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Abstract: This paper is concerned with the real-time configuration of fault detection systems by
exploiting an gradient optimization scheme. It is known that industrial processes may often en-
counter some uncertainties or changes of operating points and environment, which would lead to an
unsatisfactory fault detection result. To handle this problem, a real-time (or online) configuration
strategy is introduced, which plays an important role in ensuring the efficiency of the fault detection
method without a high industrial cost. In this paper, a gradient-based iterative optimization scheme
is taken into account for the real-time configuration implementation. By utilizing the gradient-based
iterative algorithm to minimize the K-gap between the residual generator and the current system, the
parameters of the residual generator can be configured from the online input/output data. Based on
this, real-time configuration of the residual generator parameters is achieved and, correspondingly,
the fault detection performance is guaranteed. Then, a three-tank system, which is relatively common
and important in chemical industrial systems, is studied and explored to verify the effectiveness and
superiority of the gradient optimization configuration strategy proposed in this work.

Keywords: real-time configuration; observer-based residual generator; fault detection; gradient
optimization

1. Introduction

With the rapid development of industrial technology, increasing attention has been
paid to certain safety and reliability problems, prompting further research on fault de-
tection. Among the research of fault detection problems, model-based methods have
been intensively studied, and considerable results have been reported during the past few
decades [1–9]. To mention a few, by transforming the residual generator design problem
into an optimization problem, an optimal periodic fault detection approach is obtained for
linear discrete-time periodic systems in the light of robustness and sensitivity [10]. The
definitions of finite horizon H∞/H∞ and H−/H∞ fault detection performance are first es-
tablished for linear discrete time-varying systems, based on which the fault detection issue
is dealt with by designing some observer gains [11]. The sensor stuck faults are considered
for a class of stochastic systems, and a fault detection method is proposed in the stochas-
tic framework to guarantee the effectiveness for arbitrary small sensor stuck faults [12].
Considering the linear system with elliptical uncertainties, a general parametrization is
employed for less conservativeness and then a fault detection filter is designed to maximize
the sensitivity of fault detection with a certain disturbance attenuation demand [13]. To
make a balance between the sensitivity and robustness, a mixed H−/H∞ performance
index is taken into account, and sufficient criteria are presented to achieve the fault de-
tection observer design for a class of piecewise linear systems with weighted H−/H∞
performance [14]. On the basis of linear system study, the model-based fault detection
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schemes have been extended to the issues of nonlinear fields. For example, the observer-
based fault detection design is achieved for general nonlinear systems by investigating the
analysis and integrated design scheme [15]. By approximating a nonlinear system as a T-S
fuzzy model, the observer-based fault detection for nonlinear systems with disturbances
is investigated based on the L2 stability theory [16]. Via the logic-dynamic method, the
fault detection issue for dynamic systems with non-differentiable nonlinearities is solved
with the aid of the linear technique [17]. By considering the stochastic property of noises
and process disturbance, a distributed fault detection and isolation scheme is proposed
in a Plug-and-Plug scenario [18]. A systematic study is carried out for the fault detection
of nonlinear systems by designing linear residual generators, which is further utilized in
some practical applications [19]. The model-based method plays an important role in the
field of fault detection, while it will unavoidably incur a high cost in acquiring the accurate
model information. Therefore, the data-driven fault detection as an alternative method has
drawn increasing attention in both academia and industry.

Recently, data-driven fault detection issues have been investigated thoroughly, due to
their advantages in saving the costly modeling process and making great use of process
data information compared with the model-based method. Over the last few years, many
studies have been done for the data-driven fault detection issues of industrial process. For
instance, the observer-based fault detection is constructed by exploiting the data-driven
image and kernel representations [20]. By using the residual generators derived from the
process data, a data-driven fault detection approach is devised for wind turbines with
measurement noises, unknown disturbances, and nonlinearities [21]. Data-driven fault
detection and isolation filters are constructed for sensor and actuator faults by taking
advantages of available system data, and meanwhile an estimation approach is established
and extended to an offline tuning strategy to compensate the estimation errors under the
uncertainties and Markov parameters [22]. In the data-driven framework, a fault detection
scheme is proposed to detect small sensor faults and a fault isolation algorithm is developed
to distinguish different faults [23]. By identifying a data-driven SKR with the projecting
technique, a robust residual generation is derived and, accordingly, the robust data-driven
fault detection strategy is obtained for rolling mill processes with unknown eccentricity [24].
The quantitative diagnosability analysis is addressed for dynamic systems by virtue of
the data-driven evaluation [25]. By employing a radically data-driven strategy, the fault
detection and diagnosis are developed for wind turbines to enhance the reliability [26].
A q-step residual design approach is constructed for the data-driven fault detection of linear
systems to ensure the stability and performance demand [27]. The distributed data-driven
optimal fault detection is studied in large-scale systems by utilizing the average consensus
algorithm [28]. By proposing a prediction model on the output of nonlinear dynamic
systems, a detection method is devised according to the comparison between the measure-
ment output and the prediction to determine a residual, and further an isolation scheme is
constructed to clarify the fault location for the underlying system [29]. Considering the fact
that incipient faults are not easy to discover in electrical drives because of their inapparent
symptoms, a data-driven fault detection and diagnosis method is presented by applying
the principal component analysis approach which improves the accuracy of fault detection
for electrical drives without available system parameters or models [30].

