
����������
�������

Citation: Rebello, C.M.; Marrocos,

P.H.; Costa, E.A.; Santana, V.V.;

Rodrigues, A.E.; Ribeiro, A.M.;

Nogueira, I.B.R. Machine

Learning-Based Dynamic Modeling

for Process Engineering Applications:

A Guideline for Simulation and

Prediction from Perceptron to Deep

Learning. Processes 2022, 10, 250.

https://doi.org/10.3390/pr10020250

Academic Editor: Seung-Jun Shin

Received: 17 December 2021

Accepted: 24 January 2022

Published: 27 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

Machine Learning-Based Dynamic Modeling for Process
Engineering Applications: A Guideline for Simulation and
Prediction from Perceptron to Deep Learning
Carine M. Rebello 1,2 , Paulo H. Marrocos 1, Erbet A. Costa 2 , Vinicius V. Santana 1, Alírio E. Rodrigues 1 ,
Ana M. Ribeiro 1 and Idelfonso B. R. Nogueira 1,*

1 Laboratory of Separation and Reaction Engineering, Associate Laboratory LSRE/LCM, Department of
Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto,
Portugal; carine.menezes@ufba.br (C.M.R.); phmarrocos@gmail.com (P.H.M.);
up201700649@edu.fe.up.pt (V.V.S.); arodrig@fe.up.pt (A.E.R.); apeixoto@fe.up.pt (A.M.R.)

2 Departamento de Engenharia Química, Escola Politécnica (Polytechnic School), Universidade Federal da Bahia,
Salvador 40210-630, Brazil; erbetcosta@ufba.br

* Correspondence: idelfonso@fe.up.pt

Abstract: A misusage of machine learning (ML) strategies is usually observed in the process systems
engineering literature. This issue is even more evident when dynamic identification is performed.
The root of this problem is the gradient explode and vanishing issue related to the recurrent neural
networks training. However, after the advent of deep learning, these issues were mitigated. Fur-
thermore, the problem of data structuration is often overlooked during the machine learning model
identification in this field. In this scenario, this work proposes a guideline for identifying ML models
for the different applications in process systems engineering, which are usually for simulation or
prediction purposes. While using the proposed guideline, the work also identifies a virtual analyzer
for a pressure swing adsorption unit. In these types of adsorption separations, it is usual that the
measurement of the main properties is not done online. Therefore, the virtual analyzer is another con-
tribution of this manuscript. The overall results demonstrate that even though the test provides good
performance during the ML model identification, its quality might degenerate over the application
domain if the model application is overlooked.

Keywords: machine learning; deep learning; dynamic modeling; pressure swing adsorption

1. Introduction

While, from a first perspective, the concepts of prediction and simulation appear to
be the same, they are different, and this difference must be emphasized. A simulation
is performed to verify the response of a model using input data and initial conditions.
The values calculated as a response of the model have a sampling time equal to the
sampling time of the input variables. A prediction computes the response of a model at
some specified future horizon of time through the projection of current and past values of
measured input and output values, as well as initial conditions. Thus, a simulation does
not require measurements (the actual states of the system) beyond the initial condition.
In contrast, a prediction depends on it, leading simulations to be adequate to situations
in which measurements are unavailable, such as control system design, fault detection,
and process optimization [1]. On the other hand, in scenarios where there is a measurable
quantity, but its measurement has a significant deadtime, prediction is more suitable.

The difference between these concepts reflects the instruments and techniques ade-
quate for one or the other. The data structure is the first and essential step in identifying
the models when dealing with data-driven modeling. The predictors are structures used
to organize the data following its application. There are many predictor structures [2].

Processes 2022, 10, 250. https://doi.org/10.3390/pr10020250 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr10020250
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0002-0796-8116
https://orcid.org/0000-0003-1397-9628
https://orcid.org/0000-0002-0715-4761
https://orcid.org/0000-0002-0963-6449
https://doi.org/10.3390/pr10020250
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr10020250?type=check_update&version=1

Processes 2022, 10, 250 2 of 18

However, the most important to represent nonlinear systems are the nonlinear autore-
gressive with exogenous inputs (NARX) and the nonlinear output error (NOE) [3]. The
first depends on past measurements of the input and the output, the “exogenous inputs”
fraction of its name. It assumes that the error associated with its prediction comes from the
information provided by the measurements used as input of the structure. The NOE does
not depend on past measures of the output to make forecasts. It uses its past forecasts and
the measurement of the inputs; additionally, it assumes that the error is only added to its
output. It forms the actual output value.

Consequently, the NARX nature of evaluating the error makes it inadequate for long-
term simulations. To perform predictions, it must be assumed that the forecast made at
one time is the measurement input of a future time; the model, in this manner, is used
recursively. Hence, the error of one prediction is carried to another time as the error is
associated with a measurement input, and, consequently, the error has a cumulative nature.
In contrast, the internal structure of the NOE is noiseless, and the error is only added to
the prediction: as such, it does not have a cumulative nature, and it is, therefore, more
adequate to simulations [4].

Despite this inadequacy, the NARX structure is frequently used in chemical and
process engineering to simulate dynamic systems, mainly due to its simplicity of identi-
fication. The NOE structure is less studied due to an increased difficulty associated with
its identification [3,4].

Suppose an artificial intelligence is utilized as nonlinear function to implement the
NARX or NOE structure. In that case, the NARX model is easier to train as it is possible to
use it in a series-parallel architecture. It allows the utilization of the feedforward training
strategy of the static backpropagation [5]. The NOE model does not use the output mea-
surement to compute predictions. Instead, it uses its past predictions; it can only be trained
in a parallel architecture. This is a complex issue, as the parameters of the models depend
on the model output, which becomes an input in the next iteration. Thus, it is vulnerable to
exploding or vanishing gradients, requiring more sophisticated neural network structures
to prevent this [6]. The advent of deep learning is intrinsically related to this issue.

The regular inappropriate use of the NARX model to perform simulations in the
chemical engineering domain has led to the lack of investigation of strategies to determine
the best choice of a recurrent model approach. While the NARX can be utilized reasonably
in certain cases, its use must be evaluated, as the cumulative error associated with its
structure can lead to unrealistic results or instability of the model [1].

In this scenario, this work addresses this open issue in the literature providing guide-
lines for the adequate use of machine learning models. As a study case, the empirical
modeling of a pressure swing adsorption (PSA) unit is presented.

The PSA can be depicted as a separation process that takes advantage of the interaction
between different chemical species in a fluid phase and a solid adsorbent to separate these
species. This interaction’s intensity is leveraged by the variation of the system’s pressure to
achieve the separation [7,8].

Machine learning techniques have been applied in pressure swing adsorption units to
address the problems found in this field. For instance, Ye et al. (2019) [9] used a feedforward
structure to develop a simulation model for a PSA unit. Tong et al. (2021) [10] presented
an artificial neural network model to optimize a PSA unit. In Sant Anna et al. (2017) [11]
and Subraveti et al. (2019) [12], they also applied a feedforward structure to model a PSA
unit for optimization purposes. These works have important contributions to the PSA
field, addressing the process optimization and modeling issues. However, the authors
of the previously referred works applied a predictors structure without evaluating the
predictor embedding dimensions or without considering the fact that the used predictor is
not appropriate to a simulation scenario. In a broader context of chemical engineering, it is
possible to find the same tendency. For instance, Meleiro et al. (2009) [13] propose modeling
a chemical plant through ANN tools. Mouellef et al. (2021) [14] presents a chromatography
process design and operation optimization aided by artificial intelligence. Rahnama et al.

