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Abstract: The present study focuses on the multi-component stress-strength (MCSS) model based
on inverse Weibull distribution (IWD). Both stress and strength are assumed to follow IWD with a
common shape parameter. In such a system, reliability is obtained by the maximum likelihood (ML)
method. The results are extracted using Monte Carlo simulation for comparing the performance of the
reliability component Rs,k using different sample sizes and different combinations of the parameters
(s,k). The procedure is further illustrated through a real data set to show how the proposed technique
may be employed to study the strength and stress of multicomponent model.

Keywords: inverse Weibull; multicomponent; stress-strength model; asymptotic confidence interval;
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1. Introduction

The stress-strength (SS) reliability of a system defines the probability that the system
will function properly until the strength exceeds the stress. The basic underlying philosophy
in reliability studies is to examine whether a part or a product can sustain a certain amount
of stress under some conditions so that it can survive for a longer period. However, with
the availability of highly sophisticated simulation techniques, researchers are now studying
the stress-strength of more than one component simultaneously, commonly known as
multicomponent SS models using varied probability distributions. In designing mechanical
components, one comes across the study of SS. If the probability of strength is less than
the probability of stress, then we study their behavior in SS studies. Within the reliability
environment, the term SS was first used by Church and Harris [1]. Bhattacharyya and John-
son [2] observed that, in several practical scenarios, the performance of a system depends
on more than one component and these components have their strengths. Multicomponent
stress-strength (MCSS) models have great applications range from communication and
industrial systems to logistic and military systems. For examples, an aircraft generally
contains more than one engine (k) and assume that for takeoff at least s (1 ≤ s ≤ k) engines
are needed, see Hanagal [3], Turkkan and Pham-Gia [4], Serkan [5,6], Serkan and Funda [7],
Shawky and Al-Gashgari [8], Pak et al. [9,10], and Rao et al. [11]. SS models have been
discussed in the literature many a times. In a SS model, a unit operates if its strength
exceeds the stress applied on it. Hence, the reliability R is defined as the probability that
the strength of the unit exceeds the stress it is subjected to, i.e., R = P (X > Y), where X is the
random strength of the unit and Y is the random stress applied to the unit. The reliability
and its estimation have been well studied under different distributional assumptions on X
and Y. Theory and applications of SS has been thoroughly discussed by Kotz et al. [12].

The series and parallel systems are special cases of a general class of systems called
k-out-of-n systems. A system belonging to this class can be one of two types: (i) a system
that fails with the failure of the kth component, denoted by k-out-of-n: F system; or (ii) a
system that functions if at least k components are working; and is denoted by k-out-of-n:
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G system. The present study will focus on the second type of study in which the failure
distribution of the components will follow IWD.

Suppose a system with “k” identical components functions if s (1 ≤ s ≤ k) or more
of the components operate simultaneously. In its operating environment, the system is
subjected to a common stress Y, which is a random variable with CDF G(.). Bhattacharya
and Roychowdhury [13] gave interesting examples of a multi-component system. Assume
that the strengths of the components are independent and identically distributed random
variables with CDF F(.) and subjected to the common random stress Y having CDF G(.).
Then the system reliability, i.e., the probability that the system does not fail, Rs,k given by

Rs,k = P(at least s of the X1, X2, . . . , Xk exceed Y)

= ∑k
i=s

(
k
i

)
[P(Xi > Y]i[P(Xi ≤ Y]k−i

= ∑k
i=s

(
k
i

) ∫ ∞
−∞[1− F(y)]i[F(y)](k−i) dG(y),

(1)

where X1, X2, . . . , Xn are independently and identically distributed (iid) with common
distribution function F(x), the system is subject to common random stress Y with dis-
tribution function G(y). The probability given in Equation (1) is called reliability in an
MCSS model given by Bhattacharyya and Johnson [2], also see Ebrahimi [14], Pandey and
BorhanUddin [15], Paul and BorhanUddin [16], Rao and Kantam [17], Rao [18–20], Hassan
and Basheikh [21], Dey et al. [22], Kızılaslan [23], Badr et al. [24], and Akgül [25].