Note that the practical industrial process inevitably suffers the changes of process
environment and operation conditions. In this case, the predesigned residual generators
may not provide satisfactory fault detection performance. To guarantee the ability and
efficiency of the data-driven fault detection without sacrificing the industrial cost, the
online configuration or updating becomes an important technology in solving such is-
sues. Up to now, some methods use online configuration and updating of data-driven
fault detection including adaptive algorithms, iterative optimization, etc. The adaptive
residual generator combined with the data-driven scheme is designed and implemented
to recursively estimate the corresponding parameters and improve the robustness against
the undesired changes for discrete linear systems [31]. By virtue of a data-driven subspace-
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based predictor, an adaptive updating strategy is proposed for the fault detection filter of
solar power generation systems with uncertainties [32]. Via adopting an autoregressive
exogenous model to represent the dynamic process, an adaptive data-driven method is
developed for fault detection of dynamic process with process drift [33]. The adaptive
algorithm provides an effective way for the online configuration of data-driven residual
generators, while each new measurement is utilized for the parameter estimation, and
the parameter updating in the adaptive configuration happens at every sampling instant.
Moreover, the configured system matrix of the adaptive method may be sensitive to small
changes in the parameters. Compared with the adaptive configuration, the residual gener-
ator parameters based on the iterative optimization method remain unchanged between
two iterations, which would greatly reduce the iteration number and meanwhile guarantee
the fault detection performance [34,35]. However, the existing results about the online
optimization configuration for the observer-based residual generators are quite limited,
which motivates the current study.

Based on the observations above, this paper is aimed to investigate the real-time config-
uration for fault detection systems via the gradient optimization method. Considering the
unavoidable changes of the industrial process and operating environment, it is necessary
to establish a real-time configuration method to properly configure the residual generator
parameters to guarantee fault detection ability. To achieve the real-time configuration,
a gradient-based iterative optimization strategy is proposed by minimizing the K-gap
metric between the residual generator and the current system. In this way, the residual
generator can be updated from the available input/output (I/O) data without the identifi-
cation of system matrices. A novel optimization algorithm for the real-time configuration
of residual generators is developed, by which the validity of the fault detection process is
guaranteed. Furthermore, a three-tank system plant is taken into account to illustrate the
usefulness and advantages of the proposed approach, which can be seen as the prototype
for many industrial processes, such as chemical process industries.

The structure of this paper is organized as below. In Section 2, the system descriptions
and necessary preliminaries are provided. Section 3 presents the gradient optimization
to achieve the online configuration for fault detection systems. In Section 4, a simulation
example is used to demonstrate the effectiveness of the obtained method. Finally, the
conclusions of this work are drawn in Section 5.

Notation 1. Throughout this paper, the notations are generally standard. Rn and Rm×n, respec-
tively, denote the n-dimensional Euclidean space and the set of all m× n real matrices. H∞ is the
set of all stable transfer functions andH2 is the subspace of all signals with bounded energy equal
to 0 for any t < 0. RH∞ defines the set of all real-rational transfer functions of stable systems.
‖ · ‖2 and ‖ · ‖∞ stand for the L2-norm and theH∞-norm, respectively. vec(A) indicates the vec-
torization of matrix A. σ̄(A) and eig(A) represent the maximum singular value and the maximum
eigenvalue of matrix A, respectively. A+ denotes the pseudoinverse of matrix A. diag{· · · } defines
a diagonal matrix.

2. Preliminaries
2.1. System Descriptions

Consider the discrete-time linear time-invariant (LTI) system represented by

x(k + 1) =Ax(k) + Bu(k), (1)

y(k) =Cx(k) + Du(k), (2)

where x(k) ∈ Rn is the state vector, u(k) ∈ Rl is the input signal, and y(k) ∈ Rm is the
system output. A, B, C, D are system matrices with proper dimensions.



Processes 2022, 10, 276 4 of 22

2.2. Stable Kernel Representation

For the nominal system (1) and (2), its transfer function representation is given by

y(z) = G(z)u(z). (3)

Then, the stable kernel representation of G(z) is described as below.
Consider a proper real-rational transfer function matrix G(z) with the following left

and right coprime factorizations:

G(z) = M̂−1(z)N̂(z) = N(z)M−1(z), (4)

where M̂(z) ∈ RHm×m
∞ , N̂(z) ∈ RHm×l

∞ , M(z) ∈ RHl×l
∞ , N(z) ∈ RHm×l

∞ , and
(

M̂(z), N̂(z)
)
,

(M(z), N(z)) are, respectively, left and right coprime pairs over RH∞. It means that there
exist X̂(z) ∈ RHm×m

∞ , Ŷ(z) ∈ RHl×m
∞ , X(z) ∈ RHl×l

∞ , Y(z) ∈ RHl×m
∞ such that the following

equations hold:

[
M̂(z) N̂(z)

][ X̂(z)
Ŷ(z)

]
=Im×m,

[
X(z) Y(z)

][ M(z)
N(z)

]
=Il×l .

Further, if
(

M̂(z), N̂(z)
)

and (M(z), N(z)) are satisfied with[
M̂(z) N̂(z)

][
M̂(z) N̂(z)

]T
=Im×m,[

M(z)
N(z)

]T[ M(z)
N(z)

]
=Il×l ,

then they are called the normalized left and right coprime pairs, respectively.

Definition 1 ([35]). Given a discrete-time LTI system G(z) in Equation (3), a stable linear system
K is called the stable kernel representation (SKR) of G(z), if for any u(z) and its response y(z), the
following equation holds:

K
[

u(z)
y(z)

]
= 0.

Suppose that r(z) is the residual signal of the underlying system. According to the
description of the left and right coprime factorizations, it is clear that M̂(z) and N̂(z)
correspond to the transfer matrices from the residual signal to the output signal and the
input signal, respectively. Then, the following equation holds in the fault- and noise-
free case:

r(z) =
[
−N̂(z) M̂(z)

][ u(z)
y(z)

]
. (5)

Accordingly, a SKR of system G(z) can be formed by the transfer matrices as below,

K =
[
−N̂(z) M̂(z)

]
.

2.3. K-Gap Metric

To achieve the optimization objective, it is necessary to introduce a means to measure
the distance between two kernel subspaces. As the K-gap metric has become a powerful
tool in dealing with the measurement problems, this paper will adopt the K-gap metric
technique for the optimization process. Before mentioning the K-gap metric, the gap metric
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concept is first restated for clarification. For this purpose, the graph definition is introduced
and represented by

G =

{
ζ =

[
u
y

]
=

[
M
N

]
v, v ∈ H2

}
.