Processes 2022, 10, 250 3 of 18

(2020) [15] applied ML tools to model a basic oxygen steelmaking from experimental
data. Even in other engineering fields, ML strategies are usually employed in this sense.
Coccia et al. (2021) [16] employed ANN models to simulate the cooling demand of a single-
family house. Pervez et al. (2021) proposes an ANN model to predict wind speed to be
applied as a simulation model in a control scheme. Still, these works do not evaluate the
suitable predictor, embedding dimensions, and ML model for their applications. As it
is possible to see from this literature review, there is overall misleading employment of
machine learning models in the field of chemical engineering, and more specifically, in the
area of modeling pressure swing adsorption unit. In fact, it is generally challenging to find
works in chemical engineering that apply machine learning models and evaluate the issues
related to the predictors. As pointed by Dobbelaere et al. (2021) [17]: “The greatest threat in
artificial intelligence research today is inappropriate use because most chemical engineers
have had limited training in computer science and data analysis.”. Therefore, this work
addresses part of this issue, providing a comprehensive guideline for ML application in
this field.

The dynamics of a PSA unit are very complex, where no steady state is observed.
Furthermore, it presents difficulties in obtaining a measurement of its main properties, such
as concentrations. These measurements are usually obtained using offline instruments as
gas chromatography (GC) techniques. These instruments require a significant amount of
time to perform the measurement, during which the desired information is unknown.

In this scenario, this work proposes identifying a soft sensor to perform real-time
predictions of the purities and recoveries of a PSA unit. On the other hand, it presents the
identification of machine learning (ML) models to simulate the dynamic behavior PSA unit.
The machine learning strategies employed here were the traditional feedforward neural
network (FNN), a recurrent neural network (RNN), and a deep neural network (DNN) [18].
Therefore, three main contributions of this work are highlighted. A general contribution
is the discussion of guidelines for the dynamic identification of ML models in chemical
and process engineering. Overall, two specific contributions are the development of a soft
sensor for a PSA unit and a simulator of the PSA process.

2. Methods

This section presents the main methods applied in developing the ideas addressed here.

2.1. Study Case

Cyclic adsorption processes promote the separation of complex mixtures while being
an energetically efficient and environmentally friendly route. Among the cyclic adsorption
processes, the pressure swing adsorption (PSA) unit can be highlighted for its wide range
of applications to promote gas-phase separations. These processes leverage the variation of
the adsorption capacity of a given adsorbent with the pressure, hence promoting the gas
separation by taking advantage of the adsorption phenomena. The unit operates in a series
of discrete steps, each with a specific function, as described below. This creates a dynamic
behavior where no steady estate is reached.

The PSA unit of this work will be used as a pre-treatment of syngas to purify it. As
shown in Figure 1, the PSA unit has five steps: steps I and IV are conducted under varying
pressure, whereas the others are performed at constant pressure. It will be fed a gas mixture
of CO2, CO, and H2 to capture the CO2 and separate it from the CO and H2, considering
the components of the purified syngas. This operation aims to achieve a CO2-enriched
stream with an H2/CO stoichiometric ratio between 2.2 and 2.3, the suitable feed range for
the Fischer–Tropsch step.

Processes 2022, 10, 250 4 of 18
Processes 2022, 10, x FOR PEER REVIEW 4 of 19

Figure 1. Representation of the proposed measurement system for the PSA unit.

A virtual plant of this unit was used based on its phenomenological model. The
virtual plant will generate the synthetic data with which the networks will be trained. The
adequate tools are discussed in the next section. The phenomenological model used in this
work was proposed by Silva et al. (1999) [19] and validated by Regufe et al. [20], in which
the following assumptions were made:
1. Gas-phase follows an ideal behavior;
2. The flow is axially dispersed;
3. There are external mass and heat transfer resistances, represented by the film model;
4. There is an internal mass transfer resistance, represented by the linear driving force

(LDF) model;
5. The heat transfer in the solid phase is faster than in the gas phase to the extent that

there are no temperature gradients inside the particles;
6. The porosity along the bed is constant;
7. The Ergun equation is valid locally.

2.2. Simulation Case: Short-Term Simulation for Online Applications
Simulations are usually necessary for optimization and control ends. For instance,

the literature on PSA optimization and control presents works addressing the
optimization and control of these units through simulations performed using ML models
[21,22]. Furthermore, generally in the chemical engineering literature, it is challenging to
find works that properly use ML models for simulation ends. Usually, NARX structures
are employed for this end. However, no works were found that address the proper
employment of ML models to perform this task. Therefore, it is a pertinent issue to be
evaluated. It provides essential guidelines to the literature on simulation using ML
models.

The virtual plant will serve as a benchmark simulation to compare the simulations
performed in this case. As the phenomenological model requires great computational
effort to simulate the unit, a surrogate model might be more appropriate when
simulations are necessary to be performed in the short term.

Figure 1. Representation of the proposed measurement system for the PSA unit.

A virtual plant of this unit was used based on its phenomenological model. The
virtual plant will generate the synthetic data with which the networks will be trained. The
adequate tools are discussed in the next section. The phenomenological model used in this
work was proposed by Silva et al. (1999) [19] and validated by Regufe et al. [20], in which
the following assumptions were made:

1. Gas-phase follows an ideal behavior;
2. The flow is axially dispersed;
3. There are external mass and heat transfer resistances, represented by the film model;
4. There is an internal mass transfer resistance, represented by the linear driving force

(LDF) model;
5. The heat transfer in the solid phase is faster than in the gas phase to the extent that

there are no temperature gradients inside the particles;
6. The porosity along the bed is constant;
7. The Ergun equation is valid locally.

2.2. Simulation Case: Short-Term Simulation for Online Applications

Simulations are usually necessary for optimization and control ends. For instance, the
literature on PSA optimization and control presents works addressing the optimization
and control of these units through simulations performed using ML models [21,22]. Fur-
thermore, generally in the chemical engineering literature, it is challenging to find works
that properly use ML models for simulation ends. Usually, NARX structures are employed
for this end. However, no works were found that address the proper employment of ML
models to perform this task. Therefore, it is a pertinent issue to be evaluated. It provides
essential guidelines to the literature on simulation using ML models.

The virtual plant will serve as a benchmark simulation to compare the simulations
performed in this case. As the phenomenological model requires great computational effort
to simulate the unit, a surrogate model might be more appropriate when simulations are
necessary to be performed in the short term.

Processes 2022, 10, 250 5 of 18

2.3. Prediction Case: Online Sensor

The online sensor proposed in this work will provide information about the system in
real-time to help with the problem of measurement dead time associated with a PSA unit.
The virtual plant will simulate the offline measurements provided to the network in the
prediction case. It will be used to predict the following values of the properties until the
subsequent measurement is performed again to provide information during the dead time.
Figure 1 illustrates the online sensor: samples of the output will be regularly obtained to
measure the concentrations and get the purity and recovery of the PSA unit. Additionally,
the input information of the PSA unit, such as cycle times, column pressures, and flow
values, will also be made available to the online sensor.

It is expected that the error associated with each prediction of the online sensor rises
as time passes. The machine learning models used to represent the nonlinear dynamic
system of the PSA will be based on deep neural networks, recurrent neural networks,
and feedforward neural networks. Therefore, these three main ML strategies will be
evaluated in this prediction scenario, hence, a comprehensive comparison of these models
will be conducted.

