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Abstract: A general correlation for predicting the two-phase heat transfer coefficient (HTC) during
condensation inside multi-port mini/micro-channels was presented. The model was obtained by
correlating the two-phase multiplier, ϕtp with affecting parameters using the genetic programming
(GP) method. An extensive database containing 3503 experimental data samples was gathered from
21 different sources, including a broad range of operating parameters. The newly obtained correlation
fits the broad range of measured data analyzed with an average absolute relative deviation (AARD) of
16.87% and estimates 84.73% of analyzed data points with a relative error of less than 30%. Evaluation
of previous correlations was also conducted using the same database. They showed the AARD values
ranging from 36.94% to 191.19%. However, the GP model provides more accurate results, AARD
lower than 17%, by considering the surface tension effects. Finally, the effect of various operating
parameters on the HTC was studied using the proposed correlation.

Keywords: heat transfer coefficient; multiport; genetic programming; condensation; mini/micro-channels;
two-phase flow

1. Introduction

Condensers play important roles in different systems, such as air conditioning [1,2],
heat pumping [3], refrigeration [4,5], nuclear [6,7], chemical [8,9], etc. Nowadays, con-
densers with mini/micro-channels are used instead of conventional channels in many
industries [10–15]. The main reasons are reducing the size of the condensers, refrigeration
charge, required space, and overall cost of the process [16]. Therefore, a lower condenser’s
weight and size are required for a given heat duty in this type of channel. The multi-port
mini/micro-channels can raise the contact region between the condenser and the working
fluids and leads to a higher evaporating rate as an internal fin [17]. Furthermore, the
influence of surface tension becomes important in the smaller channels. That is, the sur-
face tension can decrease the liquid film thickness during condensation in these channels.
Furthermore, heat exchange between parallel channels can lead to a difference in HTC in
multi-port channels from conventional ones.
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1.1. Previous Works
1.1.1. Channels’ Classifications

Several classifications are suggested for channels based on their characterizations [18–27].
Some of these classifications are based on channel diameters, and the others are based on
the Bond number (Bo). An extensive review of these classifications is presented in [28].
The most commonly used classification was developed by Kandlikar [19]. According to
this classification, the channels by hydraulic diameters lower than 0.2 mm are classified
as micro-channels. The mini-channels have a hydraulic diameter (HD) between 0.2 to
3 mm, and the conventional channels are ones with HD of more than 3 mm. Through
the classification suggested by Mehendale et al. [26], channels with D < 6 mm are mini-
channels, and the micro-channels have an HD of less than 0.1 mm. Cheng and Wu [21]
classified the channels based on the Bond number. They indicated that the buoyancy forces
overcome the surface tension in the conventional channels, and these channels have a
Bond number higher than 3. Furthermore, the surface tension effects could overcome the
buoyancy forces in micro-channels. Therefore, the Bond number of less than 0.5 is defined
for micro-channels. In addition, the mini-channels are those with a Bond number between
0.5 to 3. The classification suggested by Kandlikar [19] is used in the present study for
defining the mini and micro-channels.

1.1.2. Experimental Research

Several experimental works have studied condensation heat-transfer in mini/micro-
channels [16,29–35]. However, there are only limited works focusing on heat transfer in
multi-port channels. Garimella et al. [36] investigated the condensation HTC of R134a in
rectangular micro-channels with a HD between 0.1 to 0.16 mm and an aspect ratio between
1 to 4. They observed that similar to conventional channels, the HTC in multi-port channels
increased with increasing vapor quality. The authors also compared measured data by the
available correlations. All of the correlations showed large deviations and under-predicted
the measured data. A similar study was conducted by Fronk and Garimella [37] for the HTC
of carbon dioxide. Their result showed that the multi-port channel with a 0.1 mm HD had
the highest HTC at a constant mass flux and saturation temperature. Jige et al. [38] studied
the heat transfer of different refrigerants at different saturation temperatures in multi-port
channels. They indicated that the HTC raises with raising the saturation temperature. In
addition, their results showed that the HTC of R32 was more than R134a and R1234ze(E).

1.1.3. Previous Models for Condensation HTC

There are different models in the literature for approximating the HTC during con-
densation inside single and multi-channels. Some of these models have been improved
by the experimental data for limited operating conditions [39–43]. The single-phase HTC
equation developed by Dittus and Boelter [44] has been widely used as the basic equation
for estimating the HTC in different studies. Based on this equation, the single-phase Nusselt
number, Nusp, is a function of single-phase Reynolds and Prandtl numbers:

Nusp =
hspD

kl
= 0.023Re0.8

l Pr0.4
l (1)

In many previous studies, the two-phase Nusselt number, Nutp, was obtained by
multiplying a two-phase correction factor by the single-phase HTC,

Nutp = Nusp ϕtp (2)

Here, ϕtp is the two-phase correction factor. The values of the two-phase correction
factor, ϕtp, depend on several parameters, and different studies have been conducted to
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estimate this factor. Shah [45] presented the following simple expression for estimating the
two-phase correction factor during film condensation in pipes,

ϕtp = 1 + 3.8

[(
1
x
− 1
)0.8

P0.4
red

]0.95

(3)

Based on this correlation, only the vapor quality and the reduced pressure can affect
the ϕtp. Cavallini et al. [46] proposed a general correlation for various fluids. They indicated
that the vapor quality, liquid Pr, viscosity, and density of the liquid/vapor are the important
parameters for estimating ϕtp. In addition, they reported that the HTC is related to the wall
temperature difference, when Jg > JT

g . The transition line for dimensionless vapor velocity,
JT
g was defined as following equation,

JT
g =

( 7.5
4.3 X1.111

tt + 1

)−3

+ C−3
T

− 1
3

(4)

where CT value is 1.6 for hydrocarbons and 2.6 for other refrigerants.
Dobson and Chato [41] suggested the use of the Lockhart–Martinelli Parameter, Xtt

for predicting the two-phase correction factor in annular flow,

ϕtp = 1 +
2.22
X0.89

tt
(5)

