became more and more insignificant, and it
eventually became zero at the fully developed state of the aeolian sand ripples.
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Figure 2. The spatial–temporal evolution of aeolian sand ripples in different wind strengths.
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Figure 3. Sand ripple amplitude (a) and wavelength (b) increase with time. Different colors represent
different wind strengths. The bright yellow shades highlight the initial stage of the ripple formation.
In (a), for the amplitude result corresponds to S− Sd = 0.076, black line is the fit line within the initial
stage representing an exponential growth.

As the bright yellow background demonstrates, in Figure 3a, there was a stage where
the ripple amplitude grows exponentially. It is called the initial stage. Former works [19,30]
have proved that before this stage (t∗ < 35,000 in this work), the bed surface is noticeably
three-dimensional. Small bumps emerge from the surface at an arbitrary location. These
bumps grow in the transverse direction and link to each other. Eventually, they become
the primitive form of aeolian sand ripples. Then, because of the symmetrical ripple form,
the bed surface no longer varies in the y direction. More and more low-energy particles
tend to climb along the stoss slope of the sand ripple causing an exponential growth on the
amplitude. From theoretical analyses, we have already known that this exponential-increase
amplitude comes from the first-order contribution of the wavy bed surface [11,12,15]. The
most unstable mode of the surface profile caused by this contribution represents the initial
wavelength, which corresponds to the first plateau of the wavelength in Figure 3b. Then,
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after the initial stage (t∗ > 70,000 in this work), coarsening takes place. It makes adjacent
bumps merge to each other. We can see there was a continuous growth of the ripple
wavelength in the initial stage and a subsequent step growth in the coarsening stage. The
later abrupt wavelength growth was caused by merging ripples.

Next, we checked the sand flux variation during ripple formation. In this work, the
horizontal sand flux Q was calculated as the average horizontal particle momentum per
unit bed area, i.e., Q =

〈
∑N mpvx

〉
T/∆, where N is the particle number in the air; ∆ is the

bottom area of the entire computation domain; and 〈.〉T represents the time average. We
nondimensionalized Q via Q∗ = Q/

(
ρpd
√

sĝd
)
. The temporal evolution of Q∗ in different

wind strengths is shown in Figure 4a. According to former experimental and numerical
works [19,31–33], we have already known that there is a linear relationship between Q
and the Shields number S. Thus, instead of Q∗, here we checked Q∗/(S− Sd) to reveal
more information. It is worth mentioning that the threshold Sd used here was evaluated
at t∗ = 20,000. As the result shows, Q∗ holds a relatively stable value in the beginning of
bed deformation. Then, an obvious decrease happens within the initial stage of the ripple
formation. After the initial stage, a new stable value of Q∗ was reached. Except the decrease
in sand flux, we noticed Q∗/(S− Sd) derived from different wind strengths no longer
coincided to each other after the initial stage. This can be caused by two possibilities: (a) Sd
varies during the initial stage or (b) the relationship between Q∗ and S− Sd is not linear
on the ripple surface. The latter is less likely to be true, because as we know, the linear
relationship has already been proved by many experiments, which are always performed
on ripple surface.
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Q
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S d
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e 
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Rasmussen et al., 2015. d=320mm

t (s)

Figure 4. Sand flux (a) and ripple index (b) varies with time during the ripple formation and
development process. Different colors represent different wind strengths. The bright yellow shades
highlight the initial stage. The inset in (a) shows the flux decrease observed in the wind tunnel
experiment [4]. The relative Q is the flux normalized by the last observed flux value.

We also checked the temporal development of the ripple index (RI = λ/A) in
Figure 4b and found RI increases until the initial stage begins. One needs to be aware
that the value of RI does not represent the ratio between λ and A before the initial stage.
Because as mentioned before, the typical ripple form has not emerged at this time. Thus, the
increase in RI in this stage represents nothing, and the flux was unrelated to this variation
until the initial stage. The sand ripple started to grow in the initial stage. RI decreased in
this stage, which is similar to Q. This decrease lasted to the end of the initial stage, when
RI and Q all reached to a relatively stable value. However, according to Figure 3, λ and A
held their increase after the initial stage. Thus, combining all the results, we can draw a
conclusion that Q is controlled by the ripple index RI. Additionally, we noticed that the



Processes 2022, 10, 354 8 of 15

final RI derived from our model was about 20. This coincides with the results from wind
tunnel experiments and field observations [1,7,9,10]. However, they have not revealed the
decrease in RI within the initial stage.

