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Abstract: This work is concerned with the incorporation of semi-mechanistic residence time metrics
into population balance equations for twin screw granulation processes to predict key properties.
From the historical residence time and particle size data sourced, process parameters and equipment
configuration information were fed into the system of equations where the input flow rates and model
compartmentalization varied upon the parameters. Semi-mechanistic relations for the residence
time metrics were employed to predict the particle velocities and dispersion coefficients in the axial
flow direction of the twin screw granulation. The developed model was then calibrated for several
experimental run points in each data-set. The predictions were evaluated quantitatively through
the parity plots. The root mean square error (RMSE) was used as a metric to compare the degree of
goodness of fit for different data-sets using the developed semi-mechanistic relations. In summary,
this paper presents a more mechanistic but simplified approach of feeding residence time metrics
into the population balance equations for twin screw granulation processes.

Keywords: twin screw granulation; population balance; residence time

1. Introduction
1.1. Twin Screw Granulation Population Balance Development

Systems of population balance equations (PBEs) have been the most popular approach
for modeling granulation processes, both batch and continuous because of change in
particle size distributions due to processing conditions. In a system model described by
PBEs, particles are grouped according to their key attributes such as size, liquid content,
porosity, and spatial positions. One of the key tenets of employing PBEs to solve a process
model is that all particles with same internal attributes and external positions will behave
similarly. PBEs are formulated as first-order partial integro-differential equations with
respect to both time and spatial locations in the system, and the rate of growth and death
of each particle class is a function of the number of particles currently available of the said
class and other classes such as those forming the particles.

The generic expression of a PBE is as follows in Equation (1):
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(1)
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where N(x, y, z, s, l, g, t) is the number of particles, (x, y, z) are the positional co-ordinates,
(s, l, g) are the solid, liquid and gas content of the particles, t is the time co-ordinate,
<(x, y, z, s, l, g, t)Aggregation is the net rate of change of particles due to aggregation,
<(x, y, z, s, l, g, t)Breakage is the net rate of change of particles due to breakage and
<(x, y, z, s, l, g, t)Nucleation is the net rate of change of particles due to nucleation mech-
anism, F(x, y, z, s, l, g, t)In is the number of particles flowing in and F(x, y, z, s, l, g, t)Out is
the number of particles flowing out. For a continuous wet granulation system, the terms
on the left-hand side of the equation represents the rate of change with respect to time, the
spatial positions in the granulator, solid content, moisture content, and gas porosity in the
granules. There are several empirical parameters in the rate expressions. Different theories
and models variations express differently these rates processes, with the ultimate objective
of achieving fully mechanistic representation of the rate processes.

PBE models have been extensively developed and are still being researched and
updated in order to completely and accurately characterize continuous wet granulation
processes [1,2].

Ramachandran and Chaudhury [3] developed a model to design and control a con-
tinuous drum granulation process. The study presented a compartmentalized PBE for
a pilot-plant scale simulation. The simulation results showed that that the average di-
ameter, moisture content, and bulk density of the outlet granules could be controlled by
manipulating the nozzle spray rates of the liquid binder and the feed rates of the inflow
solid powder blends. A model was developed to control the particle size distributions of
the granules, with binder distribution on the powder particles in the granulator as a new
manipulated variable.

Barrasso et al. [4] presented a continuous PBE model that simulated the difference
in PSDs and composition for a two-component system (API and excipient), liquid binder
content, and the porosity of granules. The results showed good agreement with experimen-
tal trends. In Barrasso et al.’s subsequent work [5], a calibrated and validated PBE model
was developed where the empirical rate constants and parameters were determined using
experimental data.

Kumar et al. [6] presented a 1D PBE model that included aggregation and breakage
processes for a twin-screw granulation (TSG) process. The model parameters and their
respective 95% confidence range were estimated using experimentally measured PSDs.
The model was accordingly used for predicting granulation outcomes within the design
space of the experiments. Moreover, operating conditions were identified, where the
different granulation mechanism regimes could be separated in distinct compartments
in the granulator, which would enable one to control each mechanism accordingly and
influence the granule size distribution as needed.

Shirazian et al. [7] in their work presented a regime-separated model where, in
addition to modeling, the conveying and kneading elements as different types of ideal
liquid reactors, the relative mechanism rates, aggregation, and breakage were varied for
different zones. The conveying element zones were assumed to favor granule formation
through aggregation and the kneading elements were assumed to be conducive towards
breakage of granules. McGuire et al. [8,9] also are one of the few researchers to have
incorporate residence time distribution (RTD) into PBEs by assuming an average mean
residence time (MRT) which translated into a constant axial velocity of the particles at all
locations for all attributes.

