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Abstract: For the purpose of improving uniformity and efficiency of microwave heating, moving
components are widely used. In this paper, a kind of stretching microwave oven with a conveyor
belt is designed. The conveyor belt and the stretching motion of the upper surface of the microwave
oven make the electric field in the microwave cavity continuously change during heating, so that
the absorption pattern of materials does not remain constant. The transformation optics method is
used to simulate the stretching motion of the upper wall of the microwave oven, and the implicit
function method is used to simulate the translational motion of the sample on the conveyor belt. The
correctness of the simulation model is validated by experiments. The heating effects for the cases of
fixed heating, stretching and translational motion are compared. Finally, the heating effects for the
proposed model with different heated materials are also discussed.

Keywords: microwave heating; heating uniformity; stretching motion; conveyor belt

1. Introduction

Microwaves have been widely used in radar, navigation, food processing, chemical
production, sewage treatment, biomedical and other fields [1] for their high efficiency and
environmental friendliness. Microwaves have been used to heat food for decades, and
the microwave oven is one of the most common household appliances [2]. Different from
traditional heating methods, microwave heating has the advantages of selective heating,
fast heating and energy conservation [3]. However, nonuniformity is one of the main
disadvantages of microwave heating [4]. In order to overcome this significant defect, the
most common method is adding moving elements such as turntable and mode stirrer in
the microwave oven [5,6].

The size of the microwave oven is usually fixed, and the electromagnetic wave in the
cavity is usually in the form of a standing wave [7]. For the purpose of improving the
uniformity of microwave heating, it is common to adjust the absorption mode of the mi-
crowave energy of the heated materials by changing the distribution of the electromagnetic
field inside the microwave cavity and the position of the heated materials [8,9]. Changing
the distribution of the electromagnetic field inside the microwave oven is usually achieved
by changing the microwave frequency, phase and position of the feed port [10–13]. For
example, for causing random scattering of microwaves, conductive beads are used [14,15],
and a mode stirrer is introduced to stir the distribution of the electric field in the microwave
oven [5,16]. To change the position of the heated material, a turntable and conveyor belt
are often used inside the microwave oven [17,18]. By constantly optimizing the microwave
cavity structure during heating, the electric field distribution inside the microwave cavity
will be more uniform, thus the uniformity of microwave heating can be improved [19,20].
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The size and form of the heated materials are also studied by some researchers with the
aim of improving uniformity [21,22].

Plaza-Gonzalez et al. [16,23] analyzed the impact of various mode stirrers with dis-
tinct structures and the distribution of the electric field inside the microwave oven and
determined that the motion of mode stirrers can significantly improve the uniformity of
the heated substances. Ye et al. found that the closer the distance between the mode
stirrers and the sample, the more effect on improving the heating uniformity [5]. The
effects of the size of the microwave cavity and the phase of the feeding port on heating
uniformity are also studied by D Luan et al. [7], and the results show that, by these two
methods, the heating uniformity is significantly improved. Ma et al. [24] put the material
on a transmission device for microwave processing, in this way, the electric field pattern
inside the material changes with time. Zhu et al. [8] presented a new type of microwave
cavity structure with rotary radiation, and the results show that the structure with rotary
radiation has obvious advantages for improving the heating uniformity. He et al. [25]
proposed a two-port rotating feed structure and studied the effect of a rectangular port
rotation angle on material heating uniformity. Although moving components have been
widely used in microwave heating, the simulation becomes more complicated due to the
complex mathematical modeling and the constant repartitioning of the mesh structure.

Changing the cavity structure continuously can improve heating uniformity, but
similar to the mode stirrers, heating uniformity based only on the stretching motion of
a surface in the cavity has a limited effect, and the conveyor belt can only improve the
heating uniformity in one direction. Instead of just stretching the upper surface of the
cavity, the heated sample with the addition of a conveyor belt may have more heating
location choices, which means the combination of the two modes of motion may have
better effects on the improvement of heating uniformity. Moreover, in order to solve the
simulation problem of the cavity model with two motion modes proposed in this paper,
the co-simulation based on implicit function method and transform optics method is first
proposed, and the coupling degree of the two methods is verified by experiments. Based
on this, the purposes of this paper are summarized as follows:

(1) design a microwave oven with stretchable upper surface and conveyor belt, and by
stretching and translational motion, improving the heating uniformity and efficiency;

(2) use the transformation optics method to solve the calculation of stretching motion,
and use the implicit function method to solve the calculation of translational motion;

(3) sensitivity analysis: analyze the influence of translational motion, stretching motion
and select location heating on the uniformity and efficiency of microwave heating, as
well as the heating performance of different materials in the proposed cavity.