There are several general correlations for estimating the two-phase HTC during con-
densation that was developed on the basis of large datasets, which are applicable for both
single and multi-port channels [47–51]. Kim and Mudawar [52] proposed a correlation
approach on the basis of 4045 data from 28 sources for single- multi port mini-channels with
0.424 to 6.22 mm hydraulic diameters. The analyzed database included 1964 data points
for single-port channels and 2081 data points for multi-port channels. They suggested two
separated correlations for slug/bubbly and annular flows. The transition line between
these regimes was defined as follows,

We∗ > 7Xtt
0.2 (6)

where modified Weber number, We∗, can be calculated as Soliman [53] method,

We∗ = 2.45
Re0.64

v

Su0.3
vo
(
1 + 1.09X0.039

tt
)0.4 f or Rel ≤ 1250 (7)

We∗ = 0.85
Re0.79

v X0.157
tt

Su0.3
vo
(
1 + 1.09X0.039

tt
)0.4

[(
ρl
ρv

)(
µv

µl

)2
]0.084

f or Rel > 1250 (8)

In the general correlation developed by Dorao and Fernandino [49], only two pa-
rameters were used to estimate the Nutp. The correlation was suggested for horizontal
mini/macro-channels with 0.067 to 20 mm diameters. This model presented two different
regimes, i.e., high and low mass fluxes (or vapor qualities) for HTC. They indicated that
the pipe diameter effect becomes significant when the two-phase Reynolds number, Retp is
greater than transient value, ReT

tp,

ReT
tp = 108D1.5 (9)

Among the data points analyzed by Dorao and Fernandino [49], only the data from
Derby et al. [54] and Wang et al. [55] were for multi-port channels, and the model is
more suitable for single-port channels. This point was confirmed by Hosseini et al. [56],
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which compared the model of Dorao and Fernandino [49] with a large data for single-port
channels and observed a good agreement with the experimental values.

Shah [57] presented general correlations based on 5100 data points for different flow
regimes and channel orientations. The analyzed data contained single and multi-port
channels with HDs from 0.08 mm to 49 mm. This model provided an improvement for
estimating the HTC of hydrocarbons. In addition, the author suggested predictive methods
for low Froude and Reynolds numbers. It should be mentioned that the machine learning
algorithms have been extensively used in various applications such as biomedical [58],
clinical [59,60], solar power prediction [61], food production [62], etc., for sustainable so-
lutions. Zhou et al. [63] used the machine learning algorithms for estimating the HTC in
mini/micro-channels using 4882 data points. Among the different methods tried by them,
the artificial neural network (ANN) with 15 hidden layers and 22 adjusted parameters
showed the best agreement with measured data with a total AARD of 6.80%. Recently,
Hosseini et al. [56] developed a general model using the genetic programming (GP) ap-
proach for predicting the condensation HTC in single channels, with 5728 data points for a
broad range of operating conditions. The model predicted the analyzed data points with a
good AARD value of 17.82%. In addition, they used a separate database including 712 data
points from 6 independent sources for validating the developed model. The results showed
that the proposed model provides the best accuracy for single-port channels.

1.1.4. Contributions of the Present Study

It is seen that the previous researchers used the same methods for estimating the
HTC during condensation in single and multi-port channels. Therefore, these correlations
estimate the same values for these cases. However, as discussed previously, the HTC in
parallel channels differs from that for single-port ones because of the contact area effects,
surface tension forces, and heat exchange between parallel channels. In the previous
work [56], a general correlation was developed for the HTC inside single port mini/micro
and macro-channels using an extensive database. The basic objective of this study is
to extend the former attainments by developing a general model for the HTC in flow
condensation. Therefore, an extensive database containing 3503 data points was gathered
from 21 independent studies, covering a broad range of operating conditions and working
fluids. In addition, the intelligent and powerful method of genetic programming (GP)
was employed for improving a mathematical equation for HTC during the condensation.
Furthermore, the performance of previous correlations in estimating the HTC in multi-
port channels was also evaluated using the same database. Finally, the predictive trends
of the new model were evaluated, and the impact of various parameters on the HTC
was discussed.

2. Materials and Methods
2.1. Genetic Programming

Recently, using intelligent methods for modeling, the thermal and hydrodynamic
characterizations of different systems have received much attention [63–67]. In the present
paper, GP was used for obtaining a general nonlinear correlation for predicting the HTC
during the condensation of fluids inside multi-port mini/micro-channels. The flowchart of
the present GP model is shown in Figure 1.

Genetic Programming (GP) is based on genetic algorithms thus it comprises a pop-
ulation. An equation in the population, a member of the population, is presented as a
tree structure, thus that its branches contain arithmetic functions (i.e., sin, cos, +, *, etc.),
and also its leaves are terminal points (i.e., variables). The initial population has a set of
equations that each represents an individual. Combining the individuals of the previous
population generates the next population. As such, the new equations are produced by
applying the crossover and mutation operations to the equations from the last generation
in a way that combines the individuals of the previous generation and creates the next
individuals of the new generation. A crossover process operates when two individuals are
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selected based on their evaluations determined by the objective function, and a mutation
process operates on a small percentage of the individuals that result from a crossover. Once
the individuals of the next generation meet the problem criteria, the GP process is halted.
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This method presents an explicit mathematical model with high accuracy for pre-
dicting the experimental data. Our previous studies [68–70] used this method to develop
general models with high accuracy for thermal and hydrodynamic characterizations of
different systems.

2.2. Experimental Data Samples

An extensive database containing 3503 HTC data samples during condensation inside
multi-port mini/micro-channels was collected from 21 independent studies, which covered
a wide range of working fluids, HDs, mass fluxes, saturation temperatures, and thermo-
physical properties. The operating parameters for each analyzed source are summarized in
Table 1. All thermophysical characteristics of the fluids are computed with the REFPROP
9.1 software from NIST [71] at the saturation conditions of the working fluids. The analyzed
data were gathered from experimental studies of average Nutp numbers for refrigerants
condensation in multi-port mini/micro-channels. Most of these data are available as figures
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from the database sources listed in Table 1, which have been extracted using the GetData
Graph Digitizer.