Hauwermeiren et al. [10] also developed a compartmental PBE for TSG system
where different mechanism rate expressions were formulated for the different locations
of kneading zones based on whether the particles were being wetted due to liquid binder
addition or not. Wang et al. [11] also contributed to the field of PBE development further by
developing a breakage rate for particles that incorporated the equipment screw geometry.

It has been inferred from Positron Emission Particle Tracking (PEPT) studies [12] that
kneading zones’ material holdup is more than that of the conveying screws. Therefore, the
local MRT in the PBE has been assumed to be higher for kneading and lower for conveying
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sections accordingly. A discrete element method (DEM) study has also shown that average
particle speeds decrease for increasing sizes [13]. However, the same study also showed
that the particle velocities in the axial direction of transport decreased with size. The local
variance is again dependent on the compartment’s mixing dynamics, and as seen in [14],
sections having plug-flow behavior have zero axial dispersion and variance in RTD. On
the other hand, sections behaving like pure mixing tanks have infinite dispersion and the
normalized variances of the RTDs are equal to unity.

A few studies have focused on coupling discrete element method simulations to PBE
models where the compartmental residence time information from DEM is fed to the PBE
models [15,16]. However, the particles in the DEM simulations are scaled up, and wet
granulation of particles is mimicked by cohesive mixing. Most importantly, DEMs are
computationally expensive which makes it unfeasible to run them in tandem with PBE
models for the full process length.

1.2. Objectives

From the above text, it can be inferred that the initial work in PBE development for
TSG focused on developing the granulation rate mechanisms. However, little foray has
been made into the development of expressions for axial flow/of particles. The flow is
dictated by axial velocities and dispersions of the particles which can be calculated by from
the semi-mechanistic MRT and variance models developed previously in Muddu et al. [17].
Therefore, the work described in this paper proposes to have a more granular expression for
the axial velocities of particles that would be influenced by both the mean residence time
(MRT) and variance of RTD, whereby the velocities will depend on size, liquid composition,
and location inside the TSG equipment.

The rest of the paper is organized as described in this paragraph. Section 2 introduces
two experimental datasets used in the study that have been sourced from existing published
data in literature. Section 3 is concerned with the theoretical background of the paper and
introduces the relations for the PBEs developed for the TSG systems studied along with
the incorporation of previously developed semi-mechanistic relations for estimating MRT
and variance of the system. Section 4 shows the results of the study and discusses the
model prediction performance for different datasets. Section 5 is a short conclusion that
summarizes the paper and provides suggestions for future researchers to improve and
build upon the modeling scheme presented in this work.

2. Materials and Methods

The size (3 sieve fractions) and residence time metrics’ (MRT and variance) experimen-
tal data were collected from published available literature [18,19]. The data-set collated
has been described below in Table 1. The data-set has been classified based on source,
equipment dimensions, and varied process and equipment variables: powder feed rate
(FR), processing screw speed (RPM), liquid-to-solid percentage (LS), screw configuration
described by the number of kneading elements (NK), and stagger angle (SA) between them.
The table also lists the available number of points sourced from each study.

Table 1. Summary of the twin screw granulation RTD and sieve fractions available and collected
from literature.

Data Source Equipment Name Process Material Varied Parameters Number of Data Points

Kumar et al., 2015 [18] ConsiGma-25 α-Lactose MH FR, RPM, NK & SA 66
Kumar et al., 2016 [19] ConsiGma-25 α-Lactose MH FR, RPM, LS, NK & SA 51

Total: 117

In addition to the above-mentioned categories, the database also contained details on
the extruder shaft outer diameter. and the true densities of the powder processing material
and distilled water. The collation and categorization along these parameters aided us in
building a modular PBE which can account for varying experimental run parameters.
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3. Theory and Calculations
3.1. Particle Grid Configuration

As the granular bed contains solid formulation particles in varying proportions, the
particles have been defined on the basis of their solid volume contents, which is a key
coordinate to describing a particle’s dimensions and physical properties such as size,
density, and porosity. Since the size of the particles has been defined and tracked by the
available solid volume content s, the available liquid volume content l in each different
class or ‘bin’ of particles has been tracked in a separate grid vector following the lumped
parameter approach. The solid content has been varied independently in a geometric
progression, and the initial amount of liquid in the feed powders has been kept to be zero.
The ratio of the progression has been kept at 1.5. As there is a large difference in the tracer
particle size, primary lactose powder size and the final granule sieve cuts, 16 different
classes of particles in the model were selected, whereby each size has been defined by the
respective solid volume content. Therefore, the grid of particles is a one-dimensional (1D)
grid and the resulting population balance model developed is also a 1D PBM with lumped
liquid. The tracer particles have also been accounted for separately in a parallel grid with
their own lumped liquid content. The reason for this approach is that the tracer particles
would have their own flow and granulation properties such as axial velocity, dispersion
coefficient, and agglomeration rate constants.