2. Methodology
2.1. Model Description

In this paper, we build a 3-D simulation model of the proposed microwave oven
by COMSOL Multiphysics software, as shown in Figure 1. The structure of proposed
model is divided into two parts: the upper layer and the lower layer. The upper layer
is a transformation optical layer with a height of 40 mm and a length and width of
240 mm. The stretching motion of the upper wall of the microwave oven is replaced
by a change of the parameters including the dielectric coefficient and permeability of the
optical layer, and the stretching range is 0 mm to 100 mm. The size of the lower layer
cavity is 240 mm × 240 mm × 150 mm, namely, the height range of the microwave oven
is 150 mm to 250 mm. The cavity is fed by a standard WR-340 rectangular waveguide
feeding microwave in TE10 mode at a frequency of 2.45 GHz from the port. There is a
polytetrafluoroethylene conveyor belt (with a thickness of 5 mm, a length of 240 mm, and
a width of 50 mm) inside the cavity that can be shifted. On the conveyor belt, the heated
material moves in translational motion.
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Figure 1. Structure of the simulation model. (Unit: mm).

2.2. Parameters

Table 1 shows the input parameters of the proposed model. The ambient temperature
is set at 20 ◦C. Due to the relative permittivity of potatoes changing with temperature, it is
set as a function of temperature.

Table 1. Material properties in physical domains of the proposed model.

Property Physical Domains Value Source

Dielectric constant
(ε′)

Potato −6.4 × 10−3T2 + 2 × 10−1T + 56.8 [26]
Air 1 COMSOL Built-in

Conveyor belt 4.2 COMSOL Built-in
Beef 40 [27]

Distilled water 78 COMSOL Built-in

Dielectric loss (ε′′)

Air 0 COMSOL Built-in
Potato −10−4T2 − 1.08 × 10−1T + 16.1 [26]

Conveyor belt 0 COMSOL Built-in
Beef 12 [27]

Distilled water 10 COMSOL Built-in

Relative permeability

Air 1 COMSOL Built-in
Potato 1 [26]

Conveyor belt 1 COMSOL Built-in
Beef 1 [27]

Distilled water 1 COMSOL Built-in

Thermal conductivity
(W/m·K)

Potato 0.64 [26]
Beef 0.51 [27]

Distilled water 0.59 COMSOL Built-in

Density (kg/m3)
Potato 1050 [26]
Beef 1076 [27]

Distilled water 1000 COMSOL Built-in

Specific heat
capacity(J/kg·K)

Potato 3640 [26]
Beef 3430 [27]

Distilled water 4187 COMSOL Built-in

2.3. Governing Equations
2.3.1. Governing Equations of Electromagnetic Field and Heat Transfer

Generally, by solving Maxwell’s wave equations, the electric field distribution in the
microwave cavity is obtained [28]:

∇× µ−1
r (∇× E)− k2

0

(
εr −

jσ
ωε0

)
E = 0 (1)

where E is the electric field; ε0 denotes the permittivity of vacuum; σ is the electrical con-
ductivity; µr denotes the relative permeability; εr is the relative permittivity; k0 represents
the wave number in the vacuum.



Processes 2022, 10, 246 4 of 17

Based on the calculation of the electric field distribution, furthermore, the heat trans-
fer process is computed, and during the microwave heating process, electric field and
heat transfer process are coupled. In general, by solving the heat transfer equation, the
distribution of heated material is obtained [6]:

ρCp
∂T
∂t
−∇ · (k∇T) = Qe (2)

where ρ, Cp, k and Qe denote the density of heated material, the heat capacity, the thermal
conductivity and the heat source respectively. During the microwave heating process, the
dissipated power of the microwave in the heated material as the heat source is obtained
from the electric field, and Qe can be expressed as [6]:

Qe =
1
2

ωε0ε′′ |E|2 (3)

where ω, ε0, ε′′ are angular frequency of microwave, the relative permittivity of vacuum
and the imaginary part of the dielectric relative permittivity of heated sample respectively.