3.2. The Relationship between the Sand Particle Transport and the Ripple Index

To perform further studies on the relationship between Q and RI, we ran several extra
cases with pre-rippled sinusoidal wavy surfaces (triangular wavy surfaces and sinusoidal
wavy surfaces showed no differences on the result). For all the cases, the amplitude A
was set as 8d, which is observed in Figure 3a as a typical amplitude within the initial
stage. The wavelength varies from 50d to 1000d, making the ripple index RI range from
6.25 to 125. The study on the situations with RI < 15 was necessary, because for some
specific conditions, the sand bed will develop to mega ripples, which has a much smaller
ripple index [34]. For every pre-rippled simulation case, the code module that contains
Equation (15) is disabled, and we reserved enough time for all the cases to ensure them to
reach the saturated state. This procedure helped us to strictly control the value of RI. To
derive authentic results, for all the pre-rippled cases, the density ratio s was set between
1325 and 5300; Ga ranged from 27 to 60; and S varied from 0.01 to 0.1. The other settings
were the same as the settings of the ripple formation cases mentioned before.

We first tried to simplify the problem. As Figure 5a shows, reptating particles and
saltating particles bounced forward along the wavy bed surface. There are two typical
movement modes for them. One is hopping from a stoss slope to another stoss slope or
from a lee slope to another lee slope (black lines in Figure 5a demonstrate this kind of
particle trajectories); the other one is hopping from a stoss slope to a lee slope or from a lee
slope to a stoss slope (red lines in Figure 5a demonstrate this kind of particle trajectories).
We defined the former trajectories as monotone trajectories and defined the latter as non-
monotone trajectories. As Figure 5b,c shows, if all the particles have monotone trajectories
and if we only study the ensemble average results, the whole system can be estimated by
the combination of two simpler sub-systems, which only have a stoss slope or a lee slope.
The particle with a non-monotone trajectory can be considered as a link, which transmits
energy between the system shown in Figure 5b,c. We checked this energy-transmitting
capability by counting the particle number that impacts the surface or take-off from the
surface. Nin

stoss represents the total number of impact particles that hit the stoss slope, and
Nout

stoss represents the total number of the particles take-off from the stoss slope. Similarly,
we also had Nin

lee and Nout
lee for the lee slope. We checked Nlee/Nstoss for the impact and

take-off particles, because this ratio was useful for the subsequent studies. In Figure 6,
we found Nin

lee/Nin
stoss decreased linearly with 1/RI, meanwhile, Nout

lee /Nout
stoss decreased

quadratically. These decreased relationships are all independent to the wind strength
and the particle/fluid properties. Moreover, there was a difference between these two
ratios, which is demonstrated by the bright yellow shade. This difference was due to
the contribution of the non-monotone particle trajectories. Because if all particles have
monotone trajectories, we can easily derive Nout

stoss = Nin
stoss and Nout

lee = Nin
lee. This yields

an expression
Nin

lee/Nin
stoss = Nout

lee /Nout
stoss = ra, (16)

where we defined this ratio as ra. To continue our study, we adopted this simplification.
For simplicity, we assumed ra can be described by the linear fit of all the results in Figure 6,
which is demonstrated as the dashed line. Thus,

ra = −Γa
1

RI
+ 1, (17)

where Γa = 5 is a constant that will not change with the wind strength or the particle/fluid
properties.
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Figure 5. A sketch of our simplification procedure. Black lines represent monotone trajectories. Red
lines represent non-monotone trajectories. (a) is the original system. (b,c) are systems that only
contain the particles with monotone trajectories. (a) can be roughly approached by the combination
of (b,c), which is shown in (d).
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Figure 6. Nin(out)
lee /Nin(out)

stoss varies with RI, where Nin(out)
lee /Nin(out)

stoss is the ratio between the impact
(take-off) particle number at the lee slope and that at the stoss slope. The black line is a linear fit of
Nin

lee/Nin
stoss. The red line is a quadratic polynomial fit of Nout

lee /Nout
stoss. The dashed line is a linear fit

for all the data. The bright yellow shade highlights the difference between the impact particle results
and the take-off particle results, reflecting the influence from non-monotone trajectories.