3.2. PBE Configuration

The material balance in the twin screw granulator (TSG) has been modeled in terms of
population balance equations (PBEs), which track the change in particle size over time for
different classes. PBEs are the established framework for particulate systems with distinct
and evolving particle size distributions (PSDs). Moreover, PBEs are nearly indispensable
where the rate processes depend on the particle sizes and compositions.

Therefore, a semi-mechanistic PBE model has been developed in which the equations
were developed from the first principles, but some experimental data and/or material
properties were used as input parameters to the rate equations.

The granulation process took into account the rate processes of the following phe-
nomena: aggregation of the smaller particles into larger granules, breakage of larger
particles into smaller particles, liquid addition due to distilled water spraying, bulk con-
vective movement of material due to axial velocity, and diffusive flux of particles due to
axial dispersion.

The PBE framework built to simulate and investigate the effects of RTD has been
simplified to a monocomponent equation varying spatially only in the axial direction.
Particle aggregation, breakage, and liquid addition mechanisms have been considered. The
liquid content associated with each particle has been calculated separately as a lumped
parameter in a parallel set of equations.

The PBE framework for TSG containing expressions for effects of the RTD can be
described below in (2) and (3) as:

∂N(z, s, t)
∂t

+
∂

∂z
(vbulk(z)× N(z, s, t))− ∂2

∂z2 (Dbulk(z)× N(z, s, t))

= <(z, s, t)Agg +<(z, s, t)Break + Ḟ(z, s, t)In − Ḟ(z, s, t)Out

(2)

∂

∂t
(N(z, s, t)× lbulk(z, s, t)) +

∂

∂z
(vbulk(z)× N(z, s, t)× lbulk(z, s, t))

− ∂2

∂z2 (Dbulk(z)× N(z, s, t)× lbulk(z, s, t))

= <(z, s, t)Agg,Liq +<(z, s, t)Break,Liq + L̇addn,bulk(z, s, t)

+
(

Ḟ(z, s, t)In × l(z, s, t)
)
−
(

Ḟ(z, s, t)Out × l(z, s, t)
)

(3)
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where N(z, s, t) is the number of bulk particles in axial position z and particle solid volume s
at time t. <(z, s, t)Agg and <(z, s, t)Break are the net rates of bulk particles due to aggregation
and breakage mechanisms, respectively, and <(z, s, t)Agg,Liq and <(z, s, t)Break,Liq are the
net rates of change of liquid associated with bulk particles due to aggregation and breakage
mechanisms, respectively. Ḟ(z, s, t)In and Ḟ(z, s, t)Out are the flow rates of particles coming
in and out at axial location z. lbulk(z, s, t) is the associated liquid volume in bulk particle
of solid volume s at location z and time t. L̇addn,particle(z, s, t) is the rate of particulate
liquid volume. Here, vbulk(z) and Dbulk(z) are the convective velocity and axial dispersion
coefficient of the particles in location z, respectively.

The equations for the tracer particles have been given analogously in (4) and (5) as:

∂M(z, s, t)
∂t

+
∂

∂z
(vtracer(z)×M(z, s, t))− ∂2

∂z2 (Dtracer(z)×M(z, s, t))

= Ġ(z, s, t)In − Ġ(z, s, t)Out

(4)

∂

∂t
(M(z, s, t)× ltracer(z, s, t)) +

∂

∂z
(vtracer(z)×M(z, s, t)× ltracer(z, s, t))

− ∂2

∂z2 (Dtracer(z)×M(z, s, t)× ltracer(z, s, t))

= L̇addn,tracer(z, s, t) +
(
Ġ(z, s, t)In × ltracer(z, s, t)

)
−
(
Ġ(z, s, t)Out × ltracer(z, s, t)

) (5)

where M(z, s, t) is the number of bulk particles in axial position z, and particle solid volume
s at time t. Ġ(z, s, t)In and Ġ(z, s, t)Out are the flow rates of particles coming in and out
at axial location z. ltracer(z, s, t) is the associated liquid volume in tracer particle of solid
volume s at location z and time t. Here, vtracer(z) and Dtracer(z) are the convective velocity
and axial dispersion coefficient of the particles in location z, respectively.

It must be noted that, as the tracer particles were the API theophylline and the bulk
powder bed consisted of just lactose without any binder particles, it has been assumed that
the tracer would not agglomerate and get bounded either to themselves or the bulk particles.