2.3.2. Boundary Conditions

In addition to the feeding port, the whole cavity shell is considered as a perfect electric
conductor as shown in Figure 1, which means the tangential component of the electric field
is zero:

n× E = 0 (4)

where n denotes the unit normal vector of the corresponding wall.
Inside the microwave cavity, with respect to thermal conditions, by convection the

surfaces of heated materials exchange heat with the surrounding air, which can be defined
by [6]:

− k
∂T
∂n

= h · (T − Tair) (5)

where n is the direction normal to the surface of heated sample, h and Tair represent the heat
transfer coefficient and the temperature of air respectively, T denotes the point temperature
of heated sample which contacts with air. The value of h is set as 10 W/(m2·K) in this study.
The initial temperature of heated materials and air are both 293.15 K (20 ◦C). The thermal
boundary between heated materials and the conveyor belt is set as insulation boundary
condition due to the short heating time.

2.3.3. Transformation Optics Method for the Computation of Stretching Motion

In the proposed model, the mesh change caused by the stretching of the microwave
upper wall makes the simulation more complex. Fortunately, the transformation optics
method can solve this problem effectively. Since Maxwell’s equations still retain their form
after coordinate transformation [29,30], namely, through some coordinate transformation,
the medium parameters in the transformation region can be transformed into tensor form
to realize the preset electromagnetic field transformation, so as to be equivalent to the
movement of the object. In this way, the mesh redivision caused by the object movement
is avoided and the complexity of the calculation is reduced. Since the upper wall of the
proposed model only moves in the Z-axis direction, the coordinate transformation is simple;
the following describes the coordinate transformation and the medium transformation
process of the transformation area.

Figure 2 is the diagram of coordinate transformation of the 2-D cross section of the
proposed cavity model. Region Ω in Figure 2a is the transformation optical region, and the
stretching motion of the upper wall of the cavity is realized by transforming its medium
parameters into the tensor form according to the corresponding coordinate transformation.
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Figure 2b depicts the actual stretched position of the upper wall of the microwave oven
(The coordinate of the upper surface is Zc). The coordinate transformation is set as [27]:

x′ = x (6)

y′ = y (7)

z′ = za +
zb − za

zc − za
(z− za) (8)
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Based on the coordinate transformation equations, the tensor parameters in the optical
transformation region Ω can be obtained [27]:

ε = εη (9)

µ = µη (10)

where:
η = J

T
· J/detJ (11)

J is the Jacobian tensor:

J =

 ∂x′/∂x ∂x′/∂y ∂x′/∂z
∂y′/∂x ∂y′/∂y ∂y′/∂z
∂z′/∂x ∂z′/∂y ∂z′/∂z

 (12)

Combining Equations (6)–(8) with (12), η can be obtained:

η =

 1/k 0 0
0 1/k 0
0 0 k

 (13)

k =
zb − za

zc − za
(14)

It is worth noting that coordinate transformation only occurs in the region where z
coordinates are greater than Za, that is to say, the parameters of the region where the heated
material and the conveyor belt are not affected by coordinate transformation.
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2.3.4. Implicit Method for the Computation of Translational Motion

In addition to the stretching motion of the upper wall of the cavity, there is also a
conveyor belt of translational motion in the cavity. Similarly, due to the translational
movement of the heated material, the mesh will be redivided along with the movement,
increasing the amount of computation and, worse, leading to significant simulation errors.
Fortunately, the implicit function method can efficiently solve the translational movement
calculation of conveyor belt [31]. The implicit function method sets the parameters of the
moving region as functions related to spatial position and time, that is, the motion of the
heated material is represented by the changes of its parameters with respect to space and
time. In the proposed model, schematic diagrams of 3-D and 2-D conveyor belt areas are
shown in Figure 3.

Processes 2022, 10, x FOR PEER REVIEW 6 of 17 
 

 

















∂′∂∂′∂∂′∂
∂′∂∂′∂∂′∂
∂′∂∂′∂∂′∂

=
zzyzxz
zyyyxy
zxyxxx

J  (12)

Combining Equations (6)–(8) with (12), η  can be obtained: 

1 0 0
0 1 0
0 0

k
k
k

η
 
 =  
  

 (13)

b a

c a

z zk
z z

−=
−  (14)

It is worth noting that coordinate transformation only occurs in the region where z 
coordinates are greater than Za, that is to say, the parameters of the region where the 
heated material and the conveyor belt are not affected by coordinate transformation. 