Table 1. The database sources for the HTC in multi-port mini/micro-channels.

References Fluid Channel
Geometry

Hydraulic
Diameter
(mm)

Mass Flux
(kg m−2s−1)

Reduced
Pressure
(-)

Number
of
Points

Agarwal [72] R134a Rectangular,
Square 0.1 to 0.16 300 to 800 0.19 to 0.42 291

Belchi et al. [73] R290 Square 1.16 175 to 350 0.25 to 0.40 100
Belchi et al. [74] R32, R410A Square 1.16 470 to 710 0.33 to 0.63 163

Agarwal et al. [75] R134a

Barrel, N-shape,
Rectangular,
Square,
Triangular

0.424 to 0.839 150 to 750 0.37 152

Belchi et al. [76] R32, R410A Square 1.16 350 to 800 0.33 to 0.63 515
Fronk and Garimella [37] R744 Rectangular 0.1 to 0.16 400 to 800 0.69 to 0.87 189
Bandhauer et al. [77] R134a Circular 0.506 to 1.524 150 to 750 0.41 128
Cavallini et al. [78] R134a, R410A Circular 1.4 200 to 1400 0.25 to 0.5 61
Belchi [79] R1234yf, R134a Square 1.16 470 to 710 0.25 to 0.49 81
Belchi et al. [80] R32, R410A Square 1.16 475 0.38 to 0.49 88
Derby et al. [54] R134a Square 1 75 to 450 0.22 80
Andresen [81] R410A Circular 0.76 to 1.52 200 to 800 0.80 to 0.90 198
Heo and Yun [82] R744 Rectangular 0.68 to 1.5 400 to 800 0.41 to 0.54 203
Gomez et al. [83] R1234yf Square 1.16 350 to 945 0.23 to 0.43 162

Jige et al. [38] R1234ze(E),
R134a, R32 Rectangular 0.76 to 1.06 100 to 400 0.21 to 0.43 323

Park et al. [84] R1234ze(E),
R134a, R236fa Rectangular 1.45 100 to 260 0.13 to 0.44 97

Pham et al. [85] R22, R290, R32,
R410A Rectangular 0.83 50 to 500 0.37 to 0.60 79

Park and Hrnjak [86] R744 Rectangular 0.89 200 to 800 0.23 to 0.40 112

Li et al. [87]

R1234ze(E),
R134a, R32,
R32/R134a
(24.5/75/5%),
R32/R134a
(51/49%)

Circular 0.86 100 to 300 0.18 to 0.42 151

Wang et al. [55] R134a Circular 1.46 150 to 750 0.45 279
Rahman et al. [88] R134a Rectangular 0.81 50 to 200 0.19 to 0.22 51

Total 3503

In addition to the range of the non-dimensional parameters used, Table 2 sets out the
refrigerant types, channel geometry and dimension, and the operating conditions for the
analyzed data. The range of dimensional and dimensionless factors is presented in Table 2.
The restrictions of applicability of the new correlation for approximating the HTC during
flow condensation inside multi-port channels are shown in this table.

In this paper, the term ϕtp given by Equation (2) is obtained using the method of GP.
The affecting parameters on ϕtp in multi-port channels, such as vapor quality, saturation
pressure, mass flux, surface tension, channel diameter, and thermophysical properties of
the working fluids are considered for developing the new model. These parameters are
employed to improve a general correlation for approximating the HTC using the GP. The
two-phase multiplier is proposed using the following dimensionless expression,

ϕtp = f (Rel , Prl , Xtt, Bo, x) (10)
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Table 2. Operating conditions, geometric dimensions, and the range of dimensionless factors used in
the present study.

Parameter Type of Refrigerant/Operating Conditions/Channel
Geometry/Dimensionless Factors

Fluids R744, R1234yf, R1234ze(E), R134a, R22, R236fa, R290, R32,
R32/R134a (24.5/75.5%), R32/R134a (51/49%) and R410A

G,
(
kg m−2s−1 ) 50–1400

D, (mm) 0.1–1.524

Channel geometry Rectangular, circular, square, barrel, N-shaped and Triangular
mini/micro channels

Reduced pressure, (-) 0.13–0.90
Vapor quality, x, (-) 0.002–0.978
Rel , (-) 11–16886
Prl , (-) 1.75–4.69
Xtt, (-) 0.0088–105.26
Bo, (-) 0.015–31.36

2.3. Error Analysis

AARD is used for evaluating the performance of different correlations in this study.
Furthermore, the arithmetic average deviation (AAD) is used to assess the over-estimation
or under-estimation of the models. These error estimates can be calculated as,

AAD =
1
n ∑n

i=1

(Nutp, calc − Nutp, exp

Nutp, exp

)
× 100 (11)

AARD =
1
n ∑n

i=1

∣∣∣∣Nutp, calc − Nutp, exp

Nutp, exp

∣∣∣∣× 100 (12)

3. Results and Discussion

The former studies showed that the relationships between the two-phase multiplier
and the affecting factors were nonlinear. In the present study, a powerful GP method was
introduced for developing a nonlinear equation for estimating the two-phase multiplier.
Among the many correlations generated by the GP, the best correlation is given by,

ϕtp = 0.87C1 +0.63x
+ tan(x) sin(9783.5Pred)
+0.25C1 sin(9118Pred)x
+ tan(tan(x)) sin(sin(9640.4Pred))

(13)

where
C1 = 0.73

(
1 + 1

Xtt

)
+ 6.6

XttRel
+ 2.93

Xtt exp(Pr2
l Bo)

+
1380.9+1211.7 sin(0.78Pr2

l )
Rel

(14)

We see that Equation (13) describes a nonlinear correlation, consisting of all affecting
dimensionless factors.