The net aggregation rate for a general particle of bin class (s) at time t is defined
as follows:

<Agg(z, s, t) = < f orm
Agg (z, s, t)−<dep

Agg(z, s, t), (6)

where <Agg(z, s, t) is the net aggregation rate of any particular particle class at location

z, < f orm
Agg (z, s, t) is the rate of formation of a particle due to aggregation during a binary

collision of particles, and <dep
Agg(z, s, t) is the rate of depletion of particles due to collision

with other particles.
The rate of formation of a particle of class (z, s) due to aggregation of two smaller

particles at a given time instant t is given similar treatment as a kinetic reaction and thus
has been defined as follows:

< f orm
Agg (z, s, t) =

1
2

s′<s

∑
s′=smin

β(z, s′, s− s′, t)N(z, s′, t)N(z, s− s′, t) (7)

where is smin is the respective minimum solid volume for a particle, and β(z, s′, s− s′t)
indicates the specific aggregation rate of any two particles whose net respective solid bin
volumes equate to (s) at location z.

The above equation takes into account all the possible ordered pair combinations such
that the net volume of the colliding particles is equal to the volume of the particle whose
formation rate is being tracked. The product of the aggregation kernel and the number of
particles of each colliding ordered pair is multiplied by half as each possible combination is
counted twice while performing the ordered pair multiplication.
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The rate of depletion of a particle due to aggregation of the particle with another at a
given time instant t is given as follows:

<dep
Agg(z, s, t) = N(z, s, t)

s

∑
s′=smin

β(z, s′, s, t)N(z, s′, t) (8)

It can be seen from (7) that the aggregation of particles is overall a second order
process, and is directly proportional to the number/quantity of each colliding particle bin/
size class in the ordered pair.

The net breakage rate for a general particle of bin class (s) at time t is defined as follows:

<Brk(z, s, t) = < f orm
Brk (z, s, t)−<dep

Brk(z, s, t), (9)

where <Brk(z, s, t) is the net breakage rate of any particular particle class at location
z, < f orm

Brk (z, s, t) is the rate of formation of a particle due to breakage of particles, and

<dep
Brk(z, s, t) is the rate of depletion of particles due to breakage.

The rate of formation of a particle of class (z, s) due to breakage of a larger particle
into two smaller particles at a given time instant t is expressed as:

< f orm
Brk (z, s, t) =

smax

∑
s′>s

b(s, s′)Kbreak(z, s′, t)N(z, s′, t) (10)

where is smax is the respective maximum volume of the solid particle, b(s, s′) is the probabil-
ity of a larger particle of volume s′ breaking into s and s′ − s at location z, and Kbreak(z, s′, t)
indicates the specific breakage rate of a particle whose net respective solid bin volumes
equate to (s) at location z. For the purpose of this study, it has been assumed that the larger
particle has an equal chance to break into all the possible smaller sizes considered in the
grid. Therefore, it can be formulated as b(s, s′) = 1

zs′
, where zs′ is the grid location of the

larger particle undergoing breakage.
The rate of depletion of a particle of class (z, s) due to breakage at a given time instant

t is given as:
<dep

Brk(z, s, t) = Kbreak(z, s, t)N(z, s, t) (11)

3.3. Aggregation and Breakage Rates

The aggregation rate kernel is akin to a kinetic reaction rate constant. However, in
the PBM model developed in our study, the kernel rather depends on the properties of the
colliding particles/granules. The kernel that was developed in [20] has been adapted in
this work and described as follows:

β(z, s′, s− s′, t) = β0((vol(z, s′, t) + vol(z, s− s′, t))

×
((

100
2

(
lbulk(z, s′, t)
vol(z, s′, t)

+
lbulk(z, s− s′, t)
vol(z, s− s′, t)

)α

×
(

100− 100
2

(
lbulk(z, s′, t)
vol(z, s′, t)

+
lbulk(z, s− s′, t)
vol(z, s− s′, t)

))δ)α

(12)

where vol(z, s, t) is the total volume of the particle at time t and location z, and β0, α, and
δ are empirical tuning constants. α is a liquid dependency enhancing parameter where
the increasing liquid quantity per particle increases the granulation rate, and δ is a liquid
dependency diminishing parameter where the increasing liquid quantity per particle caps
the granulation rate.
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The breakage rate is dependent on the particle size and the shear given to the particles.
The expression that was developed in [21] has been adapted in this work and described
as follows:

Kbreak(z, s, t) =
1
2

P1Gshear((vol(z, s, t))P2) (13)

The expression for the shear rate is given as follows:

Gshear = 2π(RPM) (14)

3.4. PBE Compartmentalization

As mentioned in Section 1, the mixing behavior in twin screw granulation equipment
depends on the internal configurations. Screw conveying and kneading sections are the
two main types of elements used in several TSG configurations. For the purpose of this
study, each continuous section of screw elements was modeled as a single compartment,
and each kneading section was modeled as two compartments. From Figure 1, it can be
seen that all the granulation design of experiment (DOE) scenarios with twelve (12) NK
(two (2) compartments of six (6) NK separated by a conveying section in each screw shaft)
were modeled with seven (7) compartments. The remaining run cases with only a single
kneading zone in the screw configuration were modeled as four (4) compartments.