2.3.4. Implicit Method for the Computation of Translational Motion 
In addition to the stretching motion of the upper wall of the cavity, there is also a 

conveyor belt of translational motion in the cavity. Similarly, due to the translational 
movement of the heated material, the mesh will be redivided along with the movement, 
increasing the amount of computation and, worse, leading to significant simulation errors. 
Fortunately, the implicit function method can efficiently solve the translational movement 
calculation of conveyor belt [31]. The implicit function method sets the parameters of the 
moving region as functions related to spatial position and time, that is, the motion of the 
heated material is represented by the changes of its parameters with respect to space and 
time. In the proposed model, schematic diagrams of 3-D and 2-D conveyor belt areas are 
shown in Figure 3. 

 
Figure 3. The schematic diagrams of conveyor belt areas: (a) 3-D diagram; (b) 2-D diagram. 

First, a step equation is defined to distinguish the physical domain interior and exte-
rior: 

1, 0
( )

0, 0
D

H D
D

≥
=  <

 (15)

where D is the implicit function of a different physical domain. 
Based on this, we set the dielectric constant of the moving region as follows: 

( )( ) ( )( ), , , , , ,p p air airH D x y z t H D x y z tε ε ε= ⋅ + ⋅  (16)

Figure 3. The schematic diagrams of conveyor belt areas: (a) 3-D diagram; (b) 2-D diagram.

First, a step equation is defined to distinguish the physical domain interior and exterior:

H(D) =

{
1, D ≥ 0
0, D < 0

(15)

where D is the implicit function of a different physical domain.
Based on this, we set the dielectric constant of the moving region as follows:

ε = εp · H
(

Dp(x, y, z, t)
)
+ εair · H(Dair(x, y, z, t)) (16)

where εp, εair denote the permittivity of the heated material and air respectively. Dp (x, y, z, t),
and Dair (x, y, z, t) represent the implicit function of the potato region and air region, respec-
tively. Next, set the implicit functions for each region:

Dp(x, y, z, t) = min
(

x− xmin1(t), y− ymin1, z− zmin1
xmax1(t)− x, ymax1 − y, zmax1 − z

)
> 0 (17)

xmin1(t) = xmin1 + vt (18)

xmax1(t) = xmax1 + vt (19)

Dair(x, y, z, t) = 1− Dp(x, y, z, t) (20)

After setting the implicit function of each physical region, Equation (1) is solved in
combination with the parameter setting of the transformation optical layer, realizing the
calculation of electric field distribution at the corresponding movement position of the
conveyor belt and the stretching height.
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2.4. Mesh Setting

Appropriate mesh type and size can improve the simulation accuracy and reduce
the simulation time, so it is necessary to conduct an independent study on the mesh. The
normalized power absorption (NPA) is used to select an appropriate mesh, which is defined
as the power absorbed by processing materials divided by the effective input power. As the
number of mesh elements increases, the NPA value tends to stabilize, namely, after NPA
value reaches stability, the simulation results are considered accurate, and increasing the
number of elements has no essential effect on the simulation results, and here we use NPA
in the study of mesh independence. Figure 4 shows the relationship among the number of
elements and NPA. In this study, the mesh of 101,780 elements (including 89,345 domain
elements, 11,453 boundary elements and 982 edge elements.) was determined to be used
for simulation.
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2.5. Simulation Procedure

After setting the implicit function and the parameters of the transformation optical
layer, the distribution of the electric field can be computed. Since the modeling position of
each physical region is always unchanged, after computing the electric field, it is essential
to pull the dissipated power calculated by the electric field back to the modeling position
(i.e., the initial position). It is worth noting that since the motion of the heated sample is
translational motion, the coordinate transformation involved in the transformation of the
dissipated power is only related to the X coordinate, which can be expressed as:

x1 = x0 + v · ∆t
y1 = y0
z1 = z0

(21)

where (x0, y0, z0) are the initial coordinates of the sample and (x1, y1, z1) is the next time
step position of the sample. After one time step (∆t), the electric field distribution will
be computed, and for calculating the temperature field, the dissipated power will be
pulled back to the initial position. After that, the implicit function and parameters of the
optical transformation layer are updated to move the sample to the next position for the
computation of the next time step. The flowchart of the simulation is displayed in Figure 5.
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3. Results and Discussion
3.1. Model Verification
3.1.1. Electromagnetic Field Verification

In order to verify the correctness of the proposed method, the electromagnetic field dis-
tribution and port reflection coefficients calculated by the proposed method are compared
with those calculated by the conventional method (i.e., simulated at discrete locations). It is
assumed that the initial position of the heated sample is located at the leftmost part of the
conveyor belt and moves to the rightmost part at a velocity of 10 mm/s. The cavity has an
initial height of 150 mm and is stretched upward at a rate of 5 mm/s. The input microwave
power is set to 100 W.