Weibull distribution was initially presented by Weibull in 1935; this distribution does
not provide a satisfactory parametric fit for lifetime distributions with non-monotone
failure rates, such as the unimodal failure rate functions, which are common in reliability
and biological studies. In this case, instead, it is recommended to use a special case
of the Weibull distribution, the IWD. If “Z” denotes a random variable (r.v) from the
Weibull model, and if we define X as follows X = 1/Z, then r.v X is said to follow IWD.
Extensive work has been done on the IWD; see, for example, Keller et al. [26], Calabria,
and Pulcini [27–30] provide an interpretation of the IWD in the context of the load strength
relationship for a component. Maswadah [31,32] has fitted IWD to the flood data reported
in Dumonceaux and Antle [33], for more details see, e.g., Murthy et al. [34] and Bi and
Gui [35]. IWD is a very flexible distribution model that approaches different distributions
when its shape parameter varies. When β = 1, the distribution is the same as the inverse
exponential distribution; when β < 1, it follows the inverse gamma distribution and when
β = 2, it is known as inverse Rayleigh distribution. The IWD model can be used in reliability
analysis. It can be successful in modeling life for several devices and variables such as
electron tubes, automotive radiators, fatigue in textiles, the marketing life expectancy of
drugs, etc.

A random variable X is said to have a two-parameter IWD if it has the following
probability density function (PDF):

f (x : α, λ) = αλx−(λ+1)e−αx−λ
, x ≥ 0, α, λ > 0 (2)

where α > 0 is called scale parameter and λ > 0 is called the shape parameter of this family
and it will be denoted by IWD (α; λ). If X~IWD (α; λ), then the cumulative distribution
function (CDF),

F(x : α, λ) = e−αx−λ
, x ≥ 0, α, λ > 0. (3)

IWD takes many different names such as Fréchet distribution (Johnson et al. [36]) and
complementary Weibull distribution (Drapella [37]). For the theoretical analysis of the
IWD, see Khan et al. [38]. The utility of the IWD for modeling reliability data was further
discussed by researching the failure of mechanical components subject to degradation, see
Keller et al. [26]. The ability of IWD to model failure rates is quite common in reliability
and biological studies, see Bi and Gui [35] and Li and Hao [39]. In the field of engineering
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sciences, several lifetime distributions are used to study stress-strength reliability models,
and these models are frequently used to estimate the system reliability R, see Yadav
et al. [40]. The role of dependent evidence in system reliability evaluation and a full
Bayesian approach that is applied to various system reliability models was studied by
Yang et al. [41]. Graves and Hamada [42] worked on the likelihood for simultaneous
failure time data when monitoring is stopped when the system fails and this method is
based on the reliability structure of the system, listing all possible events consistent with
the simultaneous data and calculating their contributions to the likelihood. Estimation
of reliability in multicomponent stress-strength based on two parameter exponentiated
Weibull distribution was studied by Rao et al. [43]. However, scrolling through the literature
the authors could not come across. Estimation of reliability in multicomponent stress-
strength based on IWD. The work of Palumbo and Pallotta [44] also motivates to study IWD.
In their work, authors considered real data sets for four generative mechanisms following
the principles “deterioration”, “stress-strength”, “shocks”, and “extreme maximum value”,
and observed that IWD is more reliable as compared to inverse Gaussian and lognormal
distributions One main advantage of considering IWD from computational aspect is that
the cumulative distribution function (CDF) of the IWD admits a closed form.