Similar to the definition of Q, we defined the particle transport load M =
〈
∑N mp

〉
T/∆

to represent the average total mass of particles transported above the bed surface per unit
bed area. As Figure 5 shows, we separated the whole system to two sub-systems. It is
worth mentioning that these two sub-systems are not totally independent to each other.
They share the same wind field. For a better understanding, one can imagine that we used
the result derived from Figure 5d to estimate the result in Figure 5a. The former only has a
few neglectable non-monotone trajectories in the middle. In the following work, for the
particles interacting with the stoss slope, we used subscript s to represent their statistical
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quantities. For the particles interacting with the lee slope, we used subscript l. Then, we
could write the stress balance on the bed surface [35]

− Pzx = τ − τf w −Msg sin αs + Ml g sin αl , (18)

Pzz = Ms ĝ cos αs + Ml ĝ cos αl , (19)

where Pzx and Pzz are horizontal and vertical grain-born stress applied on the bed surface,
respectively. They arose from inter-particle or particle-bed contacts. αs and αl are slope
angles. We assumed αs = αl = α. τ = ρu∗2 is the air-borne shear stress far away from the
bed surface; τf w is the air-borne shear stress on the bed surface. According to the drag
partitioning theory [36], for a saturatde wind-driven particle transport system, τf w = τd,
where τd = ρu∗2d is the shear stress corresponding to the dynamic threshold. Moreover,
recall the definition of ra in Equation (16); we find it can also represent the ratio of M,
i.e., Ml/Ms = ra. Use M = Ml + Ms, and define a parameter µ0

b = −Pzx/Pzz. Then we
can derive

M∗ =
S− Sd

µ0
b cos α− s

s−1
ra−1
ra+1 sin α

=
1

µb
(S− Sd), (20)

where M∗ = M/
(
ρpd
)

is the dimensionless form of M; µb = µ0
b cos α− s sin α(ra − 1)/

(s− 1)/(ra + 1). It shows a linear relationship between M∗ and S. From the simulation
results shown in Figure 7, we proved that M∗ ∝ S always holds for different RI, different s,
and different Ga. Additionally, we found µb is obviously influenced by RI. The weak effect
from s can be observed from the result, as well. To obtain the relationship between µb and
RI, we used α = cot−1 (RI/2) to roughly estimate the slope angle. Then, we have

µb =
1√

1 + 4
RI2

(
µ0

b −
s

s− 1
2Γa

ΓaRI − 2RI2

)
, (21)

which is derived from Equations (17) and (20).
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Figure 7. The relationship between the particle transport load M∗ and Shields number S. For filled
symbols, different colors correspond to different RI. For hollowed symbols in the insets, different
colors correspond to different particle/fluid properties. Two insets show the results of two specific
RI. All the solid lines represent linear fits.
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As Figure 7 shows, not only µb varies with RI; Sd also has a relationship with RI.
According to the Sd expressions on the slope [28], we similarly scaled Sd as

Sd =

(
cos α− s

s− 1
ra − 1
ra + 1

sin α

µ0
b

)
S0

d =
S0

d√
1 + 4

RI2

(
1− 1

µ0
b

s
s− 1

2Γa

ΓaRI − 2RI2

)
. (22)

Noticing that for the flat surface situation, RI becomes an infinitely great value, which
leads to µb = µ0

b and Sd = S0
d. Thus, according to Equations (20) and (21) with 1/RI = 0,

we can directly derive S0
d and µ0

b from our flat surface results. It is worth mentioning
that the “flat surface” here refers to the bed surface before the initial stage in the ripple
formation simulation cases.

For the cases with s = 2098 and Ga = 38, we display the relationship between µb and
RI in Figure 8a. µb decreased with RI, and the decrease rate dropped rapidly. µb became
more and more close to µ0

b as RI increased. The relationship between Sd and RI had the
similar rule (Figure 8b). What was different was that the Sd first dropped to a value smaller
than S0

d at a large RI. Then, as RI continued growing, it gradually increased to the value
close to S0

d. With derived µ0
b and S0

d, the results of Equations (21) and (22) are also shown in
Figure 8 as the solid lines. Both of them roughly fit the simulation results, but Equation (22)
cannot reflect the overly large decrease in Sd.

0 20 40 60 80 100 120 140
0.55

0.60

0.65

0.70

0.75

0.80

0 20 40 60 80 100 120 140
0.005

0.006

0.007

0.008

0.009

mb

RI

(a)

m0b=0.59

s=2098, Ga=38

Sd

RI

(b)

S0d=0.0055

s=2098, Ga=38

Figure 8. µb (a) and Sd (b) decrease with ripple index. Dashed lines represent their values at flat
surface. Solid lines represent the results derived from Equations (21) and (22), respectively. All the
results are corresponding to the cases with s = 2098 and Ga = 38.