As shown in Figure 6, the electric field distribution of a discrete position and simulated
by the proposed method at t = 10 s are compared. It is observed that the electric field in
the optical transformation layer is compressed to a certain extent, which is caused by the
medium in the form of a tensor inside the optical transformation layer. In the cavity below
the transformation layer, the electric field distribution simulated by the proposed method
is consistent with the discrete position. It is worth mentioning that the model is built only
once using the proposed method.
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Figure 7 shows the comparison diagram of the electric field distribution of the potato’s
center cross section simulated by the proposed method and at the discrete location simu-
lated by the conventional method at t = 10 s; the two methods coincide well.

Moreover, we also calculated the port reflection coefficients S11 at different times
according to the assumed translation velocity and stretching rate, as shown in Figure 8.
The results of the two calculations agree very well, which verify the correctness of the
proposed method.
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By comparing the electric field and the reflection coefficient S11, the correctness of the
proposed method is verified.

3.1.2. Experimental Verification

To validate the proposed method, we build an experimental system, as shown in
Figure 9. Figure 9a,b shows the sketch of the experimental system and actual experimental
system, respectively. The microwave is fed by a microwave solid-state source generator at a
frequency of 2.45 GHz and a power of 150 W through a coaxial line fed into the waveguide
connector. A circulator is used to ensure that the reflected wave is absorbed by the load to
protect the microwave source. In order to measure the effective input power and reflection
power, a microwave power meter is connected with a directional coupler through the power
probes. Inside the microwave cavity, a block of potato is placed on the conveyor belt. The
surface temperature image of a potato slice is recorded by a thermal imaging camera with
an accuracy of 0.03 K. During the microwave heating process, the fiber optic thermometer
records the temperature of the fixed point of the potato. After heating, the microwave
source is turned off and the potato is immediately removed from the microwave cavity and
placed on the workbench. The thermal imaging camera then immediately photographs the
temperature distribution on the upper surface of the potato. The total heating time is 20 s.

Figure 10 shows the comparison of temperature distribution on the upper surface of
potatoes between simulations and experiments, in which Figure 10a,b show the temperature
distribution of potatoes heated for 20 s with the cavity height of 200 mm and 230 mm,
respectively, and the translation speed is 10 mm/s. Sample 1 and sample 2 correspond to
one experiment, respectively. It can be seen that the temperature distribution of simulations
and experiments are in good agreement. The temperature distribution in the experiments
diverges slightly from the simulation results, and, as can be seen from the color legend
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(simulation: 20–70 ◦C, experiment: 20–68 ◦C), the experimental temperature is slightly
lower than the simulation because there will be a 2 to 3 s delay in the process from heating
to camera temperature measurement, which will cause a temperature divergence and
temperature reduction. In general, the correctness of the simulation method can be verified
by comparing the experimental results with the simulation results.
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Figure 11 shows the point temperature variation curve of the central intercept point on
the upper surface of the potatoes with time, and P1 represents the position of the tempera-
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ture measurement point. It is found that under the same conditions when potatoes move at
10 mm/s, a higher point temperature is obtained when the cavity height is 230 mm than
when the cavity height is 200 mm, which is consistent with the temperature distribution
images on the upper surface of the potatoes. Most importantly, the experimental results
agree well with the simulation results.
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In general, the accuracy of the simulation method was verified by comparing the
temperature distribution on the upper surface of potatoes and the point temperature at the
center of the potato surface.

3.2. Model Analysis
3.2.1. Uniformity and Efficiency Analysis

Microwave heating is always accompanied by two important topics: heating efficiency
and uniformity, they will be discussed below. Uniformity of microwave heating is defined
by the coefficient of variation (COV) of the heated sample:

COV =

√
1
N

N
∑

j=1

(
Tj − T

)2

T − T0
(22)

where Tj denotes every mesh point temperature, T0 denotes the initial body temperature
of the sample, T and N represent the average body temperature of the sample and the
number of the mesh points of the sample domain, respectively. The smaller the coefficient
of variation, the better the heating uniformity obtained. The heating efficiency can be
measured by the port reflection coefficient S11 or the average body temperature of the
heated sample.