Figure 1. Schematic showing (a) 7 compartment modeling of equipment for 12 KE configurations;
and (b) 4 compartment modeling of equipment for 2, 4, and 6 KE configurations.

Every compartment has been assumed to have both convective flow forward into
the subsequent compartment and dispersive flow into the preceding compartment. This
methodology was developed based on the ideas expressed in the works of Portillo et al.
and Sen et al. [22,23]. This methodology has been pictorially shown below in Figure 2:
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Figure 2. Schematic showing the convective and dispersive fluxes entering and leaving a compart-
ment with index ‘i’.

The convective flux from a compartment into the subsequent one has been formu-
lated as:

Fconv(i) =
v(i)× N(i)

L(i)
(15)

where L(i) is the length of the compartment i.
The dispersive flux has been similarly expressed as the flow of particles from a com-

partment into the preceding one, and it has been formulated as follows:

Fdisp(i) =
4× D(i)× N(i)

(L(i))2 (16)

where L(i) is the length of the compartment i.

3.5. Axial Velocities and Dispersion Coefficients

Every compartment had its own MRT and Péclet number calculated individually
using the following relations:

MRT(z) = b1(z)×
FRb2

vol,net × Availvoltotal

FRb3
vol,net × Dispvolrateb4

conv,1lead

(17)

Pe(z) = b5(z)×
FRb3

vol,net × Dispvolrateb4
conv,1lead

SAknead,deg×Dispvolrate
b6
conv,1lead×π

NKknead×180

(18)

with the constants subject to the following constraints:

− b2 + b3 + b4 = 1 (19)

b3 + b4 = b6 (20)

The above equations have been explained in detail in [17], and will be briefly touched
again here. The readers are encouraged to read our prior work to get a full flavor of
the idea presented here. The term FRvol,net standing for the total volumetric flow rate of
material into the compartment is either just that of the fed powder flow rate for the dry
conveying section, or the net sum of the powder and liquid flow rate for the kneading and
wet conveying sections. Availvoltotal is the total available volume for the particles to occupy
for the particular compartment, Dispvolrateconv,1lead is the volume of material dispensed
by one turn of the screws of the equipment, SAknead,deg is the stagger angle of the kneading
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elements in the compartmental section, and NKknead is the number of kneading elements
per shaft in the compartmental section.

The MRT for each compartment has been formulated as pre-constant b1(z) multiplied
by a holdup factor (numerator) divided by a flow factor (denominator). This was to mimic
the chemical engineering definition of MRT while developing for particulate systems. The
Péclet number for each compartment has been formulated as pre-constant b(z)5 multiplied
by a flow factor (numerator) divided by a mixing factor (denominator). This was again to
mimic the chemical engineering definition of Péclet number (convection flow -to- dispersive
flow). The terms described in previous paragraph have been raised to the corresponding
exponents, which are in turn subject to the constraints described in (19) and (20) so that
the predicted value of MRT is in time units (seconds) and that of the Péclet number is
unitless (ratio).

As the MRT and Pe were evaluated individually for each compartment, the fitting
constants, especially the pre-constants b1(z) and b(z)5 were also different for every compart-
ment. As there were three (3) different kinds of compartments: dry conveying, kneading,
and wet conveying, b1(z) and b(z)5 were separately estimated for each kind.

The estimated MRT for each compartment is the fed into the PBE model as the axial
velocity of the bulk particles as follows:

v(z)bulk =
L(z)

MRT(z)
(21)

and the axial dispersion of the bulk particles is given by:

D(z)bulk =
(L(z))2

MRT(z)× Pe(z)
(22)

The estimated axial velocity and axial dispersion coefficient of the tracer particles have
been expressed relative to that of the respective values for the bulk particles as follows:

v(z)tracer =
v(z)bulk

MRT∗tracer
(23)

and the axial dispersion of the bulk particles is given by:

v(z)tracer =
D(z)bulk

MRT∗tracer × Pe∗tracer
(24)

where MRT∗tracer is a dimensionless scaling constant indicating how greater or larger the
residence time of the tracer is relative to the bulk material, and Pe∗tracer is a dimensionless
scaling constant indicating how greater or larger the mixing behavior of the tracer is relative
to the bulk material.

3.6. Numerical Techniques

As mentioned in Section 3.1, the grid of particle sizes used for developing the PBE
model is exponential in nature. Therefore, the number of particles was allocated in the
appropriate grid locations, and the cell average technique as developed in [1] was employed
where lever rule techniques are used to distribute particles in nearest grid locations by
linear interpolations.