To show the performance of the established model for estimating the HTC, the pre-
dicted Nusselt number values were compared with the measured values in Figure 2. This
result verifies that the GP correlation predictions given by Equation (13) were in the desired
range, and most of the data were bounded with an error of less than ±30%. The calculations
showed the suggested correlation estimates of the 3503 data points with an AARD value
of 16.87%. In addition, predicted data with an error of less than 20% and 30% for the GP
correlation were 70.37% and 84.73%, respectively. These results showed excellent accuracy
of the correlation obtained by the GP for approximating the condensation HTC inside
multi-port channels.
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As noted before, there are various correlation approaches for predicting the condensa-
tion HTC. In most of the previous correlations, the authors did not consider the difference
between single-port and multi-port channels in the prediction of the HTC. A list of several
well-known correlations for estimating the HTC inside single and multi-port channels is
presented in Table 3.

Table 3. Correlations for predicting the HTC during condensation.

Reference(s) Correlation Remarks

Kim and
Mudawar [52]

f or annular f low (We∗ < 7Xtt) :
Nutp = 0.048(Rel)

0.69(Prl)
0.34 φv

Xtt

f or slug and bubbly f low (We∗ > 7Xtt) :
Nutp =[(

0.048(Rel)
0.69(Prl)

0.34 φv
Xtt

)2
+
(

3.2 × 10−7(Rel)
−0.38(Suvo)

1.39
)2
]0.5

We∗ = 2.45 Re0.64
v

Su0.3
vo (1+1.09X0.039

tt )
0.4 f or Rel ≤ 1250

We∗ = 0.85 Re0.79
v X0.157

tt

Su0.3
vo (1+1.09X0.039

tt )
0.4

[(
ρl
ρv

)(
µv
µl

)2
]0.084

f or Rel > 1250

φv = 1 + CX + X2 Suvo =
ρvσD

µ2
v

C and X are calculated by Kim and Mudawar [89] method.

General correlations for
condensation in

mini/micro-channels.

Dorao and
Fernandino [49]

Nutp =
(

Nu9
I + Nu9

I I
) 1

9

NuI = 0.023 Re0.8
tp Pr0.3

tp

NuI I = 41.5 D0.6 Re0.4
tp Pr0.3

tp

General correlations for
condensation in horizontal tubes.
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Table 3. Cont.

Reference(s) Correlation Remarks

Shah (2016) [90]

htp = hI For Jg ≥ 0.98
((

1
x − 1

)0.8
P0.4

red + 0.263
)−0.62

and Wevo ≥ 100

htp = hNu For Jg ≤ 0.95

(
2.27

((
1
x − 1

)0.8
P0.4

res

)1.249
+ 1.254

)−1

htp = hNu + hI For other regimes

hI = 0.023Relo
0.8Prl

0.4[1 + 1.128x0.8170
(

ρl
ρg

)0.3685( µl
µg

)0.2363

×
(

1 − µg
µl

)2.144
Prl

−0.100]
(

kl
D

)
hNu = 1.32Rel

−1
3

[
ρl(ρl−ρv)gk3

l
µ2

l

] 1
3

Jg = xG
(gDρv(ρl−ρv))

0.5 Wevo = G2D
ρvσ

General correlations for
condensation in horizontal

mini/micro-tubes.

Shah (2019) [57]

For Jg ≥ 0.98
((

1
x − 1

)0.8
P0.4

red + 0.263
)−0.62

, Frl > 0.012

and Wevo ≥ 100 :
htp = hI

For Jg ≤ 0.95

(
2.27

((
1
x − 1

)0.8
P0.4

res

)1.249
+ 1.254

)−1

and Frl > 0.012

htp = hNu
For other regimes :
htp = hNu + hI

FrL = G2

ρ2
l gD

hI , hNu, Jg and Wevo are calculated by Shah (2016) method.

Akers et al. [91]

Nutp = CPr
1
3
l

{
G
[
(1 − x) + x

(
ρl
ρV

)0.5
]

D
µl

}n

C = 0.026, n = 0.8 for Reeq > 50000

C = 5.3, n = 1
3 for Reeq < 50000

Reeq = G
[
(1 − x) + x

(
ρl
ρv

)0.5
](

D
µl

)
Condensations for horizontal

plain tubes

Crosser [92]
Nutp = 0.0265Prl

1
3

(
G
(

x
(

ρl
ρv

)0.5
)

D
µl

)n

n = 0.8 f or Gx
µl

> 60000

n = 0.2 f or Gx
µl

< 60000

Bohdal et al. [93] Nutp = 25.084 Rel
0.258Prl

−0.495 Pres
−0.288

(
x

1−x

)0.266 R134a and R410A condensation in
mini-channels

Hosseini et al. [56]

For G ≤ 200 kg m−2s−1:

Nutp = 0.0022 × Retp ×
(

ρl−ρv
ρl

)
+ 0.0342 × Wevo ×

(
ρl−ρv

ρl

)2
+

Sin(39.8963×Pred)−Ln(Wevo)
−0.0298−0.2203×Frl

− Prtp

For G > 200 kg m−2s−1:
Nutp =

ABS(0.0169 ∗ Re0.8620
tp − 0.00146 ∗ Retp

Prtp∗
(

ρl−ρv
ρl

) + 0.0036+0.0171∗Wevo
Frl

+17.9480 ∗ sin
(

0.0036+0.0171∗Wevo
Frl

)
+

tan
(

27.6370106546243 ∗
(

ρl−ρv
ρl

))
−

tan
(

369.8572 + sin
(

0.0036+0.01712∗Wevo
Frl

))
)

General correlations for
condensation in single-port

horizontal plain tubes

For evaluating the capability and generality of the new correlation developed by the GP
method, a comparative investigation is presented in this section. Table 4 shows the AARD
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and AAD values of previous correlations (Table 3) for approximating the condensation
HTC as well as the GP correlation for different analyzed data sources.

Table 4. AARD and AAD analysis of different correlations for various data sources.