First, the heating efficiency is analyzed. Table 2 shows the average body temperature
(Ta) and coefficient of variation (COV) of the heated sample after 20 s of microwave heating
under various conditions. The microwave input power is 200 W. The x is the coordinate of
the center point of the potato block, and the potato is parallel to the conveyor belt. The v is
the speed at which the potato moves from the far left to the right on the belt. Ta denotes the
average body temperature of potatoes heated for 20 s.
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Table 2. Ta and COV of the heated sample for 20 s under different conditions.

Cavity Height Sample Location Ta COV

160 mm x = 120 mm 40.76 ◦C 0.539
160 mm v = 10 mm/s 50.61 ◦C 0.415
180 mm x = 120 mm 31.31 ◦C 0.688
180 mm v = 10 mm/s 30.13 ◦C 0.409
200 mm x = 120 mm 47.26 ◦C 0.682
200 mm v = 10 mm/s 64.67 ◦C 0.430

∆h = 150–250 mm (5 mm/s) x = 120 mm 51.41 ◦C 0.474
∆h = 150–250 mm (5 mm/s) v = 10 mm/s 47.16 ◦C 0.530

As can be seen from Table 2, when the potato is fixed at the position x = 120 mm
and the cavity height is different, the heating efficiency is different. When the cavity
height is 160 mm, 180 mm and 200 mm, the average body temperature of the potato is
40.76 ◦C, 31.31 ◦C and 47.26 ◦C, respectively. When the potato translates at 10 mm/s,
the average body temperatures of the potato heated for 20 s are 50.61 ◦C, 30.13 ◦C and
64.67 ◦C respectively, indicating that translational motion can improve the heating efficiency
in most cases, and the improvement range is −3.8% to 36.8%. Notice that when the height
of the cavity is 180 mm, the translational motion of potato does not improve the heating
efficiency, time is used as a variable to carry out parametric scanning of S11, and the results
are shown in Figure 12. It is found that when the height of the cavity is 180 mm, the S11
at each time is relatively high and the energy utilization rate is low which also explains
why translational motion does not improve heating efficiency at 180 mm cavity height. In
fact, due to translational motion enabling the potato to traverse more positions, the effects
of microwave heating on those positions with a high port reflection coefficient is reduced,
thus improving the heating efficiency to a certain extent.

Processes 2022, 10, x FOR PEER REVIEW 12 of 17 
 

 

Cavity Height Sample Location Ta COV 
160 mm x = 120 mm 40.76 °C 0.539 
160 mm v = 10 mm/s 50.61 °C 0.415 
180 mm x = 120 mm 31.31 °C 0.688 
180 mm v = 10 mm/s 30.13 °C 0.409 
200 mm x = 120 mm 47.26 °C 0.682 
200 mm v = 10 mm/s 64.67 °C 0.430 

∆h = 150–250 mm (5 mm/s) x = 120 mm 51.41 °C 0.474 
∆h = 150–250 mm (5 mm/s) v = 10 mm/s 47.16 °C 0.530 

As can be seen from Table 2, when the potato is fixed at the position x = 120 mm and 
the cavity height is different, the heating efficiency is different. When the cavity height is 
160 mm, 180 mm and 200 mm, the average body temperature of the potato is 40.76 °C, 
31.31 °C and 47.26 °C, respectively. When the potato translates at 10 mm/s, the average 
body temperatures of the potato heated for 20 s are 50.61 °C, 30.13 °C and 64.67 °C respec-
tively, indicating that translational motion can improve the heating efficiency in most 
cases, and the improvement range is −3.8% to 36.8%. Notice that when the height of the 
cavity is 180 mm, the translational motion of potato does not improve the heating effi-
ciency, time is used as a variable to carry out parametric scanning of S11, and the results 
are shown in Figure 12. It is found that when the height of the cavity is 180 mm, the S11 at 
each time is relatively high and the energy utilization rate is low which also explains why 
translational motion does not improve heating efficiency at 180 mm cavity height. In fact, 
due to translational motion enabling the potato to traverse more positions, the effects of 
microwave heating on those positions with a high port reflection coefficient is reduced, 
thus improving the heating efficiency to a certain extent. 

 
Figure 12. Port reflection coefficient at different times. (Cavity height:180 mm). 

When the upper wall of the cavity is stretching at 5 mm/s within the range of 150 mm 
to 250 mm, the average body temperature of the potato fixed at x = 120 mm is 51.41 °C 
after heating for 20 s. Compared with the fixed position of the potato and the fixed height 
of the cavity, the heating efficiency is improved, indicating that stretching motion can also 
improve the heating efficiency. 