The system of differential Equations (1)–(5) were discretized using Euler’s first order
finite forward difference method where the value of the unknown property at a subsequent
time-step is given by the value at the present time-step, the rate expression governing the
property and the time-step chosen.

An issue that arises while numerically solving the coupled differential equations over
the process time is the value of the time-step chosen for the simulations. An adaptive



Processes 2022, 10, 292 10 of 21

time-step method was chosen where the time-step or interval of discretization is computed
according to the Courant–Fredrichs–Lewis (CFL) condition.

3.7. Output Metrics

The PBE models were first run to steady state for each experimental run and the
exiting granules were classified into three classes according to size: fines (<150 µm),
bulk (150–1000 µm), and coarse (>1000 µm). Once the steady state was reached at about
150 s of process simulation time, pulse tracer was added into the system, and the outlet
concentration of tracer was computed. From the time profile of the tracer concentration,
the MRT and the normalized variance of the in silico tracer experiment were computed.

3.8. Parameter Estimation

As PBE model simulations take quite some time, it becomes unfeasible to perform
traditional parametric estimations by selecting at least 50% of the data points as the training
set. Instead, for the purpose of this study, a few select runs were chosen (about 16–18
for each dataset) to train the model parameters such that the varying process parameters
covered the range of the DOE of the datasets. The in-built fmincon function in MATLAB
was used to arrive at the estimated parameter values based on initial guesses. The endpoint
of the training was determined based on the weighted sum of the sum of square of errors
(SSE) of the MRT, normalized variance, and the three (3) sieve fractions.

The general expression for SSE is given as:

SSE =
n

∑
i=1

(
yi,exp − yi,pred

)2
(25)

where yi,exp are the actual experimental values for the metric reported and yi,pred are the
predicted values of the metric from the model.

The total weighted SSE expression was defined as follows:

SSEnet = 1.2SSEMRT + 0.8SSEVar + 1.2SSEBulk + 0.9SSEFines + 0.9SSECoarse (26)

From the expression, it is seen that the MRT contributed relatively greater to the SSE
than the normalised variance, and the bulk size fraction also contributed greater than the
fines and coarse size fractions.

Satisfactory parity plots, with realistic narrow upper and lower bounds set, were
used as tools to evaluate the model’s performance on the datasets. The performance was
determined based on how many predicted points fell between these limits, and, in addition,
the root mean square of errors (RMSE) was also evaluated as a statistical measure for
goodness of fit.

The expression is given as follows:

RMSE =

√√√√√ n
∑

i=1

(
yi,exp − yi,pred

)2

n
(27)

where yi,exp are the actual experimental values for the metric reported and yi,pred are the
predicted values of the metric from the model.

4. Results and Discussion

As mentioned previously in Section 3.8, 18 runs were chosen from the Kumar et al.,
2015 dataset, and 16 runs were chosen from the Kumar et al., 2016 dataset for training the
PBE model to the available residence time and particle size data, and consequently arrive
at the optimal parameters for the aggregation kernel constants, breakage rate constants,
residence time metrics constants, and tracer velocities and dispersion coefficients scaling
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constants. The values of the various constants and parameters used in the integrated model
have been given below in Table 2.

Table 2. The values of various model parameters estimated.

Constant Kumar et al., 2015 [18] Value Kumar et al., 2016 [19] Value Unit

β0 9.38 7.91 ×0.1 s−1

α 0.13 0.10 -
δ 0 0 -
P1 38.77 80.86 -
P2 0.28 0.24 -

b1,dry 1.20 0.97 -
b1,knead 0.16 0.15 -
b1,wet 0.88 0.81 -
b5,dry 7.19 1.13 -

b5,knead 6.53 0.38 -
b5,wet 5.18 1.14 -

MRT∗tracer 0.55 0.45 -
Pe∗tracer 2.10 0.95 -

Here, it should be noted that δ value of 0 indicates that there is no diminishing effect
of the increasing liquid quantity on the granulation rate.

4.1. Quantitative Analysis—Parity Plots

From Figure 3a, it is seen that the model predictions center on either side the Y = X
line, with good prediction. All the points lie within the chosen +/−1 confidence interval.
From Figure 3b, the model predictions for the normalized variance can be seen where most
of the points are scattered between the Y = X and Y = X− 0.1 line. It can be seen that the
predicted variance lies in a range of 0–0.05.

(a)

Figure 3. Cont.
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(b)

Figure 3. Experimental observations (X) vs. predicted model responses (Y) for RT metrics when
model is trained on the Kumar et al., 2015 [18] dataset. (a) MRT; (b) variance.