Model
AARD %
AAD %

References Akers et al.
[91]

Crosser
[92]

Bohdal
et al.
[93]

Shah
(2016)
[90]

Shah
(2019)
[57]

Dorao and
Fernandino

[49]

Hosseini
et al. [56]

Kim and
Mudawar

[52]

GP
correlation

Agarwal
[72]

44.06
41.63

83.56
−83.56

40.09
36.40

68.35
−68.35

68.35
−68.35

70.93
−70.93

76.33
−76.33

72.94
−72.94

17.91
−4.55

Belchi et al.
[73]

144.97
144.97

30.61
−30.48

128.72
128.72

21.23
18.65

21.23
18.65

15.00
10.95

24.72
1.19

16.38
11.37

17.54
−7.91

Belchi et al.
[74]

184.29
184.29

20.74
−5.72

190.63
190.63

60.45
60.45

60.45
60.45

59.83
59.83

63.26
63.26

41.05
41.05

16.41
14.16

Agarwal
et al. [75]

143.40
143.25

47.80
−47.80

100.93
100.27

22.77
−1.92

22.77
−1.92

23.80
−4.88

24.78
−5.76

23.85
−14.58

22.59
−4.98

Belchi et al.
[76]

153.28
153.28

26.62
−20.03

170.31
170.31

35.13
34.54

35.13
34.54

34.78
34.16

39.60
39.50

23.50
21.82

9.96
−2.49

Fronk and
Garimella

[37]

273.45
273.45

57.49
−57.49

170.52
170.52

31.09
−30.41

31.09
−30.41

30.72
−30.44

34.61
−34.27

37.78
−37.78

14.59
2.43

Bandhauer
et al. [77]

129.60
129.60

40.92
−40.92

87.58
86.65

12.08
5.42

12.08
5.42

11.94
3.60

15.61
4.01

12.66
−8.10

17.72
−4.01

Cavallini
et al. [78]

63.59
57.97

43.90
−43.90

53.81
44.01

8.91
−4.03

8.91
−4.03

9.82
−5.27

12.25
1.68

19.04
−17.93

25.98
−25.98

Belchi [79] 315.23
315.23

34.81
21.10

224.80
224.80

117.50
117.50

117.50
117.50

105.43
105.43

122.73
122.73

92.85
92.85

52.30
51.82

Belchi et al.
[80]

177.70
177.70

26.17
−25.28

200.52
200.52

32.07
32.07

32.07
32.07

31.03
31.03

38.50
38.50

22.41
21.95

8.00
−4.25

Derby et al.
[54]

182.16
182.16

55.93
−55.93

149.56
149.56

11.79
9.57

11.79
9.57

14.55
−11.18

35.33
1.75

13.38
−11.13

17.07
16.75

Andresen
[81]

201.77
201.77

17.66
−11.44

91.15
90.09

39.38
39.28

39.38
39.28

40.96
40.96

17.46
0.43

22.03
19.10

21.31
11.21

Heo and
Yun [82]

384.25
384.25

55.87
42.53

382.29
382.29

132.05
132.05

132.05
132.05

134.14
134.13

123.45
123.38

116.22
116.22

21.74
10.60

Gomez
et al. [83]

84.08
84.08

44.40
−44.33

43.28
43.28

7.65
−1.02

7.65
−1.02

10.42
−8.00

6.52
−0.57

15.81
13.42

13.46
−12.03

Jige et al.
[38]

147.22
147.22

57.47
−57.47

123.73
123.73

17.26
−7.32

17.26
−7.32

30.92
−23.76

30.87
−18.22

26.94
−21.78

14.50
0.25

Park et al.
[84]

244.99
244.99

42.44
−42.44

173.49
173.49

27.50
20.80

27.72
23.84

22.14
20.59

34.50
23.67

21.13
18.64

14.06
−0.97

Pham et al.
[85]

652.27
652.27

46.23
1.14

680.51
680.51

179.40
179.40

179.40
179.40

103.09
102.63

116.14
102.92

111.40
111.22

42.09
28.05

Park and
Hrnjak [86]

232.11
232.11

33.01
−33.01

251.06
251.06

38.77
38.77

38.77
38.77

27.22
23.67

34.06
33.46

24.47
24.04

13.07
−11.26

Li et al.
[87]

338.36
338.36

31.81
−29.64

353..18
353.18

57.92
57.03

57.92
57.03

30.78
25.07

37.10
27.87

40.40
37.87

15.73
6.26

Wang et al.
[55]

167.58
167.58

49.10
−49.10

89.72
89.72

17.11
11.22

17.67
12.87

15.43
12.93

28.34
19.57

9.90
−5.32

10.36
8.29

Rahman
et al. [88]

108.70
107.50

72.09
−72.09

99.34
98.03

24.01
−21.90

24.01
−21.90

47.80
−47.80

49.91
−49.56

38.66
−38.42

20.98
−2.42

Total 191.19
190.87

44.07
−33.87

164.97
164.35

43.39
22.94

43.45
23.15

41.54
15.95

44.68
15.92

36.94
8.17

16.87
2.33



Processes 2022, 10, 243 11 of 26

Based on the results shown in Table 4, the GP correlation (Equation (13)) shows the best
results for predicting the condensation HTC in multi-port channels among the available
correlation with AARD and AAD values of 16.87% and 2.33%, respectively, for all analyzed
data. In addition, the AARD values of the new model for estimating the condensation HTC
from most of the analyzed data sources were lower than 20%. These results for estimating
the condensation HTC confirm the accuracy and generality of the correlation determined
by the GP approach. Among the previous models, the best results were obtained by Kim
and Mudawar [52] with a total AARD of 36.94%, which was two times greater than that
obtained by the GP correlation. It should be noted that most of the data (2081 of 4045 data
points) analyzed by Kim and Mudawar [52] were for multi-port channels. The Dorao and
Fernandino [49], Shah (2016) [90], Shah (2019) [57] and Crosser [92] correlations showed
almost the same results with total AARD values of 41.54%, 43.39%, 43.45%, and 44.07%,
respectively. In addition, the Hosseini et al. [56] model, which was improved based on the
experimental data for single port channels, also had fairly big deviations in estimating the
HTC inside multi-port channels with an AARD of 44.68%. This observation verified that
the HTC in multi-port mini/micro-channels differs from that in single port channels. The
Bohdal et al. [93] and Akers et al. [91] had the highest deviations with the experimental
data among the previous correlations, with the AARD values of, respectively, 164.97% and
191.19%. Therefore, these correlations did not provide reasonable predictions for multi-port
mini/micro-channels. Although the previous models exhibit nice accordance with some
data sources, none of the models can be used as a general correlation for predicting the
condensation HTC in multi-port mini/micro-channels. The new correlation and all of
the previous models result in large deviations from the experimental data reported by
Belchi et al. [79] and Pham et al. [85] with AARD values of 52.30% and 42.09%, respectively.