Note that the graph G is a subspace in H2 constructed by all the pairs (u, y), and it
is closed [36,37]. Denote G1 = N1M−1

1 , G2 = N2M−1
2 as the normalized right coprime

factorizations of G1, G2, respectively. Let G1,G2 be the corresponding graphs. The direct
gap from G1 to G2 is defined as ~δ(G1,G2), which is formulated by

~δ(G1,G2) = sup
ζ1∈G1

inf
ζ2∈G2

‖ζ1 − ζ2‖2
‖ζ1‖2

. (6)

According to the work in [36], the calculation on the direct gap (6) can be solved by

~δ(G1,G2) = inf
Q∈H∞

∥∥∥∥[ M1
N1

]
−
[

M2
N2

]
Q
∥∥∥∥

∞
.

Based on above, the definition of gap metric between G1 and G2 is derived as

δ(G1,G2) = max
{
~δ(G1,G2),~δ(G2,G1)

}
.

Considering that the gap metric is based on the image subspace, the K-gap metric
defined on the kernel subspace is further proposed. The corresponding graph is defined as

K =

{[
u
y

]
:
[
−N̂ M̂

][ u
y

]
= 0,

[
u
y

]
∈ H2

}
,

which indicates the kernel subspace and is a closed subspace inH2. Similarly, the directed
K-gap from graph K1 to graph K2 is expressed as follows.

Definition 2 ([37]). Suppose that
(

M̂1(z), N̂1(z)
)
,
(

M̂2(z), N̂2(z)
)

are the left coprime factoriza-
tions of G1(z), G2(z), respectively, and

Ki =

{
ςi =

[
ui
yi

]
:
[
−N̂i M̂i

][ ui
yi

]
= 0,

[
ui
yi

]
∈ H2

}
, i = 1, 2.

The directed K-gap from K1 to K2 is defined by

~δk(K1,K2) = sup
ς1∈K1

inf
ς2∈K2

‖ς1 − ς2‖2
‖ς1‖2

.

Subsequently, the K-gap metric between K1 and K2 is given by

δk(K1,K2) = max
{
~δk(K1,K2),~δk(K2,K1)

}
.

Moreover, a computation strategy of the K-gap metric is also established in [37], which
is recalled in the following lemma.

Lemma 1 ([37]). Consider Ki, i = 1, 2 defined in Definition 2 with normalized left coprime
factorizations

(
M̂i(z), N̂i(z)

)
, i = 1, 2. The direct K-gap can be computed by

~δk(K1,K2) = inf
Q∈H∞

∥∥[ −N̂1 M̂1
]
−Q

[
−N̂2 M̂2

]∥∥
∞.
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It can be yielded from Lemma 1 that

0 ≤ ~δk(K1,K2) ≤ 1,

and when δk(K1,K2) < 1,

~δk(K1,K2) = ~δk(K2,K1) = δk(K1,K2).

2.4. Data-Driven Framework

As the input and output data are crucial to the fault detection realization, the data
model is introduced here for latter development. Taking a data vector λ(k) ∈ Rκ into
account, the related notations are defined as below.

λs(k) =


λ(k− s)

λ(k− s + 1)
...

λ(k)

 ∈ R(s+1)κ ,

Λk =
[

λ(k) · · · λ(k + N − 1)
]
∈ Rκ×N ,

Λk,s =
[

λs(k) · · · λs(k + N − 1)
]
=

 Λk−s
...

Λk

 ∈ R(s+1)κ×N ,

where s, N are positive integers and s + 1 is the length of the stacked data vector. Based on
the data structure, the data-driven realization of the SKR is defined as follows.

Definition 3 ([20]). Kd,s is called a data-driven realization of the SKR for system G(z), if for all
k ≥ 0, the following equation is satisfied:

Kd,s

[
us(k)
ys(k)

]
=
[
Ku,s Ky,s

][ us(k)
ys(k)

]
= 0.

Note that if the data-driven SKR is satisfied with Kd,sKT
d,s = I, then it is called

normalized [38]. By applying the singular value decomposition, it holds that

Kd,s = Usys
[

Σsys,1 0
][ VT

sys,1
VT

sys,2

]

and thus, the normalized data-driven SKR for system G(z) is derived as

K̄d,s = VT
sys,1. (7)

Next, the data-driven realization of the K-gap metric is presented on the basic of the
normalized data-driven SKR.

Lemma 2 ([39]). Suppose that K̄1,d,s, K̄2,d,s are the normalized data-driven SKRs of SKRs K1,K2.
The data-driven realization of the K-gap metric can be calculated by

δkd,s
(K1,K2) = σ̄

([
I − K̄T

2,d,sK̄2,d,s

]
K̄T

1,d,sK̄1,d,s

)
. (8)

3. Main Results

Considering that practical circumstance and industrial environment may change, the
fault detection by the offline designed residual generator cannot satisfy the complicated
industrial demand. In this section, a novel real-time configuration scheme for residual
generators is proposed, which is essentially an optimization algorithm based on the K-gap
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metric. To be specific, an observer-based residual generator is constructed and the gradient
optimization algorithm is used to update its parameters. Thus, the real-time configuration
is achieved for the observer-based residual generators, the framework of which is displayed
in Figure 1 for clarification.

Plant
yu

r fault  information

Gradient  Optimization 

base  on    K-gap  Metric

Evaluation

and  Decision

Observer-based

Residual  Generator

Figure 1. Framework of the online configuration based on K-gap metric.

3.1. The Observer-Based General Generator

For the discrete-time LTI system (1), a full-order state observer is constructed with the
minimal state-space representation as

xo(k + 1) =Aoxo(k) + Bou(k) + Loy(k), (9)

r(k) =Coxo(k) + Dou(k) + y(k), (10)

where xo(k) ∈ Rn indicates the state of the full-order observer and r(k) ∈ Rm stands for
the residual vector. Ao, Bo, Co, Do, Lo are observer matrices with proper dimensions.