The main objective of this paper is to study the reliability in an MCSS based on X,
Y being two independent random variables, where X~IWD (α; λ), and Y~IWD (β; λ)
having a common shape parameter λ. Going through the relevant literature, one seldom
comes across work on the estimation of the survival probability in an MCSS system when
stress follows a two-parameter IWD hence, the rationale for the current study emerges.
In Section 2, the expression for the Rs,k is derived, and a procedure for estimating it is
developed. For the said purpose, ML estimators are employed to obtain the asymptotic
distribution and confidence intervals for Rs,k. Comparison based on small samples using
Monte Carlo simulation is carried out in Section 3, along with using real-life data for
illustrating the estimation process. Section 4 briefly concludes the study.

2. Maximum Likelihood Estimation of Rs,k

Now, we assume (X1, X2, . . . , Xn) is a random sample of strength variables following
IWD (α; λ) with common distribution function F(x) and (Y1, Y2, . . . , Ym) is a random sample
of stress variables following IW (β; λ) with common distribution function G(y). The proba-
bility given in Equation (1) is called reliability in an MCSS model given by Bhattacharyya
and Johnson [2]. Thus, the reliability in multicomponent stress-strength for two-parameter
IWD using (1) is

Rs,k = ∑k
i=s

(
k
i

) ∫ ∞
0 [1− e−αy−λ

]
i
[e−αy−λ

]
k−i
·βλy−(λ+1)e−βy−λ

dy

= γ ∑k
i=s

(
k
i

) ∫ 1
0 (1− Z)iZk+γ−i−1dz

= γ ∑k
i=s

(
k
i

)
β(k + γ− i, i + 1),

where z = e−αy−λ
and γ = β

α .
After simplification, we get

Rs,k= γ ∑k
i=s

k!
(k− i)!

[
∏i

j=0(k + γ− j)
]−1

(4)

The reliability can also be written as

Rs,k =
Γ(k + 1)Γ(k + γ− s + 1)
Γ(k− s + 1)Γ(k + γ + 1)

. (5)
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The probability in (4) or (5) is called reliability in an MCSS. If α and β are unknown, it
is necessary to estimate α and β to estimate Rs,k using the ML method. Once the unknown
parameters are obtained, then Rs,k can be computed using Equation (4) or (5).

For a random sample of size n from strength component and a random sample of size
m is available from stress component, the likelihood function of these observed samples for
θ = (α, β, λ) can be written as:

L(X, Y; α, β, λ) = ∏n
i=1 f (xi, α, λ)∏m

j=1 g
(
yj, β, λ

)
= αnβmλn+m ∏n

i=1 xi
−(λ+1)e−α ∑ xi

−λ
∏m

j=1 yj
−(λ+1)e−β ∑ yj

−λ

.

Thus, the log-likelihood function is

` = lnL = n lnα + m lnβ + (n + m) lnλ− (λ + 1)
n
∑

i=1
lnxi − α

n
∑

i=1
xi
−λ

−(λ + 1)
m
∑

j=1
lnyj − β

m
∑

j=1
yj
−λ.

(6)

The MLEs of α, β, and λ say α̂, β̂, and λ̂ respectively can be obtained by the solution of

α̂=
n

∑n
i=1 xi

−λ̂
, (7)

β̂=
m

∑m
j=1 yj

−λ̂
. (8)

Using (7) and (8), the MLE for λ is the solution of the nonlinear equation

g
(
λ̂
)
=

n + m
λ̂
−
(
∑n

i=1 lnxi + ∑m
j=1 lnyj

)
+

n

∑n
i=1 xi

−λ̂ ∑n
i=1 xi

−λ̂lnxi +
m

∑m
j=1 yj

−λ̂ ∑m
j=1 yj

−λ̂lnyj = 0. (9)

Once we obtain λ̂, thus, α̂ and β̂ can be calculated from (7) and (8), respectively.
Therefore, the MLE of Rs,k becomes:

R̂s,k = γ̂ ∑k
i=s

k!
(k− i)!