The uniformity of heating is then analyzed. As can be seen from Table 2, when the 
potato position is x = 120 mm and the cavity height is 160 mm, 180 mm and 200 mm, the 
coefficient of variation is 0.539, 0.688 and 0.682, respectively, which are relatively large 
values, indicating poor heating uniformity. When the potato translates at 10 mm/s, the 
COV at different cavity heights is 0.415, 0.409 and 0.430, respectively, indicating that trans-
lational movement can improve heating uniformity; the improvement range is 23.0% to 
40.6%. Figure 13 shows the temperature distribution of the potato fixed at x = 120 mm or 
translated at 10 mm/s for 20 s with different cavity heights. As the distribution of the elec-
tric field inside the potato changes at any time due to the translational motion, it is no 

Figure 12. Port reflection coefficient at different times. (Cavity height: 180 mm).

When the upper wall of the cavity is stretching at 5 mm/s within the range of 150 mm
to 250 mm, the average body temperature of the potato fixed at x = 120 mm is 51.41 ◦C after
heating for 20 s. Compared with the fixed position of the potato and the fixed height of
the cavity, the heating efficiency is improved, indicating that stretching motion can also
improve the heating efficiency.

The uniformity of heating is then analyzed. As can be seen from Table 2, when the
potato position is x = 120 mm and the cavity height is 160 mm, 180 mm and 200 mm, the
coefficient of variation is 0.539, 0.688 and 0.682, respectively, which are relatively large
values, indicating poor heating uniformity. When the potato translates at 10 mm/s, the COV
at different cavity heights is 0.415, 0.409 and 0.430, respectively, indicating that translational
movement can improve heating uniformity; the improvement range is 23.0% to 40.6%.
Figure 13 shows the temperature distribution of the potato fixed at x = 120 mm or translated
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at 10 mm/s for 20 s with different cavity heights. As the distribution of the electric field
inside the potato changes at any time due to the translational motion, it is no longer a single
electric field, so the improvement of heating uniformity is obvious. Figure 14 shows the
electric field distribution of the potato at different motion moments with the height of the
cavity of 160 mm.
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When the position of the potato is fixed at x = 120 mm and the upper wall of the
microwave cavity is stretched, the COV of the potato obtained after simulation is 0.474.
Compared with the fixed potato position and the fixed cavity height, the uniformity of
heating is improved by 12.1% to 31.1%. Figure 15 shows the electric field distribution norm
of the potato at different cavity heights. It can be seen that the electric field norm inside
the potatoes is different at different cavity heights, which is also the reason why stretching
improves heating uniformity.
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Moreover, we also simulate the microwave heating process of the stretching motion of
the upper wall of the cavity and the translational motion of the potato at the same time.
The stretching speed is 5 mm/s, the stretching range is 150 mm to 250 mm, the translation
speed is 10 mm/s, and the total heating time is 20 s. The results show that the average body
temperature of potato after heating is 47.16 ◦C, and the COV is 0.530. Compared with fixed
heating, the heating efficiency is improved from 0.2% to 50.6%, and the heating uniformity
is improved from 1.7% to 23.0%. It can be seen that the joint action of stretching and
translational motion improves the efficiency of microwave heating under certain conditions
and the heating uniformity within a certain range.
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3.2.2. Select Location Heating

In general, microwave heating requires both high efficiency and high uniformity. The
heating efficiency is high when the port reflection coefficient is small, but it is difficult to
get good heating uniformity when heating in one fixed position. Therefore, by adjusting
the height of the microwave cavity and the position of the potato on the conveyor belt,
8 positions with low reflection coefficients of port are selected for select location heating
by taking advantage of the characteristics of the proposed microwave cavity, as shown
in Table 3. Heating is from top to bottom according to the position and time in Table 3.
The microwave input power is 200 W and the total heating time is 20 s. The heating time
for each position is also shown in Table 3 and the results after heating at select locations
are shown in Table 4. The results show that the heating efficiency is greatly improved by
selecting location heating, and the range of improvement is 96.7% to 196.8% compared with
fixed heating, 43.7% to 208.5% compared with only translational motion, 80.8% compared
with only stretching motion and 97.1% compared with joint translational motion and
stretching motion. Moreover, the uniformity of heating is also improved. Compared with
fixed heating, the range of improvement is 33.2% to 47.7%; compared with only translation,
the range of improvement is 12.0% to 16.3%; compared with only stretching motion, the
range of improvement is 24.1%; compared with the joint translation and stretching motion,
the improvement is 32.1%.