For observer (9) and (10), a similarity transformation is performed by xo = Tνxν,
which yields

xν(k + 1) =Aνxν(k) + Bνu(k) + Lνy(k), (11)

r(k) =Cνxν(k) + Dνu(k) + y(k), (12)

where Aν = T−1
ν AoTν, Bν = T−1

ν Bo, Lν = T−1
ν Lo, Cν = CoTν, Dν = Do. According to the

authors of [40], the controllability Gramian matrix of systems (11) and (12) is equivalent to
the identity matrix, i.e.,

Aν AT
ν + BνBT

ν = In, (13)

which gives rise to a column-orthogonal matrix
[

BT
ν

AT
ν

]
. Consequently, there exists an

invertible matrix Ψ such that [
BT

ν

AT
ν

]
= Ψ

[
0
In

]
.

Referring to the literature [41], the parameterization based on the input normal form
can be described by[

BT
ν (θAB)

AT
ν (θAB)

]
= Ψ1(θAB(1)) · · ·Ψnl(θAB(nl))

[
0
In

]
,
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in which θAB ∈ Rnl and its entries take values in the range (−1, 1). By introducing the
following form for each parameter θAB(i), i = 1, · · · , nl

U(θAB(i)) =

 −θAB(i)
√

1− θ2
AB(i)√

1− θ2
AB(i) θAB(i)

,

the matrices Ψi(θAB(i)), i = 1, · · · , nl are represented as

Ψ1(θAB(1)) =

 In−1 0 0
0 U(θAB(1)) 0
0 0 Il−1

,

...

Ψnl(θAB(nl)) =

 Il−1 0 0
0 U(θAB(nl)) 0
0 0 In−1

.

As the parameterization of the input normal form is on the basis of the asymptotic
stability, no additional restriction on the parameter space is needed, which is a significant
advantage of this transformation.

Then, the procedure to obtain the SKR corresponding to the observer (11) is given as
below. It is obvious from Formula (12) that

r(k− s) = Cνxν(k− s) + Dνu(k− s) + y(k− s).

Subsequently,

r(k− s + 1) =Cνxν(k− s + 1) + Dνu(k− s + 1) + y(k− s + 1)

=Cν[Aνxν(k− s) + Bνu(k− s) + Lνy(k− s)] + Dνu(k− s + 1) + y(k− s + 1)

=Cν Aνxν(k− s) + CνBνu(k− s) + Dνu(k− s + 1) + CνLνy(k− s) + y(k− s + 1),

r(k− s + 2) =Cνxν(k− s + 2) + Dνu(k− s + 2) + y(k− s + 2)

=Cν[Aνxν(k− s + 1) + Bνu(k− s + 1) + Lνy(k− s + 1)]

+ Dνu(k− s + 2) + y(k− s + 2)

=Cν Aν[Aνxν(k− s) + Bνu(k− s) + Lνy(k− s)] + CνBνu(k− s + 1)

+ CνLνy(k− s + 1) + Dνu(k− s + 2) + y(k− s + 2)

=Cν A2
νxν(k− s) + Cν AνBνu(k− s) + CνBνu(k− s + 1) + Dνu(k− s + 2)

+ Cν AνLνy(k− s) + CνLνy(k− s + 1) + y(k− s + 2),

r(k− s + 3) =Cνxν(k− s + 3) + Dνu(k− s + 3) + y(k− s + 3)

=Cν[Aνxν(k− s + 2) + Bνu(k− s + 2) + Lνy(k− s + 2)]

+ Dνu(k− s + 3) + y(k− s + 3)

=Cν Aν[Aνxν(k− s + 1) + Bνu(k− s + 1) + Lνy(k− s + 1)] + CνBνu(k− s + 2)

+ CνLνy(k− s + 2) + Dνu(k− s + 3) + y(k− s + 3)

=Cν A2
ν[Aνxν(k− s) + Bνu(k− s) + Lνy(k− s)] + Cν AνBνu(k− s + 1)

+ Cν AνLνy(k− s + 1) + CνBνu(k− s + 2) + CνLνy(k− s + 2)

+ Dνu(k− s + 3) + y(k− s + 3)

=Cν A3
νxν(k− s) + Cν A2

νBνu(k− s) + Cν AνBνu(k− s + 1) + CνBνu(k− s + 2)

+ Dνu(k− s + 3) + Cν A2
νLνy(k− s) + Cν AνLνy(k− s + 1)

+ CνLνy(k− s + 2) + y(k− s + 3),
...
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which implies

r(k) =Cν As
νxν(k− s) + Cν As−1

ν Bνu(k− s) + · · ·+ CνBνu(k− 1) + Dνu(k)

+ Cν As−1
ν Lνy(k− s) + · · ·+ CνLνy(k− 1) + y(k).

Then, it is easy to obtain that

rs(k) = Γsxν(k− s) + Hu,sus(k) + Hy,sys(k), (14)

where

Γs =


Cν

Cν Aν
...

Cν As
ν

, Hu,s =


Dν · · · 0 0

CνBν · · · 0 0
...

. . .
...

...
Cν As−1

ν Bν · · · CνBν Dν

,

Hy,s =


I · · · 0 0

CνLν · · · 0 0
...

. . .
...

...
Cν As−1

ν Lν · · · CνLν I

.

Then, the following equation is obtained:

Rk,s = ΓsXν,k−s + Hu,sUk,s + Hy,sYk,s.

As Cν As
ν → 0, s → ∞, according to Definition 3, the SKR corresponding to the state

observer can be obtained by the equation

Ko,s =
[

Hu,s Hy,s
]

=


Dν · · · 0 0 I · · · 0 0

CνBν · · · 0 0 CνLν · · · 0 0
...

. . .
...

...
...

. . .
...

...
Cν As−1

ν Bν · · · CνBν Dν Cν As−1
ν Lν · · · CνLν I

 (15)

with removing the front finite rows to eliminate the influence of past data. By applying the
singular value decomposition to Ko,s, it holds that

Ko,s = U
[

Σ1 0
][ VT

1
VT

2

]
and thus, the normalized SKR is

K̄o,s = VT
1 . (16)

3.2. Online Gradient Optimization

Based on the above observer-based residual generator, this subsection will establish
an gradient optimization method for the real-time configuration by taking advantage of
the K-gap metric between the observer and system plant.