2.4. Predictors

A dynamic system can be represented as a time series, a series of data points ordered
in time. This series can be described in a general form by Equation (1):

y(t) = G[u(t), u(t− 1), . . . , u(t− k), v(t), v(t− 1), . . . , v(t− k)] (1)

in which u is an input, and v is the white noise, and y is an output. There are many tools
to the development of models, one of which is the predictors. Though many predictors
exist [23], only a few of them are the ones to which a detailed explanation will be given
hereinafter. The relationship between past inputs u and the output y can be given by
Equation (2):

y(t) = g(φ(t), θ) + v(t) (2)

in which g is a nonlinear function, for example, a neural network; φ(t) is the regression
vector, and θ is the function’s parameters. The choice of different components of the
regression vector determines the predictor structure.

2.5. Nonlinear Autoregressive with Exogenous Inputs (NARX)

The components of the regression vector associated with the NARX structure are the
past measured inputs and the past measured outputs. As such, through this structure, a
prediction ŷ of the actual output, y is given by Equation (3).

ŷ(t) = g[y(t− 1), . . . , y(t− na), u(t− d), . . . , u(t− d− nb + 1), θ] + v(t) (3)

in which d is the input delay; and na and nb are the number of past values for the output and
input, respectively. Note that the noise is added inside the structure in itself: for the NARX,
it is assumed that the error information is filtered through the system’s dynamic [1]. Conse-
quently, the error structure of NARX is additive. Equation (3) is a one-step-ahead prediction.
However, it often is extended to multiple step-ahead predictions or simulations by using
the predictions ŷ instead of measurements y as input to make future predictions recursively.

Thus, the error associated with a prediction adds to future predictions, as it is carried
over through the additive nature of the error in this structure: it is here that the problem
lies. Figure 2 shows the NARX structure used recursively. The prediction is used instead
of measurement as input of the function. Note that the number of measured information,
output predictions, and the input time delay are parameters to be considered when devel-
oping the structure: in Figure 2, there is only one measured input, one output prediction,
and an input time delay of one, to simplify the example.

Processes 2022, 10, 250 6 of 18Processes 2022, 10, x FOR PEER REVIEW 6 of 19

Figure 2. NARX structure used recursively.

In other words, if a simulation is performed with NARX, the structure will be used
recursively. Thus, the predictions calculated at one time are used as measurements at the
next instant. This means that there is an assumption of knowing the system’s state at
future times. In the absence of the measurement, the past prediction is assumed to be a
good representation of the predictions made. This assumption might not be reasonable in
simulations, as there is no previous knowledge of future states.

2.6. Nonlinear Output Error (NOE)
The NOE structure does not require an exogenous input as a component of the

regression vector: it uses the measured input and the predicted output. With the objective
of more easily organizing the equations to be shown, for the NOE, the predicted output
will be represented by 𝑝(𝑡). As such, Equations (4) and (5) represent a one-step-ahead
prediction through NOE. 𝑝(𝑡) = 𝑔[𝑝(𝑡 − 1), … , 𝑝(𝑡 − 𝑛), 𝑢(𝑡 − 𝑑), … , 𝑢(𝑡 − 𝑑 − 𝑛 + 1)] (4)𝑦(𝑡) = 𝑝(𝑡) + 𝑣(𝑡) (5)

As can be seen, the prediction structure is noiseless, and the noise is added only to
the prediction after the system. Consequently, if this structure is used recursively to
perform long-term predictions or simulations, the error is not propagated through each
prediction. The easiest way to visualize an NOE structure is by analogy with a system of
partial differential equations that represents a rigorous model. As such, the NOE is more
adequate than the NARX to perform simulations. Figure 3 exhibits the NOE structure
used recursively: it can be seen that the noise is only added after the prediction steps to
compose the actual output value. Similar to the NARX structure, the number of measured
inputs, output predictions, and the input delay are parameters to be determined. In order
to simplify the description shown in the figure, only output prediction and one recursive
delay were chosen.

Figure 2. NARX structure used recursively.

In other words, if a simulation is performed with NARX, the structure will be used
recursively. Thus, the predictions calculated at one time are used as measurements at the
next instant. This means that there is an assumption of knowing the system’s state at
future times. In the absence of the measurement, the past prediction is assumed to be a
good representation of the predictions made. This assumption might not be reasonable in
simulations, as there is no previous knowledge of future states.

2.6. Nonlinear Output Error (NOE)

The NOE structure does not require an exogenous input as a component of the re-
gression vector: it uses the measured input and the predicted output. With the objective
of more easily organizing the equations to be shown, for the NOE, the predicted output
will be represented by p(t). As such, Equations (4) and (5) represent a one-step-ahead
prediction through NOE.

p(t) = g[p(t− 1), . . . , p(t− na), u(t− d), . . . , u(t− d− nb + 1)] (4)

y(t) = p(t) + v(t) (5)

As can be seen, the prediction structure is noiseless, and the noise is added only
to the prediction after the system. Consequently, if this structure is used recursively to
perform long-term predictions or simulations, the error is not propagated through each
prediction. The easiest way to visualize an NOE structure is by analogy with a system of
partial differential equations that represents a rigorous model. As such, the NOE is more
adequate than the NARX to perform simulations. Figure 3 exhibits the NOE structure
used recursively: it can be seen that the noise is only added after the prediction steps to
compose the actual output value. Similar to the NARX structure, the number of measured
inputs, output predictions, and the input delay are parameters to be determined. In order
to simplify the description shown in the figure, only output prediction and one recursive
delay were chosen.

Thus, the NARX structure has the additive noise issue and, as such, must be treated
carefully when used for long-term predictions or simulations. However, this care is not
usual in the literature. Hence, the necessity to deep discuss this issue.

Processes 2022, 10, 250 7 of 18Processes 2022, 10, x FOR PEER REVIEW 7 of 19

Figure 3. NOE structure used recursively.

Thus, the NARX structure has the additive noise issue and, as such, must be treated
carefully when used for long-term predictions or simulations. However, this care is not
usual in the literature. Hence, the necessity to deep discuss this issue.

Although inadequate for such means, the NARX is often used to simulate as a
consequence of a more accessible training process, as previously described. Furthermore,
the NOE approach for dynamic ML modeling was impossible until the last decade due to
software/hardware limitations. This strategy became available to model time-series only
after the advent of deep learning. Therefore, it is still usual the systematic use of NARX
strategies coped with ML modeling. While this approach can sometimes lead to good
results, it can also create a significant difference between the predicted and correct values
due to the addictive nature of the error [4].

3. Analysis, Results, and Discussion
This section provides the analysis, the correspondent result, and the two applications

cases that illustrate the topics discussed in this work.

3.1. Data Acquisition
The quality of the predictions made by the network depends heavily on the quality

of the data used to train it, as it is the basis over which the model learns the phenomena
in analysis. As such, to produce the data set, the Latin hypercube sampling (LHS), a
method developed by McKay et al. [24], was used. In LHS, a sample range of each input
variable was divided into a given number of intervals with equal probability, and a
random value inside each interval was chosen. The input variables were randomly
organized to form input groups to calculate the output values. This method, which is an
extension of stratified sampling, ensures that the input variables have all their portions
represented and all portions of their distributions. In this article, the LHS designed 1000
experiments. Each experiment was applied to the virtual plant. The results for each
experiment were recorded until the PSA reached the cyclic steady state, after 25 cycles.
Therefore, 25.000 points were generated.

All input variables were considered in the design of experiments, namely: inlet
temperature, purge flowrate, rinse flow rate, high pressure, low pressure, feed step
duration, rinse step duration, and purge step duration. The limits used was based on
Nogueira et al. (2020) [25], and are respectively: 𝜽 = [304 K, 0.225 SLPM, 0.425 SLPM,
3.4 bar, 0.55 bar, 380 s, 187 s, 80 s] and 𝜽 = [350 K, 0.345 SLPM, 0.575 SLPM, 5 bar, 1.1
bar, 680 s, 253 s, 110 s].