RI = 20 is the typical ripple index of the fully developed aeolian sand ripples on
earth [2,9,10]. According to our results, what varies most from the flat surface to RI = 20 is
not the dynamic threshold Sd but the parameter µb. So, we can say µb is a parameter that
reflects the bed surface geometry. Substituting Equations (21) and (22) into Equation (20),
we obtained a brief expression of M∗

M∗ =
1

µ0
b

(
Sr − S0

d

)
, (23)

where, Sr = S/
{

1− 2sΓa/
[
µ0

bRI(s− 1)(Γa − 2RI)
]}

.
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Finally, we checked the relationship between M∗ and Q∗. As Figure 9 shows, with spe-
cific s and Ga, for all the Shields numbers studied in this work (S < 0.1), their relationship
was close to linear. It is interesting that the ripple bed surface barely influenced the result.
No obvious variations were observed between the results that corresponded to different
RI. Thus, the relationship Q∗ ∝ S− Sd was still valid for the sand particle transport upon
the ripple surface. What was different from the result on the flat surface was the dynamic
threshold Sd, and the proportionality coefficient between Q∗ and S− Sd were controlled by
the bed surface. According to Equation (23), we can also scale Q∗ as

Q∗ ∝ Sr − S0
d. (24)

Using this expression, we can estimate the relative quantity of the sand flux decrease
during aeolian sand ripple formation in wind tunnel experiments. On the flat surface,
the dynamic threshold u∗d can be estimated as u∗d = 0.8u∗t [1,37]. u∗t is the static threshold,

and it can be calculated by u∗t =

√
0.0123

[
sgd + 3× 10−4/

(
ρ f d
)]

[26]. Then, we can

derive S0
d. We used Q0 to represent the sand flux on flat surface. We easily derived

Q/Q0 =
(
Sr − S0

d
)
/
(
S− S0

d
)
. We chose five common RI, which varied from 10 to 30.

These RI represent different aeolian sand ripples that emerged in wind tunnel experiments.
Figure 10 exhibits the relationship between Q/Q0 and S for a specific particle diameter
d = 250µm. One can find that for a specific ripple index, the sand flux caused by small
wind strength is easier to be influenced by the ripple surface. Q/Q0 rapidly approached
to a constant value that was smaller than 1 when the wind strength increased. To have
a clearer look, we extracted the Q/Q0 values that correspond to S = 0.01 and S = 0.1.
As shown in the inset of Figure 10, Q/Q0 at these two wind strengths all increased with
RI. For all the RI, the ripple bed was more influential to the sand flux in the situations
with smaller wind strength. This coincides to the experiment result shown in the inset of
Figure 4a.
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Figure 9. The relationship between Q∗ and M∗. Different colors represent different ripple indexes.
The result was derived from the cases with s = 2098 and Ga = 38. Solid line represents a linear fit.
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Figure 10. The relationship between Q/Q0 and the wind strength, where Q/Q0 is the ratio between
the sand flux on ripple surface to the one on the flat surface. Different line colors represent differ-
ent ripple indexes. The inset shows how Q/Q0 varies with RI. All the results are derived from
Equation (24).

4. Conclusions

Wind tunnel experiments reported a sand flux decrease during the long-term sand
particle transport developments. In this work, we related this decrease to the sand ripple
formation at the bed surface. From the numerical simulation and the theoretical analysis,
we derived four main conclusions in this work:

1. We simulated the emergence and development of aeolian sand ripples and found an
obvious decrease in the ripple index RI at the initial stage of ripple formation. This
RI variation coincides to a sand flux drop, indicating a strong connection between
them.

2. Particle transport load M decreased with RI. Its linear relationship with S always
holds; only the proportionality coefficient µb of this relationship and the dynamic
threshold Sd varied with RI. We derived their expressions in Equations (21) and (22).

3. The relationship between M and the sand flux Q was barely influenced by RI. For
the S smaller than 0.1, we roughly had Q ∝ M.

4. We presented the relationship between Q, S, and RI in Equation (24). From this
expression, we found the sand flux Q derived at the ripple surface was always smaller
than that on the flat surface. A larger RI corresponds to a smaller Q. Cases with small
wind strength are easier to be influenced by the ripple bed.

With these conclusions, we finally explained why sand flux decreased during wind
tunnel experiments. We hope this work could show some helpful ideas to future experi-
ments. We learned that for some situations, while studying the sand transport, the sand
ripple on the bed surface is no longer a neglectable tiny structure. Moreover, Equation (24)
can be used for the field observations. By measuring the ripple index and the sand flux at
two different wind strengths, one can derive the flat surface dynamic threshold S0

d, which
is a rough estimation of the local sand particle dynamic threshold. We need to do wind
tunnel experiments in the future to verify this usage and to conduct a further improvement
in the expression of Q.
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