Define

θ =


θAB
θCν

θDν

θLν

 =


θAB

vec(Cν)
vec(Dν)
vec(Lν)

,
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and denote θi (i = 1, 2, · · · , τ = nl + 2mn + ml) as the i-th term of θ.
The optimization problem is described by{

minimize J = δkd,s
(Ko,s,Kd,s),

subject to θ ∈ S ,

where Kd,s,Ko,s are, respectively, the SKRs of the system (1) and the observer (11), and S is
the set in which the entries of any vector belong to (−1, 1). To achieve the minimization of
cost function J, the Taylor expansion of cost function J at the j-th iteration is considered

J(j)
θ(j) =J(j)

θ(j−1) +

∂J(j)
θ(j)

∂θ(j)

∣∣∣∣∣
θ(j−1)

T(
θ(j) − θ(j−1)

)

+
1
2

(
θ(j) − θ(j−1)

)T
 ∂2 J(j)

θ(j)

∂θ(j)∂
(
θ(j)
)T

∣∣∣∣∣
θ(j−1)

(θ(j) − θ(j−1)
)
+ o3

(
θ(j) − θ(j−1)

)
,

where
∂J(j)

θ(j)

∂θ(j) and
∂2 J(j)

θ(j)

∂θ(j)∂(θ(j))
T denote the gradient and the Hessian matrix of cost function

J, respectively. o3(·) stands for the infinitesimal of order higher than 3. Regardless of the
high-order infinitesimal, a necessary condition to minimize the function J(j)

θ(j) is to command∂J(j)
θ(j)

∂θ(j)

∣∣∣∣∣
θ(j−1)

+

 ∂2 J(j)
θ(j)

∂θ(j)∂
(
θ(j)
)T

∣∣∣∣∣
θ(j−1)

(θ(j) − θ(j−1)
)
= 0. (17)

Rewriting the expression (17) gives the iteration procedure of updating the parameter
θ as

θ(j) = θ(j−1) −

 ∂2 J(j)
θ(j)

∂θ(j)∂
(
θ(j)
)T

∣∣∣∣∣
θ(j−1)

−1∂J(j)
θ(j)

∂θ(j)

∣∣∣∣∣
θ(j−1)

, (18)

which is the Gauss–Newton iteration widely used in the literature. However, this method

requires the invertibility of

(
∂2 J(j)

θ(j)

∂θ(j)∂(θ(j))
T

∣∣∣∣∣
θ(j−1)

)
and may lead to a heavy computational

burden. To improve its applicability in numerical computation, an iteration procedure
known as the steepest-descent algorithm is introduced

θ(j) = θ(j−1) − ∆(j)

∂J(j)
θ(j)

∂θ(j)

∣∣∣∣∣
θ(j−1)

, (19)

where ∆(j) > 0 is a diagonal matrix meaning the step length of the j-th iteration.
Clearly, the key question of the optimization is to calculate the gradient

∂J
∂θ =

∂δkd,s(Ko,s ,Kd,s)
∂θ .

It is obtained from Lemma 2 that
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∂δkd,s
(Ko,s,Kd,s)

∂θ

=
∂σ̄
([

I − K̄T
d,sK̄d,s

]
K̄T

o,sK̄o,s

)
∂θ

=

∂

{√
eig
[(

I − K̄T
d,sK̄d,s

)(
K̄T

o,sK̄o,s
)(
K̄T

o,sK̄o,s
)(

I − K̄T
d,sK̄d,s

)]}
∂θ

=

∂

{√
eig
[(

I − K̄T
d,sK̄d,s

)(
K̄T

o,sK̄o,s
)(

I − K̄T
d,sK̄d,s

)]}
∂θ

=
1

2δkd,s
(Ko,s,Kd,s)

∂
{

eig
[(

I − K̄T
d,sK̄d,s

)(
K̄T

o,sK̄o,s
)(

I − K̄T
d,sK̄d,s

)]}
∂θ

=
1

2δkd,s
(Ko,s,Kd,s)



∂{eig[(I−K̄T
d,sK̄d,s)(K̄T

o,sK̄o,s)(I−K̄T
d,sK̄d,s)]}

∂θ1
∂{eig[(I−K̄T

d,sK̄d,s)(K̄T
o,sK̄o,s)(I−K̄T

d,sK̄d,s)]}
∂θ2
...

∂{eig[(I−K̄T
d,sK̄d,s)(K̄T

o,sK̄o,s)(I−K̄T
d,sK̄d,s)]}

∂θi
...

∂{eig[(I−K̄T
d,sK̄d,s)(K̄T

o,sK̄o,s)(I−K̄T
d,sK̄d,s)]}

∂θτ


.

Denote ξ as the eigenvector corresponding to the maximum eigenvalue of matrix(
I − K̄T

d,sK̄d,s

)(
K̄T

o,sK̄o,s
)(

I − K̄T
d,sK̄d,s

)
and focus on the partial derivative on the i-th vari-

able, i.e.,

∂
{

eig
[(

I − K̄T
d,sK̄d,s

)(
K̄T

o,sK̄o,s
)(

I − K̄T
d,sK̄d,s

)]}
∂θi

=
ξT∂

{(
I − K̄T

d,sK̄d,s

)(
K̄T

o,sK̄o,s
)(

I − K̄T
d,sK̄d,s

)}
ξ

∂θi

=ξT
∂
{(

I − K̄T
d,sK̄d,s

)(
K̄T

o,sK̄o,s
)(

I − K̄T
d,sK̄d,s

)}
∂θi

ξ

=ξT
(

I − K̄T
d,sK̄d,s

)∂
(
K̄T

o,sK̄o,s
)

∂θi

(
I − K̄T

d,sK̄d,s

)
ξ.