The training, validation, and test data set was created using the PSA virtual plant.
The input data generated by the LHS is presented in Figure 4. In the diagonal of this figure,
it is possible to observe that the samples are uniformly distributed within the sampling
space, as expected.

Figure 3. NOE structure used recursively.

Although inadequate for such means, the NARX is often used to simulate as a conse-
quence of a more accessible training process, as previously described. Furthermore, the
NOE approach for dynamic ML modeling was impossible until the last decade due to
software/hardware limitations. This strategy became available to model time-series only
after the advent of deep learning. Therefore, it is still usual the systematic use of NARX
strategies coped with ML modeling. While this approach can sometimes lead to good
results, it can also create a significant difference between the predicted and correct values
due to the addictive nature of the error [4].

3. Analysis, Results, and Discussion

This section provides the analysis, the correspondent result, and the two applications
cases that illustrate the topics discussed in this work.

3.1. Data Acquisition

The quality of the predictions made by the network depends heavily on the quality
of the data used to train it, as it is the basis over which the model learns the phenomena
in analysis. As such, to produce the data set, the Latin hypercube sampling (LHS), a
method developed by McKay et al. [24], was used. In LHS, a sample range of each input
variable was divided into a given number of intervals with equal probability, and a random
value inside each interval was chosen. The input variables were randomly organized to
form input groups to calculate the output values. This method, which is an extension of
stratified sampling, ensures that the input variables have all their portions represented and
all portions of their distributions. In this article, the LHS designed 1000 experiments. Each
experiment was applied to the virtual plant. The results for each experiment were recorded
until the PSA reached the cyclic steady state, after 25 cycles. Therefore, 25,000 points
were generated.

All input variables were considered in the design of experiments, namely: inlet tempera-
ture, purge flowrate, rinse flow rate, high pressure, low pressure, feed step duration, rinse step
duration, and purge step duration. The limits used was based on Nogueira et al. (2020) [25],
and are respectively: θmin = [304 K, 0.225 SLPM, 0.425 SLPM, 3.4 bar, 0.55 bar, 380 s, 187 s,
80 s] and θmax = [350 K, 0.345 SLPM, 0.575 SLPM, 5 bar, 1.1 bar, 680 s, 253 s, 110 s].

The training, validation, and test data set was created using the PSA virtual plant. The
input data generated by the LHS is presented in Figure 4. In the diagonal of this figure, it is
possible to observe that the samples are uniformly distributed within the sampling space,
as expected.

Processes 2022, 10, 250 8 of 18Processes 2022, 10, x FOR PEER REVIEW 8 of 19

Figure 4. Distribution of the inputs samples generated by LHS.

3.2. Embedding Dimensions Optimal Selection
He and Asada proposed a methodology [26] to identify the optimal number of past

values for the output and input variables in nonlinear dynamic predictors. It consists of
calculating the Lipschitz coefficient q() through Equation (6), using observed input-
output data of the system in analysis, to which it is assumed a sensitivity analysis can be
done. Through this strategy, it is possible to characterize the relationship of a nonlinear
set of input-output relationships for any chaotic/complex dynamic system. q() = y − y(𝛿u (t − j)) +. +(𝛿u (t − j)) (6)

in which 𝑚 is the number of observed points in the input-output data, 𝑚 is the number
of input variables to be considered, and j = 1,2, … , N . For each measurement pair, a
Lipschitz coefficient is computed, after which each coefficient is then used to calculate the
Lipschitz Index 𝑞() through Equation (7):

𝑞() = (√𝑛 𝑞(𝑘)())(/) (7)

in which 𝑛 is the number of delays considered in the variables, p is a parameter usually
between 0.01 N and 0.02 N, and q(k)() is the k-th most significant Lipschitz coefficient
from all q() calculated by Equation (6). The method consists of varying 𝑛 and
calculating the correspondent Lipschitz index until its respective value does not differ
significantly. Then, the first index to define this region of insensible indexes is the one
associated with the desired optimal number of delays.

In this work, this procedure will be used with the NOE and NARX structures to
determine the best number of input and output delays to be used in each predictor. The
value 𝑝 = 0.01𝑁 was chosen following the literature recommendation [18]. Figure 5
presents the results obtained after applying the Lipschitz analysis on the synthetic data
obtained from the virtual plant. It is possible to see that for both cases, one delay for the

Figure 4. Distribution of the inputs samples generated by LHS.

3.2. Embedding Dimensions Optimal Selection

He and Asada proposed a methodology [26] to identify the optimal number of past
values for the output and input variables in nonlinear dynamic predictors. It consists of
calculating the Lipschitz coefficient q(m)

j through Equation (6), using observed input-output
data of the system in analysis, to which it is assumed a sensitivity analysis can be done.
Through this strategy, it is possible to characterize the relationship of a nonlinear set of
input-output relationships for any chaotic/complex dynamic system.

q(m)
j =

∣∣∣yj−1 − yj

∣∣∣√
(δu1(t− j))2 ++(δum(t− j))2

(6)

in which m is the number of observed points in the input-output data, m is the number
of input variables to be considered, and j = 1, 2, . . . , N. For each measurement pair, a
Lipschitz coefficient is computed, after which each coefficient is then used to calculate the
Lipschitz Index q(n) through Equation (7):

q(n) =

(
p

∏
k=1

√
n q(k)(m)

)(1/p)

(7)

in which n is the number of delays considered in the variables, p is a parameter usually
between 0.01 N and 0.02 N, and q(k)(n) is the k-th most significant Lipschitz coefficient
from all q(m)

j calculated by Equation (6). The method consists of varying n and calculating
the correspondent Lipschitz index until its respective value does not differ significantly.
Then, the first index to define this region of insensible indexes is the one associated with
the desired optimal number of delays.

In this work, this procedure will be used with the NOE and NARX structures to
determine the best number of input and output delays to be used in each predictor. The
value p = 0.01 N was chosen following the literature recommendation [18]. Figure 5

Processes 2022, 10, 250 9 of 18

presents the results obtained after applying the Lipschitz analysis on the synthetic data
obtained from the virtual plant. It is possible to see that for both cases, one delay for the
outputs is enough. On the other hand, four output delays are necessary for the recovery
predictor, while five are necessary for the purity predictor.

Processes 2022, 10, x FOR PEER REVIEW 9 of 19

outputs is enough. On the other hand, four output delays are necessary for the recovery
predictor, while five are necessary for the purity predictor.

(A)

(B)

Figure 5. Lipschitz indexes for process inputs in order of the recovery (A) and purity (B), 𝑛 and 𝑛 are the number of past values for the output and input, respectively, as in Equations (3) and (4).

3.3. Hyperparameter Tuning
A first step in identifying an artificial neural network model is the definition of the

variables that govern the training process and artificial neural network topology. These
variables are known as hyperparameters and may have a significant impact on fitting
performance. A set of hyperparameters is not directly related to the final model structure,
but to how the model will be identified, such as learning rate, momentum, learning rate
decay, the number of epochs, and mini-batch size. On the other hand, there is a set of
parameters related to the ANN structure, such as the number of layers and neurons,
activation function, and layer type. The hyperparameter space is comprised of a set of
both discrete and continuous variables, which makes their selection a complex task.