From Figure 4a, it is seen that the model predictions center on either side of side of the
Y = X line, although with low precision. However, it is a better prediction than deploying
just the residence time model which under-predicted the MRT values as shown in our
previous work. From Figure 4b, the model predictions for the normalized variance can be
seen, where most of the points are scattered far away either side of the Y = X line. It can
be seen that the variance can be predicted in a range of 0.1–0.45, thereby showing limited
predictive capability of the variance.

(a)

Figure 4. Cont.
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(b)

Figure 4. Experimental observations (X) vs. predicted model responses (Y) for RT metrics when the
model is trained trained Kumar et al., 2016 [19] dataset. (a) MRT; (b) variance.

From Figure 5, the model predictions for the normalized variance for a model frame-
work without having any axial dispersion incorporated can be seen. It can be seen that
the variance can be predicted in a very narrow range of 0.1–0.2, thereby showing a worse
prediction for the variance and thus the necessity of having localised variance dependent
dispersion flow.

Figure 5. Experimental observations (X) vs. predicted model responses (Y) for the Variance when the
model is trained on the Kumar et al., 2016 [19] dataset without including the dispersion flow rates.

From Figure 6, it is seen that the model size predictions for the fine granules center lie
on the Y = X line, thereby giving a reasonably good prediction.
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Figure 6. Experimental observations (X) vs. predicted model responses (Y) for outlet bulk granule
sizes when the model is trained on the Kumar et al., 2016 [19] dataset.

From Figure 7a, it is seen that the model size predictions for the fine granules center
on either side of the Y = X line, with several points lying within the chosen confidence
interval of +/−10%. From Figure 7b, the model predictions for the coarse granule sizes
can be seen, where most of the points are scattered close to the Y = X line, with several
scattered within the chosen confidence interval. It can be seen there that a few points have
been over-predicted.

(a)

Figure 7. Cont.
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(b)

Figure 7. Experimental observations (X) vs. predicted model responses (Y) for outlet fine and coarse
granule sizes when the model is trained on the Kumar et al., 2016 [19] dataset. (a) fines; (b) coarse.

4.2. Qualitative Analysis—Correlation between RTD and PSD

Apart from validating the experimental results by way of parity plots, a combined
RTD-PBE framework would also aid in correlating effects of RTD to desirable or undesirable
PSD trends in the final granule products.

From Figure 8, it is seen that short residence time was observed for low FR 10 kg/h,
low NK 1× 4, low SA 30◦, and high RPM of 900.

Figure 8. RTD trend obtained from a PBM pulse tracer study for an unfavorable granulation case
from the experimental DOE of Kumar et al., 2016 [19].

From Figure 9, it is seen that a PSD with the mode of the particle sizes centering at
around 100 µm was observed for the same run which had a short residence time (low FR
10 kg/h, low NK 1× 4, low SA 30◦, and high RPM of 900).
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Figure 9. PSD trend obtained from a PBM pulse tracer study for unfavorable granulation case from
the DOE of Kumar et al., 2016 [19].

From Figure 10, it is seen that a long residence time was observed for high FR 25 kg/h,
high NK 2× 6, high SA 90◦, and low RPM of 900.

Figure 10. RTD trend obtained from a PBM pulse tracer study for a favorable granulation case from
the experimental DOE of Kumar et al., 2016 [19].

From Figure 11, it is seen that a PSD with the the particles rich in larger size fractions
for the same run had a long residence time (high FR 25 kg/h, high NK 2× 6, high SA 60◦,
and low RPM of 500).



Processes 2022, 10, 292 17 of 21

Figure 11. Kumar et al., 2016 [19] PSD trend obtained from a PBM pulse tracer study for favorable
granulation case.

4.3. Qualitative Analysis—Compartmental Holdup

In addition to correlating the RTD of the system to the PSD of the obtained granules,
the integrated RTD-PBE framework also gave insights about the compartmental holdup
inside the TSG equipment in general.

From Figure 12, it is seen that, in general, the mass holdup in kneading sections (blue
bars) is higher than that in the wet conveying screw sections (wet bars). However, in the
conveying sections preceding the kneading sections (1—orange bar and 3—1st yellow bar),
the compartmental holdups are high due to the backward dispersion flow of granules from
the succeeding kneading zones.