Making use of the result of singular value decomposition in (16) gives

K̄T
o,sK̄o,s = V1VT

1 = v1vT
1 + v2vT

2 + · · ·+ vµvT
µ ,

where V1 =
[

v1 v2 · · · vµ

]
and µ means the row number of matrix K̄o,s. Therefore,

∂
(
K̄T

o,sK̄o,s
)

∂θi
=

∂
(

v1vT
1 + v2vT

2 + · · ·+ vµvT
µ

)
∂θi

=
µ

∑
α=1

∂
(
vαvT

α

)
∂θi

,

in which

∂
(
vαvT

α

)
∂θi

=
∂vα

∂θi
vT

α + vα
∂
(
vT

α

)
∂θi

=
∂vα

∂θi
vT

α + vα

(
∂vα

∂θi

)T
.
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Notice that

KT
o,sKo,s =

[
V1 V2

][ ΣT
1

0

]
UTU

[
Σ1 0

][ VT
1

VT
2

]
=
[

V1 V2
][ Σ2

1 0
0 0

][
VT

1
VT

2

]
,

where Σ1 = diag{σ1, σ2, · · · , σµ}. As a result, vα is the eigenvector corresponding to the
i-th eigenvalue of matrix KT

o,sKo,s. For any α = 1, 2, · · · , µ, i = 1, 2, · · · , τ,

∂vα

∂θi
=

(
σ2

α I −KT
o,sKo,s

)+
∂
(
KT

o,sKo,s
)
vα

∂θi

=
(

σ2
α I −KT

o,sKo,s

)+ ∂
(
KT

o,sKo,s
)

∂θi
vα.

It can be easily obtained that

∂
(
KT

o,sKo,s
)

∂θi
=

∂
(
KT

o,s
)

∂θi
Ko,s +KT

o,s
∂Ko,s

∂θi

=

(
∂Ko,s

∂θi

)T
Ko,s +KT

o,s
∂Ko,s

∂θi
.

Substituting the Formula (15) into the partial derivative leads to

∂Ko,s

∂θi
=

∂


Dν · · · 0 0 I · · · 0 0

CνBν · · · 0 0 CνLν · · · 0 0
...

. . .
...

...
...

. . .
...

...
Cν As−1

ν Bν · · · CνBν Dν Cν As−1
ν Lν · · · CνLν I


∂θi

.

As θi may be one element of any vector of θAB, θCν
, θDν , θLν , the deduction will be

divided into four cases in the following.
First, when the parameter θi is one element of vector θAB,

∂Ko,s

∂θAB(i)
=
[

∂Hu,s
∂θAB(i)

∂Hy,s
∂θAB(i)

]
,

where

∂Hu,s

∂θAB(i)
=



0 0 · · · 0
Cν

∂Bν
∂θAB(i)

0 · · · 0

Cν

(
∂Aν

∂θAB(i)
Bν + Aν

∂Bν
∂θAB(i)

)
Cν

∂Bν
∂θAB(i)

· · · 0
...

...
. . .

...

Cν

(
∂As−1

ν
∂θAB(i)

Bν + As−1
ν

∂Bν
∂θAB(i)

)
Cν

(
∂As−2

ν
∂θAB(i)

Bν + As−2
ν

∂Bν
∂θAB(i)

)
. . . Cν

∂Bν
∂θAB(i)


,

∂Hy,s

∂θAB(i)
=



0 0 · · · 0
0 0 · · · 0

Cν
∂Aν

∂θAB(i)
Lν 0 · · · 0

...
...

. . .
...

Cν
∂As−1

ν
∂θAB(i)

Lν Cν
∂As−2

ν
∂θAB(i)

Lν . . . 0


,



Processes 2022, 10, 276 13 of 22

and

∂

[
BT

ν (θAB)
AT

ν (θAB)

]
∂θAB(i)

=

 ∂BT
ν (θAB)

∂θAB(i)
∂AT

ν (θAB)
∂θAB(i)

 = Ψ1(θAB(1)) · · ·
∂Ψi(θAB(i))

∂θAB(i)
· · ·Ψnl(θAB(nl))

[
0
In

]
,

∂Ψi(θAB(i))
∂θAB(i)

=

 0 0 0
0 ∂U(θAB(i))

∂θAB(i)
0

0 0 0

,

∂U(θAB(i))
∂θAB(i)

=

 −1 −θAB(i)√
1−θ2

AB(i)
−θAB(i)√
1−θ2

AB(i)
1

.

Second, when the parameter θi is one element of vector θCν
, assume θi = cpq,

p ∈ {1, 2, · · · , m}, q ∈ {1, 2, · · · , n}, where cpq corresponds to the p-th row and the q-th
column of matrix Cν,

∂


Dν · · · 0 0 I · · · 0 0

CνBν · · · 0 0 CνLν · · · 0 0
...

. . .
...

...
...

. . .
...

...
Cν As−1

ν Bν · · · CνBν Dν Cν As−1
ν Lν · · · CνLν I


∂cpq

=



0 0 · · · · · · 0 0 0 · · · 0 0
∂Cν
∂cpq

Bν 0 · · ·
...

... ∂Cν
∂cpq

Lν 0 · · · 0 0

∂Cν
∂cpq

AνBν
∂Cν
∂cpq

Bν · · ·
...

... ∂Cν
∂cpq

AνLν
∂Cν
∂cpq

Lν · · · 0 0
...

...
. . .

...
...

...
... · · · . . .

...
∂Cν
∂cpq

As−1
ν Bν

∂Cν
∂cpq

As−2
ν Bν . . . ∂Cν

∂cpq
Bν 0 ∂Cν

∂cpq
As−1

ν Lν
∂Cν
∂cpq

As−2
ν Lν · · · ∂Cν

∂cpq
Lν 0


with

∂Cν

∂cpq
=

∂



c11 · · · c1q · · · c1n
...

...
...

cp1 · · · cpq · · · cpn
...

...
...

cm1 · · · cmq · · · cmn


∂cpq

=



0 · · · 0 · · · 0
...

...
...

0 · · · 1 · · · 0
...

...
...

0 · · · 0 · · · 0

.

Third, when the parameter θi is one element of vector θDν , assume θi = dpq,
p ∈ {1, 2, · · · , m}, q ∈ {1, 2, · · · , l}, where dpq corresponds to the p-th row and the q-th
column of matrix Dν,
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∂


Dν · · · 0 0 I · · · 0 0

CνBν · · · 0 0 CνLν · · · 0 0
...

. . .
...

...
...

. . .
...