Therefore, an initial optimization step is necessary to select the hyperparameters
efficiently. This is performed over the original learning problem, in a way to select the
hyperparameters by monitoring the learning cost function [27]. This is a very time-
consuming procedure that has been studied in the recent literature. A most recent advance
in this field is the HYPERBAND method [28]. This strategy formulates hyperparameter

Figure 5. Lipschitz indexes for process inputs in order of the recovery (A) and purity (B), na and nb
are the number of past values for the output and input, respectively, as in Equations (3) and (4).

3.3. Hyperparameter Tuning

A first step in identifying an artificial neural network model is the definition of the
variables that govern the training process and artificial neural network topology. These
variables are known as hyperparameters and may have a significant impact on fitting
performance. A set of hyperparameters is not directly related to the final model structure,
but to how the model will be identified, such as learning rate, momentum, learning rate
decay, the number of epochs, and mini-batch size. On the other hand, there is a set of
parameters related to the ANN structure, such as the number of layers and neurons,
activation function, and layer type. The hyperparameter space is comprised of a set of both
discrete and continuous variables, which makes their selection a complex task.

Therefore, an initial optimization step is necessary to select the hyperparameters
efficiently. This is performed over the original learning problem, in a way to select the hy-
perparameters by monitoring the learning cost function [27]. This is a very time-consuming
procedure that has been studied in the recent literature. A most recent advance in this field
is the HYPERBAND method [28]. This strategy formulates hyperparameter optimization as
an exploration problem. A predefined resource is allocated to randomly sampled configu-

Processes 2022, 10, 250 10 of 18

rations within a chosen hyperspace. Hence, it requires as input parameters the hyperspace
limits and the maximum amount of resources to be used (epochs).

In the present work, the neural networks, training, and hyperparameters tuning were
implemented using TensorFlow 2.0 on the Google Colaboratory environment with Python
3.6. Google Colaboratory is a free serverless Jupyter notebook environment for prototyping
machine learning models [29]. This allowed performing the identification using hardware
accelerators such as tensor process units (TPUs) which can increase neural network training
speed in the order of 10 compared to modern CPUs. For the present case, the hyperspace
was defined as depicted in Table 1. For the DNN case, two types of deep learning structures
are evaluated the gated recurrent unit (GRU) and the long short-term memory (LSTM).

Table 1. Hyperparameter search space for RNN, FNN and DNN.

Hyperparameters Search Space

RNN FNN DNN

Initial learning rate

{
1× 10−3,
1× 10−2,
1× 10−1}

{
1× 10−3,
1× 10−2,
1× 10−1}

{
1× 10−3,
1× 10−2,
1× 10−1}

Number of recurrent layers {1, 2, 3} {1, 2, 3, 4} {1, 2, 3, 4}
Recurrent layer type - - {GRU, LSTM}

Number of neurons in the recurrent layers {100, 150, 250, 300, 350} 70 to 160, every 10 {60, 80, 100, 120, 160}
Activation function in the recurrent layers {relu, tanh} {relu, tanh} {relu, tanh}

Number of neurons in the intermediate fully
connected layer {10, 20, 50, 80, 100} {70, 90, 100, 120, 130} {80, 100, 120, 160}

Activation function in the fully connected layer {relu, tanh} {relu, tanh} {relu, tanh}

The results in Table 2 were obtained after applying the HYPERBAND algorithm on
the hyperspace presented in Table 1. Interestingly, the algorithm found a mix of GRU and
LSTM layers as an optimal structure of DNN for the purity model. On the other hand, only
GRU layers are identified as an optimal structure for the recovery model.

Table 2. Results of best hyperparameters for each performance indicator for RNN, FNN and DNN.

Hyperparameters RNN FNN DNN

PurCO2 RecCO2 PurCO2 RecCO2 PurCO2 RecCO2

Initial learning rate 0.01 0.01 0.001 0.001 0.001 0.001
Number of recurrent layers - - 3 2

Recurrent layer type 1 2 - -
{Layer 1: GRU,
Layer 2: GRU,

Layer 3: LSTM}

{Layer 1: GRU,
Layer 2: GRU}

Number of neurons in the
recurrent layers 250 {Layer 1: 250,

Layer 2: 350} - -
{Layer 1: 120,
Layer 2: 160,
Layer 3: 120}

{Layer 1: 100,
Layer 2: 100}

Activation function in the
recurrent layers tanh {Layer 1: relu,

Layer 2: relu} - -
{Layer 1: relu,
Layer 2: relu,
Layer 3: tanh}

{Layer 1: tanh,
Layer 2: relu}

Number of dense in the
intermediate

fully-connected layer
1 1 3 4 1 1

Number of neurons in the
intermediate

fully-connected layer
50 80

{Layer 1: 160,
Layer 2: 160,
Layer 3: 120}

{Layer 1: 150,
Layer 2: 150,
Layer 3: 150,
Layer 4: 150}

160 80

Activation function in the
intermediate

fully-connected layer
tanh tanh

{Layer 1: relu,
Layer 2: relu,
Layer 3: relu}

{Layer 1: relu,
Layer 2: relu,
Layer 3: relu,
Layer 4: relu}

tanh tanh

Processes 2022, 10, 250 11 of 18

3.4. Neural Network Training

Once the hyperparameters are defined, the next step is to train the defined structures
of ML models. This is the learning step, where the model’s parameters are estimated.
The cross-validation method proposed by Schenker and Agarwal [30] was used here to
avoid issues related to overtraining and overfitting. This strategy consists in dividing the
training data into two separate sets; two groups of networks are trained with each data
set. After training is achieved, the data set utilized for training one group of networks
is used to validate the other by calculating the mean squared errors. In this way, it is
possible to maximize the usage of available information without causing overfitting and
overtraining issues.

Further precautions are taken to avoid overtraining. The early stop criterion was used
during the training process, that is, the training is stopped after an arbitrary number of
iterations or when the mean squared error associated with the training started to increase
instead of decrease. The ADAM algorithm was used. Table 3 presents the model’s valida-
tion performance, where it is possible to observe that the DNN presents the best validation
performance. The FNN performance presents a reasonable performance, while the RNN
presents a poor performance index compared with the others.

Table 3. Models’ test performance indexes.

Metrics RNN FNN DNN

PurCO2 RecCO2 PurCO2 RecCO2 PurCO2 RecCO2

MSE 7.75× 10−4 1.3× 10−3 5.104× 10−5 1.6223× 10−4 1.487× 10−5 8.026× 10−5

MAE 0.0201 0.0258 0.0039 0.0055 0.0023 0.0032

Figures 6–8 portray the prediction of the FNNs, RNNs, and DNNs against the virtual
plant. Thus, it is possible to visualize the models’ behavior during the test step. The
behavior observed in these graphics reflects the performance index obtained during the
ML models identification. Hence, it is possible to see a good adherence of the DNN to the
test data, a fair adherence by the FNN, and a poor prediction by the RNN.

Finally, a better analysis of the validation results can be performed based on the
parity graphics shown in Figure 9. The parity plots display the ANNs’ predictions versus
the observed values in the synthetic data (Figure 9). For the cases of the DNN and the
FNN models, it is possible to observe that their parity is randomly distributed around
the diagonal line across the whole range of values, thus indicating that the residuals are
random. This demonstrates that the model was satisfactorily estimated within that domain.
On the other hand, for the RNN models, no randomness is observed in the parity graphics.

This, therefore, evidences the problems of the solely recurrent approach. These are
well-known issues in this field, as mentioned in the Introduction. These issues are the
reason for the widespread use of FNNs-based on NARX predictors. Furthermore, the
good performance of the FNN-NARX approach led to the reluctant employment of DNN
strategies in the chemical processes literature [18,21]. On the other hand, these models are
usually evaluated only by their test behavior. After that, the model is considered a good tool
to be employed in the practical case. However, if they are employed to address a situation
where they are not adequately used, their quality will quickly degenerate. This issue will
be further discussed in the results of this work. Overall, this is a practical observation of
the topics discussed here.