To show the accuracy of the other models, the results estimated by Kim and Mu-
dawar [52], Dorao and Fernandino [49], Shah (2019) [57], Shah (2016) [90], Crosser [92],
and Hosseini et al. [56] correlations were examined in contrast to the measured values
in Figure 3. This figure confirms the above assertion that the previous models have rela-
tively large deviations from the measured values of the condensation HTC in multi-port
mini/micro-channels.

The accuracy evaluation of previous models and our model for estimating the HTC
inside multi-port micro and mini-channels based on Kandlikar [19] classification was given
in Table 5. This table verifies that GP correlation (Equation (13)) can predict the HTC in
both micro and mini-channels reasonably well and exhibits the best agreements with the
experimental data among all available models with AARD of 16.60% and 16.91% for micro-
mini channels, respectively. In addition, our approach predicts almost 85% of data for both
micro- mini channels with an error of less than 30%. The Kim and Mudawar correlation [52]
predicts 63.44% of the data for mini-channels with an error of lower than 30%. However,
its overall accuracy for mini-channels is not satisfactory, with an AARD of 36.94%. In
addition, its deviations for micro-channels are much more significant, and its AARD for
micro-channels is 59.10%.

The models developed by Dorao and Fernandino [49], Shah (2016) [90], Shah (2019) [57],
and Crosser [92] do not provide acceptable results for multi-port micro and mini-channels,
and their AARD values for all cases are more than 35%. Furthermore, similar to Kim
and Mudawar [52] model, their deviations for micro-channels are significantly higher
than those for mini-channels. The models of Bohdal et al. [93] and Akers [91] show
substantial deviations for both micro and mini-channels, and they cannot be used for
multi-port channels.
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In the condensation of the fluids in multi-port channels, the surface tension force plays
a remarkable role in controlling the HTC, and its effect becomes more critical as channel
diameter is reduced [94]. The effect of the surface tension force was explicitly considered in
the new correlation given by Equation (12) using the Bond number. This dimensionless
number (Bo) quantifies the relative importance of surface tension forces compared to the
gravitational ones. Therefore, the Bo number is important for condensation HTC modeling
of multi-port channels, especially for smaller diameters. However, in most of the previous
correlations, there was no factor accounting for the effect of surface tension force.

It should be noted that some comparisons between the measured HTC reported by dif-
ferent sources were conducted at identical conditions in [94]. A high degree of consistency
between analyzed experimental data was observed. It means that the accurate intelligent
based models obtained for a broad range of operational and geometrical conditions capa-
ble of estimating HTC for new independent sources, properly. Moreover, the GP-based
models outperform earlier models when examining data samples other than those used for
developing GP models, as reported in the previous studies [56,94].
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Figure 3. Comparison of predictions of the previous condensation HTC models with all 3503 
experimental data points: (a) Kim and Mudawar [52], (b) Dorao and Fernandino [49], (c) Shah (2016) 
[90], (d) Shah (2019) [57], (e) Crosser [92] and (f) Hosseini et al. [56]. The solid points represent the 
outcomes of different models. The solid line represents the best fitting between experimental and 
estimated data, and the dash lines represent the ±30% error bounds. 
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given in Table 5. This table verifies that GP correlation (Equation (13)) can predict the HTC 
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the experimental data among all available models with AARD of 16.60% and 16.91% for 
micro- mini channels, respectively. In addition, our approach predicts almost 85% of data 
for both micro- mini channels with an error of less than 30%. The Kim and Mudawar 
correlation [52] predicts 63.44% of the data for mini-channels with an error of lower than 
30%. However, its overall accuracy for mini-channels is not satisfactory, with an AARD 
of 36.94%. In addition, its deviations for micro-channels are much more significant, and 
its AARD for micro-channels is 59.10%.  

The models developed by Dorao and Fernandino [49], Shah (2016) [90], Shah (2019) 
[57], and Crosser [92] do not provide acceptable results for multi-port micro and mini-
channels, and their AARD values for all cases are more than 35%. Furthermore, similar to 

Figure 3. Comparison of predictions of the previous condensation HTC models with all 3503 experi-
mental data points: (a) Kim and Mudawar [52], (b) Dorao and Fernandino [49], (c) Shah (2016) [90],
(d) Shah (2019) [57], (e) Crosser [92] and (f) Hosseini et al. [56]. The solid points represent the
outcomes of different models. The solid line represents the best fitting between experimental and
estimated data, and the dash lines represent the ±30% error bounds.

The physical trends of the established model and those of Kim and Mudawar [52],
as the most accurate model among the previous correlations, are presented in Figures 4–7.
Here, the influence of the input parameters on the HTC in multi-port channels,
are also discussed.

Figure 4 illustrates the impacts of the vapor quality and flow mass flux on the HTC
during the condensation of the R744 in a multi-port channel with a HD of 0.13 mm at the
saturation temperature of 15 ◦C. The experimental data shows that the condensation HTC
increased with increasing the vapor quality and mass flux. This was in accordance with
Sikora et al. [95] findings for the HFE 7000 refrigerant in microchannels. According to
Coleman and Garimella [96] flow patterns, the flow regime changes from slug and bubbly
with thick liquid film to annular with thin liquid film by raising the vapor quality. In
addition, increasing the mass flux can increase the shear stress at the two phases interface,
and the liquid film thickness reduces. Therefore, increasing the mass flux and vapor quality
decreases the liquid film thickness and increases the HTC. Figure 4 shows that the GP
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correlation shows good accordance with the experimental data. However, the correlation
of Kim and Mudawar [52] underestimates the measured values.