...
Cν As−1

ν Bν · · · CνBν Dν Cν As−1
ν Lν · · · CνLν I


∂dpq

=



∂Dν
∂dpq

0 0 · · · 0 0 · · · · · · · · · 0

0 ∂Dν
∂dpq

0 · · ·
... 0 0 · · · · · ·

...

0 0 ∂Dν
∂dpq

· · ·
... 0 0 0 · · ·

...
...

...
...

. . . 0
...

...
...

. . .
...

0 · · · · · · 0 ∂Dν
∂dpq

0 · · · · · · · · · 0


with

∂Dν

∂dpq
=

∂



d11 · · · d1q · · · d1l
...

...
...

dp1 · · · dpq · · · dpl
...

...
...

dm1 · · · dmq · · · dml


∂dpq

=



0 · · · 0 · · · 0
...

...
...

0 · · · 1 · · · 0
...

...
...

0 · · · 0 · · · 0

.

Fourth, when the parameter θi is one element of vector θLν , assume θi = lpq,
p ∈ {1, 2, · · · , n}, q ∈ {1, 2, · · · , m}, where lpq corresponds to the p-th row and the q-th
column of matrix Lν,

∂


Dν · · · 0 0 I · · · 0 0

CνBν · · · 0 0 CνLν · · · 0 0
...

. . .
...

...
...

. . .
...

...
Cν As−1

ν Bν · · · CνBν Dν Cν As−1
ν Lν · · · CνLν I


∂lpq

=



0 0 · · · 0 0 · · · · · · · · · 0

0 0 · · ·
... Cν

∂Lν
∂lpq

0 · · · · · ·
...

0 0 · · ·
... Cν Aν

∂Lν
∂lpq

Cν
∂Lν
∂lpq

0 · · ·
...

...
...

. . . 0
...

...
...

. . .
...

0 · · · 0 0 Cν As−1
ν

∂Lν
∂lpq

· · · · · · Cν
∂Lν
∂lpq

0


with
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∂Lν

∂lpq
=

∂



l11 · · · l1q · · · l1m
...

...
...

lp1 · · · lpq · · · lpm
...

...
...

ln1 · · · lnq · · · lnm


∂lpq

=



0 · · · 0 · · · 0
...

...
...

0 · · · 1 · · · 0
...

...
...

0 · · · 0 · · · 0

.

Up to now, the optimization problem is solved and the parameter optimization is
derived by the above deduction. To summarize, this study aims to achieve the online con-
figuration of an observer-based residual generator for fault detection systems. To achieve
this, the observer is first transformed into the input normal form, which guarantees the
asymptotic stability. Based on the input normal form, the residual generator is established,
and the purpose is to online configure its parameters to cope with the operation condition
changes or uncertainties of the system. Then, the optimization configuration strategy is
taken into account and the optimization problem is proposed by utilizing the K-gap metric
concept. By employing the gradient descent method, the parameter configuration is finally
obtained for the online configuration realization.

Remark 1. Note that the optimization problem of this paper is established based on the K-gap
metric concept. The purpose is to minimize the K-gap metric δkd,s

(Ko,s,Kd,s) between the observer
and system plant, which characterizes the distance between two kernel subspaces. Referring to the
work in [37], a definition of cluster is described as below. For δ f ∈ (0, 1), the set

C f ⊆ {K : δk

(
K,K f

)
≤ δ f }

is called C f cluster with the cluster center K f and cluster radius δ f . From this point of view, by
minimizing the K-gap metric δkd,s

(Ko,s,Kd,s), the obtainedKo,s falls into the cluster with the cluster
center Kd,s and a certain cluster radius. A smaller cluster radius contributes to a more similar level
of Ko,s to Kd,s. Therefore, the residual generator based on the optimized Ko,s can guarantee the
reliability and efficiency of the fault detection system.

3.3. Online Configuration Realization of Fault Detection

This subsection will present an online algorithm to achieve the fault detection goal by
employing the newly proposed gradient configuration scheme. The detailed procedure
of online configuring the observer-based residual generator is described in Algorithm 1
as follows.

To achieve the fault detection, the evaluation function is set to be J (k) = ‖r(k)‖2
2 with

the threshold Jth chosen as below,

Jth = sup
f=0,d,∆

J (k),

where d and ∆ represent the disturbance and model uncertainties, respectively. Based on
the online residual generator obtained by Algorithm 1, calculate the evaluation function
J (k). The decision logic is described by{

J (k) > Jth ⇒ faulty,
J (k) ≤ Jth ⇒ fault-free.

(20)
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Algorithm 1 Online Configuration of Observer-Based Residual Generator

Step 1:
Collect the I/O data u(k), y(k) at each k and select an iteration
interval W

Step 2: Execute Step 3–6 for the j-th iteration every W

Step 3:
According to Definition 3, compute the SKR Kd,s and its normalized
result K̄d,s

Step 4:
Compute the SKR Ko,s and its normalized result K̄o,s corresponding
to the observer
by (15) and (16)

Step 5:
Apply Lemma 2 to obtain the K-gap metric δkd,s

(Ko,s,Kd,s) between
Ko,s and Kd,s

Step 6:
Given a scalar ε, if δkd,s

(Ko,s,Kd,s) > ε, compute the gradient and
update the parameters
of residual generator according to (19), increase j by 1 and return
Step 2, otherwise
the configuration ends

4. Simulation Experiment

In this section, a simulation experiment is carried out on a three-tank system plant to
show the effectiveness and advantages of the proposed real-time configuration scheme.
Figure 2 shows the schematic diagram of the three-tank system, which is composed of three
water tanks and some connecting pipes. In Figure 2, h1, h2, and h3 refer to the water levels
of the three tanks, which are measurable through sensors and deemed as the output signals.
Q1 and Q2 stand for the incoming mass flow rates of Pump 1 and Pump 2 and are used as
the input signals. Besides, PV1, PV2, PV3, LV1, LV2, LV3 are the adjustable ball valves to
administrate the opening and closing of these pipes.