[
∏i

j=0(k + γ̂− j)
]−1

, (10)

or

R̂s,k =
Γ(k + 1)Γ(k + γ̂− s + 1)
Γ(k− s + 1)Γ(k + γ̂ + 1)

, γ̂ =
β̂

α̂
. (11)

Asymptotic Confidence Intervals

To construct the asymptotic confidence intervals (CI, s), we need to compute the
asymptotic variance (AV) of the reliability coefficient R̂s,k. The asymptotic variance R̂s,k,
given by Rao [40], is:

AV
(

R̂s,k
)
= Var(α̂)

(
∂R̂s,k

∂α̂

)2

+ Var
(

β̂
)(∂R̂s,k

∂β̂

)2

. (12)

To obtain the asymptotic confidence interval for R̂s,k, we need asymptotic variances of
the MLE, and they are given by:

Var(α̂) =
[

E(−∂2lnL
∂α̂2 )

]−1

=
α̂2

n
and Var

(
β̂
)
=

[
E(−∂2lnL

∂β̂2
)

]−1

=
β̂2

m
. (13)
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In addition, from (4) or (5), we have

∂Rs,k

∂α
= − γΓ(k + 1)Γ(k + γ− s)

αΓ(k− s + 1)Γ(k + γ + 1)
[
1− (k + γ− s)

(
Hk+γ − Hk+γ−s−1

)]
, (14)

and

∂Rs, k

∂β
=

Γ(k + 1)Γ(k + γ− s)
αΓ(k− s + 1)Γ(k + γ + 1)

[
1− (k + γ− s)

(
Hk+γ − Hk+γ−s−1

)]
, (15)

where Hr = ∑r
t=1 t−1 is the Harmonic series. Using the values from (13), (15), and (16) at

α = α̂ and β = β̂ in (12), the asymptotic variance of R̂s,k as

AV
(

R̂s,k
)
=

(
γ̂Γ(k + 1)Γ(k + γ̂− s)

Γ(k− s + 1)Γ(k + γ̂ + 1)

)2[
1− (k + γ̂− s)∑k+γ̂

t=k+γ̂−s t−1
]2
(

1
n
+

1
m

)
. (16)

To avoid extra effort for the derivation of the R̂s,k, derivatives of R̂s,k are worked for
(s, k) = (1, 3) and (3, 5) separately, and after simplification they are

R̂1,3 =
3

3 + γ̂
,

∂R̂1,3

∂α̂
=

3γ̂

α̂(3 + γ̂)2 ,
∂R̂1,3

∂β̂
=

−3

α̂(3 + γ̂)2 , R̂3,5 =
60

(5 + γ̂)(4 + γ̂)(3 + γ̂)
,

∂R̂3,5

∂α̂
=

60
(
3γ̂2 + 24γ̂ + 47

)
γ̂

α̂[(5 + γ̂)(4 + γ̂)(3 + γ̂)]2
,

∂R̂3,5

∂β̂
=

−60
(
3γ̂2 + 24γ̂ + 47

)
α̂[(5 + γ̂)(4 + γ̂)(3 + γ̂)]2

.

Therefore,

AV
(

R̂1,3
)
=

9γ̂2

(3 + γ̂)4

(
1
n
+

1
m

)
, AV

(
R̂3,5

)
= (

60γ̂
(
3γ̂2 + 24γ̂ + 47

)2

[(5 + γ̂) (4 + γ̂)(3 + γ̂)]2
)

2(
1
n
+

1
m

)
.

As n → ∞, m → ∞ R̂s,k−Rs,k√
AV(R̂s,k)

d→ N(0, 1). Then, the asymptotic 95% confidence

interval (CI) of the system reliability Rs,k is given by

R̂s,k ∓ 1.96
√

AV
(

R̂s,k
)

and hence the asymptotic confidence 95% confidence interval for R1,3 is given by

R̂1,3 ∓ 1.96
3γ̂

(3 + γ̂)2

√(
1
n
+

1
m

)
, where γ̂ =

β̂

α̂

Similarly, the asymptotic confidence 95% confidence interval for R3,5 is given by

R̂3,5 ∓ 1.96
60γ̂

(
3γ̂2 + 24γ̂ + 47

)
[(5 + γ̂)(4 + γ̂)(3 + γ̂)]2

√(
1
n
+

1
m

)
, whereγ̂ =

β̂

α̂
.