Figure 12. Compartmental holdup obtained obtained from the PBE model when trained on the
system as used by Kumar et al., 2016 dataset [19].
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5. Conclusions

From the parity plots in Section 4, it is seen that the model performance varies with the
distribution of the experimental data-points’ range. The model predicted the experimental
MRT and variance fairly well for the Kumar et al., 2015 dataset; however, for several cases
in the Kumar et al., 2016, there is either over- or under-prediction. A plausible explanation
is that the prediction capability depends on the bounds of the changing process and equip-
ment parameters for different experimental dataset combinations. One plausible reason
for the poor prediction for the Kumar et al., 2016 dataset is that the additional process
parameter of changing liquid-to-solid percentage is playing a large role in the inherent
granulation mechanisms, the incorporation of which would require further study into the
granulation kinetics of the specific combination of materials (lactose α-monohydrate and
theophylline anhydrous). However, incorporating material specific granulation mecha-
nisms to fit the residence times and particle sizes would go against the principle of building
generalizable models for twin screw granulation. Moreover, this study focuses more on the
incorporation of the previously omitted dispersion flow rates to predict the variances. The
presented approach aims to serve as a guiding tool for building population balance models
for multi-component twin screw granulation systems which would be useful for predicting
the performance in continuous manufacturing lines.

Therefore, in summary, this research paper presents (i) a continuous population
balance equation methodology incorporating the axial velocities and dispersion rates
separately for each component; (ii) incorporation of previously developed semi-mechanistic
expressions for residence time metrics to calculate the axial velocities and dispersion rates;
(iii) and lastly validation of the said equations on two different datasets.
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Nomenclature

List of Acronyms
CFL condition Courant–Freidrichs–Lewis condition
DEM discrete element method
DOE design of experiments
FR powder feed rate
LS liquid-to-solid ratio
MRT mean residence time
NK number of kneading elements
PBE population balance equation
PEPT positron emission particle tracking
PSD particle size distribution
RMSE root mean square error
RPM rotations per minute
RTD residence time distribution
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SA stagger angle
SSE sum of square of errors
TSG twin screw granulation or twin screw granulator

List of Symbols Used
Symbol Unit Quantity
z unitless external coordinate (spatial location)
s volume internal coordinate (particle solid volume)
t time time co-ordinate
N(z, s, t) unitless, number number of bulk particles
M(z, s, t) unitless, number number of tracer particles
<(z, s, t)Agg number/time net aggregation rate of particles
<(z, s, t)Break number/time net breakage rate of particles
Ḟ(z, s, t)In number/time rate of bulk particles coming into the

compartment
Ḟ(z, s, t)Out number/time rate of bulk particles going out of the

compartment
Ġ(z, s, t)In number/time rate of tracer particles coming into the

compartment
Ġ(z, s, t)Out number/time rate of tracer particles going out of the

compartment
vbulk(z) length/time axial velocity of bulk particles

leaving the compartment
vtracer(z) length/time axial velocity of tracer particles

leaving the compartment
Dbulk(z) length2/time axial dispersion coefficient of bulk

particles leaving the compartment
Dtracer(z) length2/time axial dispersion coefficient of tracer

particles leaving the compartment
lbulk(z, s, t) volume liquid volume associated with bulk particle

having coordinates z, s, t
ltracer(z, s, t) volume liquid volume associated with tracer particle

having coordinates z, s, t
<(z, s, t) f orm

Agg number/time net formation rate of particles from aggregation

<(z, s, t)dep
Agg number/time net depletion rate of particles due to aggregation

β(z, s′, s− s′, t) number−1time−1 specific aggregation rate between two chosen
size classes of particles

<(z, s, t) f orm
Brk number/time net formation rate of particles from breakage

<(z, s, t)dep
Brk number/time net depletion rate of particles due to breakage

b(s, s′) unitless probability of a larger number particle of size class
breaking into 2 smaller particles

Kbreak(z, s′, t) number/time specific breakage rate of a particle
β0 time−1 aggregation rate pre-constant
α unitless aggregation liquid depndency

enhancing parameter
δ unitless aggregation liquid dependency

diminishing parameter
vol(z, s, t) volume total volume of the particle
Gshear time−1 shear rate imparted due to screw rotation
P1 unitless breakage rate pre-constant
P2 unitless breakage liquid dependency
L length length of compartment of interest
MRT time mean residence time
FRvol,net volume/time total volumetric flow rate

of material into the system
Availvoltotal volume available vloume for particles to fill up

inside the equipment
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Dispvolrateconv,total volme/time volumetric dispense rate
of materials per turn of screws

b1 time scaling factor for the MRT
b2 unitless effect of material throughput on Holdup factor
b3 unitless effect of material throughput on Flow factor
b4 unitless effect of volumetric dispense rate on flow factor
Pe unitless Péclet number
SAknead,deg unitless stagger angle between kneading elements in degrees
NKknead unitless number of neakding elements in kneading block of concern
b5 unitless scaling factor for the Péclet number
b6 unitless effect of volumetric dispense rate on mixing factor
MRT∗tracer unitless scaling constant indicating ratio of MRT of tracer

relative to MRT of bulk material
Pe∗tracer unitless scaling constant indicating ratio of Pe of tracer

relative to Pe of bulk material
SSE unitless sum of square of errors
RMSE unitless root mean square of the errors
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