Table 5. Comparison of the accuracy of the available models for estimating the HTC in multi-port
micro and mini-channels.

Channel
Diameter

Micro-Channels
(D≤0.2 mm),

480 Data Points

Mini-Channels
(0.2<D<3 mm),

3023 Data Points

All Data,
3503 Data Points

Models

Percentage
of Data

within the
AARD of

20%

Percentage
of Data

within the
AARD of

30%

AARD (%)

Percentage
of Data

within the
AARD of

20%

Percentage
of Data

within the
AARD of

30%

AARD (%)

Percentage
of Data

within the
AARD of

20%

Percentage
of Data

within the
AARD of

30%

AARD (%)

Akers et al.
[91] 14.36 20.83 134.39 1.36 1.72 200.21 3.14 4.34 191.19

Crosser
[92] 0.00 0.00 73.31 22.23 36.09 39.43 19.18 31.14 44.07

Bohdal
et al. [93] 16.86 25.83 91.45 4.30 6.55 176.64 5.99 9.19 164.97

Shah (2016)
[90] 10.21 16.67 53.68 40.13 55.94 41.76 36.03 50.56 43.39

Shah (2019)
[57] 10.21 16.67 53.68 39.93 55.71 41.82 35.86 50.36 43.45

Dorao and
Fer-

nandino
[49]

10.00 16.25 55.09 40.46 56.17 39.39 36.28 50.70 41.54

Hosseini
et al. [56] 9.38 13.96 59.91 32.09 49.49 42.27 28.98 44.62 44.68

Kim and
Mudawar

[52]
4.17 7.29 59.10 49.19 63.44 33.42 43.05 55.75 36.94

New
Correlation 68.75 84.58 16.60 70.66 84.75 16.91 70.37 84.73 16.87
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The predicted HTCs for R134a are examined in contrast to the real data for saturation 
temperatures of 50 and 60 °C in Figure 5. This result showed that the HTCs for the 
saturation temperature of 50 °C were higher than those for 60 °C. Table 6 presents the 
thermophysical characteristics of the R134a at the saturation temperatures of 50 and 60 ℃. Reducing the saturation temperature led to higher liquid density and lower vapor 
density. Therefore, the vapor velocity was increased, and the liquid velocity was reduced 
and led to a higher velocity difference at the two phases interface. Therefore, higher 
interfacial shear stress and thinner liquid film were obtained at the lower saturation 
temperature, and the HTC increased. In addition, R134a had a higher liquid thermal 
conductivity at the saturation temperature of 50 °C. Therefore, its thermal resistance in 
liquid film at this temperature was lower, which resulted in a higher HTC. Figure 5 shows 
that the GP and Kim and Mudawar [52] correlations showed the same trends for different 

Figure 4. Comparison of the predictions of the GP correlation (Equation (13)) and the model of
Kim and Mudawar [52] with the experimental data [37] for R744 condensing at the saturation
temperature of 15 °C inside a 0.13 mm channel under different vapor qualities and mass fluxes. Blue
and red points represent the G = 600 kg.m−2.s−1 and G = 800 kg.m−2.s−1, respectively. The solid
points, solid lines, and dash lines represent the experimental values, GP outcomes, and Kim and
Mudawar [52] outcomes.
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Figure 6 compares the HTC of R744 at the saturation temperature of 0 ℃ for two 
different channel diameters. The experimental data and empirical correlations show that 
the HTCs of R744 in the channels with 0.68 mm hydraulic diameter was slightly higher 
than those for the channel with 0.78 mm hydraulic diameters. As was noted previously, 
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Figure 5. Comparison of the predictions of the GP correlation (Equation (13)) and the model of
Kim and Mudawar [52] with the experimental data [72] for R134a condensing at the mass flux of
800 kg·m−2· s−1 inside a 0.33 mm channel under different saturation temperatures. Blue and red
points represent the Ts = 50 ◦C and Ts = 60 ◦C, respectively. The solid points, solid lines, and dash
lines represent the experimental values, GP outcomes and Kim and Mudawar [52] outcomes.
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Figure 6. Comparisons of the predictions of the GP correlation (Equation (13)) and the model of
Kim and Mudawar [52] with the experimental data [82] for R744 condensing at the mass flux of
800 kg·m−2·s−1 and saturation temperature of 0 ◦C inside different channel diameters. Blue and red
points represent the D = 68 mm and D = 78 mm, respectively. The solid points, solid lines, and dash
lines represent the experimental values, GP outcomes and Kim and Mudawar [52] outcomes.
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Figure 7. Comparison of the predictions of the GP correlation (Equation (13)) and the model of Kim
and Mudawar [52] with the experimental data [73,76] for R290 and R32 condensing at the mass flux
of 350 kg·m−2·s−1 and saturation temperature of 40 °C inside a 1.16 mm channel. Blue and red points
represent the R290 and R32, respectively. The solid points, solid lines, and dash lines represent the
experimental values, GP outcomes, and Kim and Mudawar [52] outcomes, respectively.

The predicted HTCs for R134a are examined in contrast to the real data for saturation
temperatures of 50 and 60 ◦C in Figure 5. This result showed that the HTCs for the
saturation temperature of 50 ◦C were higher than those for 60 ◦C. Table 6 presents the
thermophysical characteristics of the R134a at the saturation temperatures of 50 and 60 °C.
Reducing the saturation temperature led to higher liquid density and lower vapor density.
Therefore, the vapor velocity was increased, and the liquid velocity was reduced and led
to a higher velocity difference at the two phases interface. Therefore, higher interfacial
shear stress and thinner liquid film were obtained at the lower saturation temperature,
and the HTC increased. In addition, R134a had a higher liquid thermal conductivity at
the saturation temperature of 50 ◦C. Therefore, its thermal resistance in liquid film at
this temperature was lower, which resulted in a higher HTC. Figure 5 shows that the GP
and Kim and Mudawar [52] correlations showed the same trends for different saturation
temperatures. However, the GP correlation led to a much better agreement with the
experimental data.