It is important to note that there are significant differences between the computation
time to train an NOE model and a NARX model. In the present work, it took approximately
1.8 s to perform a single training epoch for the NARX model. On the other hand, it took
3.3 s to perform a training epoch for the NOE model. Overall, the full training of the NARX
took 278 s, while the full training of the NOE model took 506 s. The trainings were done in
an online cloud computing service. However, the training is a step performed offline, and

Processes 2022, 10, 250 12 of 18

it should not be a critical issue. Still, this point should be considered when choosing the
most suitable strategy.

Processes 2022, 10, x FOR PEER REVIEW 12 of 19

Figure 6. RNN test performance.

Figure 6. RNN test performance.

Processes 2022, 10, x FOR PEER REVIEW 12 of 19

Figure 6. RNN test performance.

Figure 7. Cont.

Processes 2022, 10, 250 13 of 18
Processes 2022, 10, x FOR PEER REVIEW 13 of 19

Figure 7. FNN test performance.

Figure 8. DNN test performance.

Finally, a better analysis of the validation results can be performed based on the
parity graphics shown in Figure 9. The parity plots display the ANNs’ predictions versus
the observed values in the synthetic data (Figure 9). For the cases of the DNN and the
FNN models, it is possible to observe that their parity is randomly distributed around the

Figure 7. FNN test performance.

Processes 2022, 10, x FOR PEER REVIEW 13 of 19

Figure 7. FNN test performance.

Figure 8. DNN test performance.

Finally, a better analysis of the validation results can be performed based on the
parity graphics shown in Figure 9. The parity plots display the ANNs’ predictions versus
the observed values in the synthetic data (Figure 9). For the cases of the DNN and the
FNN models, it is possible to observe that their parity is randomly distributed around the

Figure 8. DNN test performance.

Processes 2022, 10, 250 14 of 18

Processes 2022, 10, x FOR PEER REVIEW 14 of 19

diagonal line across the whole range of values, thus indicating that the residuals are
random. This demonstrates that the model was satisfactorily estimated within that
domain. On the other hand, for the RNN models, no randomness is observed in the parity
graphics.

RNN model to CO2 Purity RNN model to CO2 Recovery

FNN model to CO2 Purity FNN model to CO2 Recovery

DNN model to CO2 Purity DNN model to CO2 Recovery

Figure 9. Models’ validation parity graphics.

This, therefore, evidences the problems of the solely recurrent approach. These are
well-known issues in this field, as mentioned in the Introduction. These issues are the

Figure 9. Models’ validation parity graphics.

3.5. Prediction Case

In this case, a virtual analyzer to provide real-time PSA purity and recovery predictions
is proposed. Following the problem discussed here, three analyzers are developed: a NARX
based FNN soft-sensor, and two other NOE-based (RNN and DNN) soft sensors.

The concentration measurement in PSA usually presents a significant deadtime, which
can reach several minutes. Hence, the purity and recovery are unknown while no mea-

Processes 2022, 10, 250 15 of 18

surement is available. Therefore, the virtual analyzer for these units is a suitable solution,
providing information regarding the process variables while no measurement is available.
As the NARX structure presents the exogenous input, this becomes a gate to introduce
the purity and recovery measured values when the measurement is available. Hence, it
is expected that the FNN-NARX sensor will produce the best performance in this case.
Therefore, the NARX is used to perform a short-term prediction while new information
about the system is collected. On the other hand, the RNN and DNN are misemployed
here, as we are dealing with a short-prediction scenario. The results compare the measured
values provided by the phenomenology model with the values predicted by the structures.
Figure 10 presents the results obtained for each structure to perform the predictions of
purity and recovery. The simulated measurement deadtime was 10 cycles. As can be seen,
the NOE, whose structures are more adequate to simulations, provides a more significant
difference between the predicted values and the reference values when compared with the
NARX predictor. This shows that the NARX, in this short-term prediction case, is indeed
adequate to provide information of the system: the error cumulation is not detrimental in
the prediction horizon chosen.

Processes 2022, 10, x FOR PEER REVIEW 15 of 19

reason for the widespread use of FNNs-based on NARX predictors. Furthermore, the
good performance of the FNN-NARX approach led to the reluctant employment of DNN
strategies in the chemical processes literature [18,21]. On the other hand, these models are
usually evaluated only by their test behavior. After that, the model is considered a good
tool to be employed in the practical case. However, if they are employed to address a
situation where they are not adequately used, their quality will quickly degenerate. This
issue will be further discussed in the results of this work. Overall, this is a practical
observation of the topics discussed here.

It is important to note that there are significant differences between the computation
time to train an NOE model and a NARX model. In the present work, it took
approximately 1.8 s to perform a single training epoch for the NARX model. On the other
hand, it took 3.3 s to perform a training epoch for the NOE model. Overall, the full training
of the NARX took 278 s, while the full training of the NOE model took 506 s. The trainings
were done in an online cloud computing service. However, the training is a step
performed offline, and it should not be a critical issue. Still, this point should be
considered when choosing the most suitable strategy.

3.5. Prediction Case
In this case, a virtual analyzer to provide real-time PSA purity and recovery

predictions is proposed. Following the problem discussed here, three analyzers are
developed: a NARX based FNN soft-sensor, and two other NOE-based (RNN and DNN)
soft sensors.

The concentration measurement in PSA usually presents a significant deadtime,
which can reach several minutes. Hence, the purity and recovery are unknown while no
measurement is available. Therefore, the virtual analyzer for these units is a suitable
solution, providing information regarding the process variables while no measurement is
available. As the NARX structure presents the exogenous input, this becomes a gate to
introduce the purity and recovery measured values when the measurement is available.
Hence, it is expected that the FNN-NARX sensor will produce the best performance in
this case. Therefore, the NARX is used to perform a short-term prediction while new
information about the system is collected. On the other hand, the RNN and DNN are
misemployed here, as we are dealing with a short-prediction scenario. The results
compare the measured values provided by the phenomenology model with the values
predicted by the structures. Figure 10 presents the results obtained for each structure to
perform the predictions of purity and recovery. The simulated measurement deadtime
was 10 cycles. As can be seen, the NOE, whose structures are more adequate to
simulations, provides a more significant difference between the predicted values and the
reference values when compared with the NARX predictor. This shows that the NARX,
in this short-term prediction case, is indeed adequate to provide information of the sys-
tem: the error cumulation is not detrimental in the prediction horizon chosen.

Processes 2022, 10, x FOR PEER REVIEW 16 of 19

Figure 10. Soft sensors evaluation for real-time PSA recovery and purity prediction.

Further comparison is provided by Table 4, which presents the performance indexes
of each soft sensor developed. The results presented in this table corroborate the
discussions made above.

Table 4. Soft sensors performance indicators.

 MAE MSE
 Purity Recovery Purity Recovery

RNN 0.6352 2.9592 0.9306 29.8229
DNN 0.2919 1.5503 0.4940 31.2703
FNN 0.1854 0.8084 0.0572 1.5549

Finally, these results provide the PSA soft sensor, which is one contribution of this
work. As it is possible to see from the results, the soft sensor can efficiently provide
information regarding the system behavior while there are no measurements.
Furthermore, as it is possible to see from the virtual plant, the soft sensor can actually
provide precise real-time information.