Table 3. The S11 and heating time at 8 select locations (material: potato).

Cavity Height Sample Location S11 Heating Time

155 mm x = 118 mm −5.60 dB 2 s
205 mm x = 96 mm −8.92 dB 2 s
210 mm x = 110 mm −10.87 dB 3 s
210 mm x = 105 mm −4.65 dB 2 s
220 mm x = 147 mm −9.45 dB 2 s
220 mm x = 37 mm −14.19 dB 3 s
230 mm x = 48 mm −13.35 dB 3 s
230 mm x = 196 mm −11.51 dB 3 s

Table 4. Ta and COV after heating at select locations (material: potato).

Heating Method Ta COV

Select locations heating 92.95 ◦C 0.36

The results show that select location heating can enhance the heating efficiency and
uniformity at the same time, and the improvement of heating efficiency is very significant.

3.2.3. Other Materials

In order to verify whether the proposed microwave cavity structure is suitable for
other materials, we also simulate the microwave heating process of beef and distilled water
as the load. As shown in Table 5, beef is used as the heating material in different locations
for select location heating and fixed heating, and the input power is 200 W. It can be seen
from Table 6 that the average body temperature of beef increased from 50.13 ◦C to 83.72 ◦C
with an improvement rate of 40.1%, the COV decreased from 0.695 to 0.561, and the heating
uniformity improved by 19.3%.



Processes 2022, 10, 246 15 of 17

Table 5. The select heating locations and heating time of beef.

Cavity Height Sample Location S11 Heating Time

150 mm x = 78 mm −5.21 dB 3 s
210 mm x = 106 mm −7.29 dB 3 s
220 mm x = 25 mm −8.80 dB 4 s
220 mm x = 37 mm −22.95 dB 4 s
230 mm x = 35 mm −9.49 dB 3 s
240 mm x = 79 mm −5.54 dB 3 s

Table 6. Ta and COV after heating at select locations (material: beef).

Heating Method Ta COV

Select locations heating 83.72 ◦C 0.561
Fixed heating 50.13 ◦C 0.695

Table 7 shows the select locations of distilled water as the heated material, and as
shown in Table 8, the average body temperature of distilled water increased from 41.59 ◦C
to 90.79 ◦C after heating at select locations, reaching an improvement rate of 118.3%, and
the heating uniformity also improves by 45.9%. Moreover, Figures 16 and 17 show the
comparison of COV and average body temperature of potato, beef and distilled water
under select location heating and fixed heating, respectively.

Table 7. The select heating locations and heating time of distilled water.

Cavity Height Sample Location S11 Heating Time

150 mm x = 87 mm −6.58 dB 3 s
200 mm x = 87 mm −5.15 dB 3 s
210 mm x = 127 mm −24.92 dB 3 s
220 mm x = 37 mm −22.03 dB 2 s
220 mm x = 47 mm −7.49 dB 3 s
230 mm x = 37 mm −9.26 dB 3 s
230 mm x = 47 mm −8.15 dB 3 s

Table 8. Ta and COV after heating at select locations (material: distilled water).

Heating Method Ta COV

Select locations heating 90.79 °C 0.482
Fixed heating 41.59 °C 0.703
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The results show that the proposed microwave structure can enhance the heating
efficiency and heating uniformity for different materials, which verifies the universal
applicability of the proposed model.

4. Conclusions

This paper presents a microwave oven with an upper wall stretching structure and
conveyor belt to improve the uniformity and efficiency of microwave heating. The method
of transformation optics is used to calculate the stretching motion of the upper wall of the
microwave oven, and the implicit function method is used to compute the translational
motion of the conveyor belt. Experiments are carried out to verify the correctness, and
the two methods can be coupled well. By the use of the proposed microwave oven model,
heating efficiency and heating uniformity under different conditions were studied. The
results show that both motion modes can enhance heating efficiency and heating unifor-
mity. In addition, select location heating is studied. By selecting the positions with small
reflection coefficients for multi-point heating, the heating efficiency is greatly improved
and the heating uniformity is improved. In order to verify the universal applicability of the
proposed microwave oven structure, the performance of other materials is studied, and
the proposed cavity can be applied to other materials. In addition, this paper provides a
feasible demonstration for the combination of the transformation optics method and the
implicit function method and provides a promising solution tool for microwave heating
models with other complex motion forms.
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