Table 6. Thermophysical characteristics of R134a at 50 and 60 ◦C.

Ts (°C) ρl (kg m−3) ρv (kg m−3) kl (w m−1K−1)

50 1102.3 66.27 0.070427
60 1052.9 87.38 0.066091

Figure 6 compares the HTC of R744 at the saturation temperature of 0 °C for two
different channel diameters. The experimental data and empirical correlations show that
the HTCs of R744 in the channels with 0.68 mm hydraulic diameter was slightly higher
than those for the channel with 0.78 mm hydraulic diameters. As was noted previously, the
surface tension force plays a more critical role in the smaller channels, and the interactions
of the phases increase. Therefore, the liquid film becomes thinner, and the HTC increases.
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Figure 6 shows that the new GP correlation is consistent with the experimental data, while
the correlation of Kim and Mudawar [52] overestimated the HTC.

Figure 7 shows the effect of the working fluids (R32 and R290) on the HTC. As shown
in this figure, the condensation HTCs for R290 as the working fluid were higher than that
for R32. The thermophysical properties of the R32 and R290 at the constant saturation
temperature of 40 ◦C are compared in Table 7. Accordingly, R290 had lower liquid and
vapor densities. Thus, the liquid and vapor velocities for R290 were higher than those for
R32 at the same mass flux. Therefore, the shear stress at the interface increased, which
resulted in a higher HTC. In addition, the latent heat of vaporization of R290 was higher
than that of R32. This information also justifies the higher HTCs for R290. Figure 7 also
shows that the GP and Kim and Mudawar correlations predict the same trends for different
working fluids. However, the GP correlation results were in closer accordance with the
real data.

Table 7. Thermophysical properties of R290 and R32.

Fluids Ts (°C) ρl (kg m−3) ρv (kg m−3) Hlv (kJ Kg−1)

R290 40 467.46 30.165 307.06
R32 40 893.04 73.268 237.10

4. Conclusions

A new general correlation for predicting the condensation HTC in multi-port mini and
micro-channels was developed using the method of genetic programming. For validating
the established model, 3503 experimental data points were collected from 21 published
papers covering a broad range of working fluids and operating conditions. Key conclusions
of this study are:

1. The effects of all affecting parameters (Rel , Prl , Xtt, Bo, x) on the HTC were consid-
ered in the GP correlation. Using these parameters led to a correlation that estimates
the condensation HTC with reasonable accuracy. The new correlation estimated the
HTC with a total AARD of 16.87% for a broad range of data samples. In addition, the
percentages of all data with error lower than 20% and 30% for the new model were
70.04% and 84.43%, respectively.

2. The previous models’ predictions of the HTC were also compared to the measured
data. The previous correlations showed significantly higher deviations from the
experimental data compared to the new correlation. The total AARD values for the
correlations of Kim and Mudawar [52], Dorao and Fernandino [49], Shah (2016) [90],
Shah (2019) [57], Crosser [92], Hosseini et al. [56], Bohdal et al. [93], and Akers et al. [91]
were, respectively, 36.94%, 41.54%, 43.39%, 43.45%, 44.07%, 44.68%, 164.97%, 191.19%.
It was found that the previous models can not be considered as general correlations
for estimating the condensation HTC in multi-port channels. However, the new GP
correlation provides much-improved estimates for the HTCs.

3. The new model and previous correlations were used for estimating the HTC in
channels with different sizes. It was shown that the new correlation estimated the
data for micro and mini-channels with the AARD of 16.60% and 16.91%, respectively,
and was the most accurate for all cases among all correlations. In addition, the new
GP correlation estimated more than 80% of all data for both micro and mini-channels
with an error of lower than 30%. This is because using the Bond number in the
new model explicitly includes the effects of surface tension in different channel sizes.
The previous correlations, however, showed relatively large deviations for all cases.
Furthermore, their deviations become larger when the channel’s diameter decreases,
and all correlations had AARD values of more than 50% for micro-channels.

4. The new model developed by GP was shown to be suitable for estimating the con-
densation HTC in multi-port channels over a broad range of vapor qualities, mass
velocities, saturation temperatures, channel diameters, and working fluids.



Processes 2022, 10, 243 22 of 26

Knowledge of the parameters of greater effect on the target function is critical for
developing further simple and precise correlations. Therefore, performing a Pearson’s
correlation coefficient analysis to select the most influential parameters in controlling the
condensation of two-phase HTC in multi-port channels and also to determine the weight
of each factor in the model is suggested as future work.
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Nomenclature

h Coefficient of heat transfer, W m−2 K−1

Bo Bond Number = g (ρl − ρv) D2 σ−1, (-)
Frl Froude number = G2 ρ−2

L g−1 D−1, (-)
G Total flux, kg m−2 s−1

Jg Dimensionless velocity of vapor
Hlv Latent heat, J Kg−1

Pr Prandtl number, (-)
k Thermal conductivity, W m−1 K−1

Nutp Nusselt number = h D k−1
l , (-)

Pc Critical pressure, Pa
Pred Reduced pressure = Ps Pc

−1, (-)
Ps Saturation pressure, Pa
Rev Vapor Reynolds number = G x D µv

−1, (-)
Prtp Prandtl number = Prl(1 − x) + xPrv, (-)
Rel Superficial liquid Reynolds number = G (1 − x) D µl

−1, (-)
Relo Liquid Reynolds number = G D µl

−1, (-)
Retp Flow Reynolds number = Rel + Rev, (-)
Su Suratman Number, (-)
Ts Saturation temperature, °C
Wevo Vapor only Weber number = G2 D ρv

−1σ−1, (-)
x Vapor quality, (-)
Xtt Martinelli parameter = (µl/µv)

0.1 (ρv/ρl)
0.5 ([1 − x]/x)0.9, (-)

x Vapor quality, (-)
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