The system plant can be represented by the nonlinear dynamics
Aḣ1 = Q1 − α1ssgn(h1 − h3)

√
2g|h1 − h3|,

Aḣ2 = Q2 + α3ssgn(h3 − h2)
√

2g|h3 − h2| − α2s
√

2gh2,
Aḣ3 = α1ssgn(h1 − h3)

√
2g|h1 − h3| − α3ssgn(h3 − h2)

√
2g|h3 − h2|,

(21)

in which A = 154 cm2 and s = 0.5 cm2 denote the cross section area of the tanks and pipes,
respectively, and α1 = 0.46, α2 = 0.60, α3 = 0.45 successively indicate the coefficients of flow
for the three pipes. In addition, the maximum height of the tanks is chosen as Hmax = 62 cm,
and the maximum flow rates of pumps 1 and 2 are set to be Q1max = Q2max = 100 cm3/s.
For certain operation points, the nonlinear representation (21) can be reformulated into the
LTI system (1) by utilizing the linearization technique.

In this simulation, the operating time is set to be 25,000 s and the sampling period
is chosen as 1s. At first, the operation point of the three-tank system is considered to be
h1 = 45 cm, h2 = 15 cm, and h3 = 30 cm, for which a residual generator is predesigned
and applied in the fault detection process. Due to the demand of practical industry, it is
supposed that the operation point changes to h1 = 50 cm, h2 = 46 cm and h3 = 48 cm at
6000 s. The process data are collected and displayed in Figure 3.

Figure 4 displays the evolution curves of residual signals and evaluation function and
Figure 5 exhibits the K-gap metric between system plant and observer. Before the change of
the operation point at 6000 s, the evaluation function value is lower than the threshold and
the K-gap metric value is 0.0007072, which means the kernel subspaces of system plant and
observer are sufficiently close and thus the predesigned residual generator is proper. From
6000 s, the value of evaluation function increases and obviously exceeds the threshold,
which causes a false alarm under the circumstance of no fault. Meanwhile, the K-gap
metric between system plant and observer becomes enormous. Clearly, the predesigned
residual generator is no more applicable for the system with a changed operation point. To
handle this problem and demonstrate the validity of the proposed real-time configuration
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method, the real-time configuration algorithm, i.e., Algorithm 1 is implemented at 9000 s.
It can be observed from Figures 4 and 5 that from 9000 s, the K-gap metric value begins to
decline as the real-time configuration implementation, and the values of residual signal
and evaluation function, begin to decrease and gradually converge. At ~14,700 s, the K-gap
metric settles at ~0.001 and the kernel subspace of observer is adequately approximate to
the kernel subspace of system plant. In addition, the value of evaluation function becomes
less than the threshold and the false alarm disappears, which reflects that the real-time
optimized residual generator is effective for the current operation point. Therefore, the
optimization goal is realized and the real-time configuration of the residual generator is
achieved for the system. In addition, the optimized parameters of θAB, θC are, respectively,
given in Figures 6 and 7 to show the parameter configuration process.

Tank 1
Tank 3

Tank 2

Pump 1 Pump 2

H
 

m
a
x

h1 

h3 
h2 

Lv1 Lv3 Lv2

Pv1 Pv3 Pv2

Figure 2. Schematic diagram of three-tank system.

Figure 3. Input and output data.
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Figure 4. Residual signal and evaluation function under the optimization configuration.
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1

Figure 5. K-gap metric under the online optimization configuration.

Now, the online configured residual generator is applied to the fault detection imple-
mentation to verify its usefulness. Here, two types of fault will be considered and assumed
to happen at 23,000 s, respectively. First, consider that a leakage fault happens in the tank
2 with a 20% leakage level at 23,000 s. Figure 8 shows the fault detection result by the
online configured residual generator. It can be seen from the figure that the value of the
evaluation function exceeds the threshold at 23,005 s, which means that the leakage fault
is detected. Then, the usefulness of the fault detection based on the online configuration
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scheme is illustrated. Moreover, another type of fault, i.e., a drift fault with slope 0.01 oc-
curring in the sensor of water level of tank 2, is considered at 23,000 s. Figure 9 shows the
corresponding fault detection result, from which one can see that the drift fault is detected
by the proposed optimization configuration algorithm at 23,042 s. According to the above
fault detection results, it is clear that the optimization configuration method of this paper
can detect the fault accurately and timely. As a consequence, the real-time configuration
method proposed in this paper can effectively deal with the system under the influence
of operation point changes or uncertainties, and the effectiveness of the method in fault
detection implementation is demonstrated.

Figure 6. Optimized parameters of θAB.

Figure 7. Optimized parameters of θC.
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Figure 8. Fault detection by the optimization configuration under leakage fault.
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Figure 9. Fault detection by the optimization configuration under sensor drift fault.

5. Conclusions

Considering that the changes of operating conditions, practical environment, and
some uncertainties may occur in industrial processes, this paper is dedicated to the real-
time configuration design for fault detection systems. As an important means of real-
time configuration, the gradient optimization scheme is considered and adopted in this
work for the real-time configuration implementation. A novel optimization algorithm is
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developed by virtue of the gradient-based technique, in which the K-gap metric between
the residual generator and the current system is minimized. Then, the residual generator
parameters can be updated based on the I/O data, and the real-time configuration for
fault detection systems is realized to satisfy a particular demand. Finally, the usefulness
and merits of the proposed approach are demonstrated through the benchmark case on
a three-tank model. One main advantage of this work is that by virtue of the K-gap
metric technique together with the gradient-based method, the online-configured residual
generator parameters are reliable to guarantee the fault detection performance for industrial
systems with changeable operating points. Besides, the input/output data information are
sufficiently exploited for the fault detection implementation, which avoids the difficulties
of the system identification in practice. As the real-time configuration method is carried
out based on the process data, the computation amount would be the main concern of
the implementation, especially for large-scale industrial systems, which inspires us to
conduct further research in this field. Note that one of the main contributions of this paper
is to introduce the K-gap idea into the real-time configuration implementation, which
exploits the essential characteristic of fault detection systems. In our future work, the
K-gap-based optimization configuration approach will be further extended to systems with
nonlinearities and fault-tolerant control issues.
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