3.6. Simulation Case
Process simulation within a long horizon is usually necessary for process control and

optimization. For example, in dynamic optimization where it is necessary to evaluate the
evolution of the process from a given steady-state to another or in the infinity prediction
horizon in model predictive controllers. As discussed here, the NARX structures are not
recommended in these situations. However, it is usual to see them being employed for
these cases in the literature. Therefore, as another case study, the models identified here
were used to perform simulations of the PSA dynamic evolution. Figure 11 portrays the
result of the simulations. A total of five different operating conditions were given to the
PSA plant, and sufficient time was given until the system reached the corresponding cy-
clic steady-state.

Figure 10. Soft sensors evaluation for real-time PSA recovery and purity prediction.

Further comparison is provided by Table 4, which presents the performance indexes of
each soft sensor developed. The results presented in this table corroborate the discussions
made above.

Finally, these results provide the PSA soft sensor, which is one contribution of this
work. As it is possible to see from the results, the soft sensor can efficiently provide
information regarding the system behavior while there are no measurements. Furthermore,
as it is possible to see from the virtual plant, the soft sensor can actually provide precise
real-time information.

Processes 2022, 10, 250 16 of 18

Table 4. Soft sensors performance indicators.

MAE MSE

Purity Recovery Purity Recovery

RNN 0.6352 2.9592 0.9306 29.8229
DNN 0.2919 1.5503 0.4940 31.2703
FNN 0.1854 0.8084 0.0572 1.5549

3.6. Simulation Case

Process simulation within a long horizon is usually necessary for process control and
optimization. For example, in dynamic optimization where it is necessary to evaluate the
evolution of the process from a given steady-state to another or in the infinity prediction
horizon in model predictive controllers. As discussed here, the NARX structures are not
recommended in these situations. However, it is usual to see them being employed for
these cases in the literature. Therefore, as another case study, the models identified here
were used to perform simulations of the PSA dynamic evolution. Figure 11 portrays the
result of the simulations. A total of five different operating conditions were given to
the PSA plant, and sufficient time was given until the system reached the corresponding
cyclic steady-state.

Processes 2022, 10, x FOR PEER REVIEW 17 of 19

Figure 11. Simulation of the PSA operating from several different operating conditions.

As it is possible to see from the graphics in Figure 11, the FNN-NARX model
presented an offset at some conditions. On the other hand, the DNN model efficiently
predicted the cyclic steady-state and the system dynamics. A series of 100 operating
conditions were given to the model to better evaluate the differences between the ML
strategies under a simulation scenario. The graphics are not provided for this last case, as
the visualization is not appropriated due to the data density. Table 5 provides the
simulation performance indexes. It is possible to see that the DNN is significantly superior
to the FNN in the simulations scenario. The performance indexes differences are a clear
demonstration of how the FNN-NARX performance can degenerate along a simulation.

Table 5. Simulation performance indicators.

 MAE MSE
 Purity Recovery Purity Recovery

RNN 1.7159 108.0981 5.1987 8.3898
DNN 0.1799 0.8688 0.0740 4.8250
FNN 0.7135 2.1710 0.6541 10.2519

4. Conclusions
This work addresses the problem of identifying machine learning models for

simulations and prediction purposes. It presents a comprehensive guideline for the ML
models identification. On the other hand, it also deals with the online measurement issue

Figure 11. Simulation of the PSA operating from several different operating conditions.

As it is possible to see from the graphics in Figure 11, the FNN-NARX model presented
an offset at some conditions. On the other hand, the DNN model efficiently predicted the
cyclic steady-state and the system dynamics. A series of 100 operating conditions were

Processes 2022, 10, 250 17 of 18

given to the model to better evaluate the differences between the ML strategies under a
simulation scenario. The graphics are not provided for this last case, as the visualization
is not appropriated due to the data density. Table 5 provides the simulation performance
indexes. It is possible to see that the DNN is significantly superior to the FNN in the
simulations scenario. The performance indexes differences are a clear demonstration of
how the FNN-NARX performance can degenerate along a simulation.

Table 5. Simulation performance indicators.

MAE MSE

Purity Recovery Purity Recovery

RNN 1.7159 108.0981 5.1987 8.3898
DNN 0.1799 0.8688 0.0740 4.8250
FNN 0.7135 2.1710 0.6541 10.2519

4. Conclusions

This work addresses the problem of identifying machine learning models for simula-
tions and prediction purposes. It presents a comprehensive guideline for the ML models
identification. On the other hand, it also deals with the online measurement issue found in
a pressure swing adsorption unit. Thus, a series of ML models are identified to model the
PSA process.

It is important to note that the models employed in the simulation and the prediction
scenario are the same; their application is different. It is worth mentioning that the DNN
presented the best performance for the test of the ML models during the model identifica-
tion. Therefore, it was demonstrated how misleading it is to use the test performance solely
without considering their application. The model with the best test performance (DNN)
had inferior behavior during the prediction. On the other hand, the model with acceptable
performance in the test (FNN-NARX) had poor behavior when applied for simulation
purposes. Therefore, it was demonstrated the proper evaluation of the kind of application
a machine learning model is sought for is critical.

Regarding the online measurement, the results demonstrated that the soft sensor based
on FNN-NARX can efficiently predict the states while there is no measured data. On the
other hand, a model for simulation purposes based on DNN was provided, showing to be
able to efficiently simulate the model dynamic behavior.

Author Contributions: Conceptualization, I.B.R.N., C.M.R., P.H.M.; methodology, I.B.R.N., C.M.R.,
P.H.M., V.V.S., E.A.C.; writing—original draft preparation, I.B.R.N., C.M.R., E.A.C., V.V.S.; writing—
review and editing, I.B.R.N., C.M.R., and A.M.R.; supervision, I.B.R.N., A.E.R., A.M.R. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was financially supported by: Project—NORTE-01-0145-FEDER-029384 funded
by FEDER funds through NORTE 2020—Programa Operacional Regional do NORTE—and by na-
tional funds (PIDDAC) through FCT/MCTES. This work was also financially supported by: Base
Funding—UIDB/50020/2020 of the Associate Laboratory LSRE-LCM—funded by national funds
through FCT/MCTES (PIDDAC), Capes for its financial support, financial code 001 and FCT—
Fundação para a Ciência e Tecnologia under CEEC Institucional program.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kocijan, J.; Petelin, D. Output-error model training for gaussian process models. In International Conference on Adaptive and Natural

Computing Algorithms; Springer: Berlin/Heidelberg, Germany, 2011; pp. 312–321. [CrossRef]
2. Sjöberg, J.; Zhang, Q.; Ljung, L.; Benveniste, A.; Delyon, B.; Glorennec, P.-Y.; Hjalmarsson, H.; Juditsky, A. Nonlinear black-box

modeling in system identification: A unified overview. Automatica 1995, 31, 1691–1724. [CrossRef]
3. Koivisto, H. A Practical Approach to Model Based Neural Network Control; Tampere University of Technology: Tampere, Finland, 1995.
4. Zhang, Q. Nonlinear system identification with output error model through stabilized simulation. IFAC Proc. Vol. 2004, 37,

501–506. [CrossRef]

http://doi.org/10.1007/978-3-642-20267-4_33
http://doi.org/10.1016/0005-1098(95)00120-8
http://doi.org/10.1016/S1474-6670(17)31273-9

Processes 2022, 10, 250 18 of 18

5. Ćirović, V.; Aleksendrić, D.; Mladenović, D. Braking torque control using reccurent neural networks. Proc. Inst. Mech. Eng. Part D
J. Automob. Eng. 2012, 226, 754–766. [CrossRef]

6. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
7. Ruthven, D.M.; Farooq, S.; Knaebel, K.S. Pressure Swing Adsorption; VCH Publishers: New York, NY, USA, 1994.
8. Grande, C.A. Advances in Pressure Swing Adsorption for Gas Separation. ISRN Chem. Eng. 2012, 2012, 982934. [CrossRef]
9. Ye, F.; Ma, S.; Tong, L.; Xiao, J.; Bénard, P.; Chahine, R. Artificial neural network based optimization for hydrogen purification

performance of pressure swing adsorption. Int. J. Hydrogen Energy 2018, 44, 5334–5344. [CrossRef]
10. Tong, L.; Bénard, P.; Zong, Y.; Chahine, R.; Liu, K.; Xiao, J. Artificial neural network based optimization of a six-step two-bed

pressure swing adsorption system for hydrogen purification. Energy AI 2021, 5, 100075. [CrossRef]
11. Anna, H.R.S.; Barreto, A.G.; Tavares, F.W.; de Souza, M.B. Machine learning model and optimization of a PSA unit for methane-

nitrogen separation. Comput. Chem. Eng. 2017, 104, 377–391. [CrossRef]
12. Subraveti, S.G.; Li, Z.; Prasad, V.; Rajendran, A. Machine Learning-Based Multiobjective Optimization of Pressure Swing

Adsorption. Ind. Eng. Chem. Res. 2019, 58, 20412–20422. [CrossRef]
13. Meleiro, L.A.D.C.; Von Zuben, F.J.; Filho, R.M. Constructive learning neural network applied to identification and control of a

fuel-ethanol fermentation process. Eng. Appl. Artif. Intell. 2009, 22, 201–215. [CrossRef]
14. Mouellef, M.; Vetter, F.L.; Zobel-Roos, S.; Strube, J. Fast and Versatile Chromatography Process Design and Operation Optimization

with the Aid of Artificial Intelligence. Processes 2021, 9, 2121. [CrossRef]
15. Rahnama, A.; Li, Z.; Sridhar, S. Machine Learning-Based Prediction of a BOS Reactor Performance from Operating Parameters.

Processes 2020, 8, 371. [CrossRef]
16. Coccia, G.; Mugnini, A.; Polonara, F.; Arteconi, A. Artificial-neural-network-based model predictive control to exploit energy

flexibility in multi-energy systems comprising district cooling. Energy 2021, 222, 119958. [CrossRef]
17. Dobbelaere, M.R.; Plehiers, P.P.; Van de Vijver, R.; Stevens, C.V.; Van Geem, K.M. Machine Learning in Chemical Engineering:

Strengths, Weaknesses, Opportunities, and Threats. Engineering 2021, 7, 1201–1211. [CrossRef]
18. Oliveira, L.M.C.; Koivisto, H.; Iwakiri, I.G.; Loureiro, J.M.; Ribeiro, A.M.; Nogueira, I.B. Modelling of a pressure swing adsorption

unit by deep learning and artificial Intelligence tools. Chem. Eng. Sci. 2020, 224, 115801. [CrossRef]
19. Da Silva, F.A.; Silva, J.A.C.; Rodrigues, A. A General Package for the Simulation of Cyclic Adsorption Processes. Adsorption 1999, 5,

229–244. [CrossRef]
20. Regufe, M.J.; Tamajon, J.; Ribeiro, A.M.; Ferreira, A.; Lee, U.-H.; Hwang, Y.K.; Chang, J.-S.; Serre, C.; Loureiro, J.M.; Rodrigues,

A.E. Syngas Purification by Porous Amino-Functionalized Titanium Terephthalate MIL-125. Energy Fuels 2015, 29, 4654–4664.
[CrossRef]

21. Santana, V.V.; Martins, M.A.; Loureiro, J.M.; Ribeiro, A.M.; Rodrigues, A.E.; Nogueira, I.B. Optimal fragrances formulation using
a deep learning neural network architecture: A novel systematic approach. Comput. Chem. Eng. 2021, 150, 107344. [CrossRef]

22. Regufe, M.J.; Santana, V.V.; Ribeiro, A.M.; Ferreira, A.; Loureiro, J.M.; Nogueira, I.B. A hybrid modeling framework for membrane
separation processes: Application to lithium-ion recovery from batteries. Processes 2021, 9, 1939. [CrossRef]

23. Ljung, L. System Identification: Theory for the User; Prentice Hall PTR: London, UK, 1999.
24. McKay, M.D.; Beckman, R.J.; Conover, W.J. A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis

of Output from a Computer Code. Technometrics 1979, 21, 239–245. [CrossRef]
25. Nogueira, I.B.R.; Martins, M.A.F.; Regufe, M.J.; Rodrigues, A.E.; Loureiro, J.M.; Ribeiro, A.M. Big Data-Based Optimization of a

Pressure Swing Adsorption Unit for Syngas Purification: On Mapping Uncertainties from a Metaheuristic Technique. Ind. Eng.
Chem. Res. 2020, 59, 14037–14047. [CrossRef]

26. He, X.; Asada, H. A new method for identifying orders of input-output models for nonlinear dynamic systems. In Proceedings of
the 1993 American Control Conference, San Francisco, CA, USA, 2 June 1993. [CrossRef]

27. Bengio, Y. Practical Recommendations for Gradient-Based Training of Deep Architectures. Lect. Notes Comput. Sci. 2012, 7700,
437–478.

28. Li, L.; Jamieson, K.; DeSalvo, G.; Rostamizadeh, A.; Talwalkar, A. Hyperband: A novel bandit-based approach to hyperparameter
optimization. J. Mach. Learn. Res. 2018, 18, 6765–6816.

29. Bisong, E. Google colaboratory. In Building Machine Learning and Deep Learning Models on Google Cloud Platform; Springer:
New York, NY, USA, 2019. [CrossRef]

30. Schenker, B.; Agarwal, M. Cross-validated structure selection for neural networks. Comput. Chem. Eng. 1996, 20, 175–186.
[CrossRef]

http://doi.org/10.1177/0954407011428720
http://doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://doi.org/10.5402/2012/982934
http://doi.org/10.1016/j.ijhydene.2018.08.104
http://doi.org/10.1016/j.egyai.2021.100075
http://doi.org/10.1016/j.compchemeng.2017.05.006
http://doi.org/10.1021/acs.iecr.9b04173
http://doi.org/10.1016/j.engappai.2008.06.001
http://doi.org/10.3390/pr9122121
http://doi.org/10.3390/pr8030371
http://doi.org/10.1016/j.energy.2021.119958
http://doi.org/10.1016/j.eng.2021.03.019
http://doi.org/10.1016/j.ces.2020.115801
http://doi.org/10.1023/A:1008974908427
http://doi.org/10.1021/acs.energyfuels.5b00975
http://doi.org/10.1016/j.compchemeng.2021.107344
http://doi.org/10.3390/pr9111939
http://doi.org/10.2307/1268522
http://doi.org/10.1021/acs.iecr.0c01155
http://doi.org/10.23919/acc.1993.4793346
http://doi.org/10.1007/978-1-4842-4470-8
http://doi.org/10.1016/0098-1354(95)00013-R

	Introduction
	Methods
	Study Case
	Simulation Case: Short-Term Simulation for Online Applications
	Prediction Case: Online Sensor
	Predictors
	Nonlinear Autoregressive with Exogenous Inputs (NARX)
	Nonlinear Output Error (NOE)

	Analysis, Results, and Discussion
	Data Acquisition
	Embedding Dimensions Optimal Selection
	Hyperparameter Tuning
	Neural Network Training
	Prediction Case
	Simulation Case

	Conclusions
	References