3. Simulation Study and Data Analysis

In this section, a simulation study is carried out coupled with the application of the
proposed technique on a real-life data set to estimate reliability coefficient when samples
are available from IWD.

3.1. Simulation Study

Based on the Monte Carlo simulation performance of the Rs,k is compared using
different sample sizes. Ten thousand random samples of size 10 (5) 30 each from the stress
population and strength population are generated. This section investigates some empirical
results based on Monte Carlo simulations to study the behavior of the proposed methods
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using different sample sizes. Sample sizes (n, m) = (10, 10), (15, 15), (20, 20), (25, 25), and
(30, 30) with 1000 iterations are generated for (α, β) = (3.0, 1.5), (2.5, 1.5), (2.0, 1.5), (1.5,
1.5), (1.5, 2.0), (1.5, 2.5), and (1.5, 3.0) and in all cases we take λ = 2. The same procedure is
repeated for both combinations of (s, k) = (1, 3) and (3, 5). The true value of reliability in
multicomponent stress-strength with the given combination for given parameter values are
shown in Table 1.

Table 1. True Values of Rs,k for various combination of parameters.

(s, k)
(α, β)

(3, 1.5) (2.5, 1.5) (2, 1.5) (1.5, 1.5) (1.5, 2) (1.5, 2.5) (1.5, 3)

(1, 3) 0.857143 0.833333 0.800000 0.750000 0.692308 0.642857 0.600000

(3, 5) 0.692641 0.646998 0.585812 0.500000 0.409919 0.340330 0.285714

Thus, the true values for reliability in the MCSS model for the IW decrease as β
increases for fixed values of α, the same pattern is witnessed when β is fixed and α decreases,
and the same pattern emerges for both combinations of (s, k). The MLE of α and β are
obtained from (6) and (7), while the MLE of λ is obtained as the solution of the non-
linear equation in (8). The MLE thus obtained is used to calculate the reliability of a
multi-component system for (s, k) = (1, 3) and (3, 5).

The average bias (ABias), the average mean square errors (AMSE), the average stan-
dard errors (ASE), the average length of the simulated 95% confidence intervals (ALCI),
and the average coverage probabilities of the simulated 95% confidence intervals (ACP) of
the reliability estimate R̂s,k over the 10,000 samples are presented in Table 2.

Table 2. The AveBias, AMSE, ASE, ALCI, and ACP of R̂s,k.

n m (α, β)
ABias AMSE ASE ALCI ACP

R1,3 R3,5 R1,3 R3,5 R1,3 R3,5 R1,3 R3,5 R1,3 R3,5

10 10

(3
,1

.5
)

−0.0564 −0.1044 0.0045 0.0150 0.0708 0.1258 0.2774 0.4931 0.9989 0.9951
15 15 −0.0561 −0.1032 0.0040 0.0134 0.0579 0.1030 0.2268 0.4039 0.9966 0.9863
20 20 −0.0550 −0.1021 0.0037 0.0125 0.0500 0.0893 0.1959 0.3501 0.9905 0.9720
25 25 −0.0548 −0.1010 0.0045 0.0120 0.0447 0.0799 0.1752 0.3131 0.9753 0.9458
30 30 −0.0544 −0.1011 0.0034 0.0116 0.0408 0.0730 0.1598 0.2861 0.9526 0.9102

10 10

(2
.5

,1
.5

)

−0.0473 −0.0832 0.0036 0.0111 0.0746 0.1293 0.2924 0.5068 0.9986 0.9956
15 15 −0.0468 −0.0826 0.0031 0.0097 0.0610 0.1060 0.2390 0.4154 0.9984 0.9957
20 20 −0.0452 −0.0815 0.0027 0.0088 0.0526 0.0919 0.2062 0.3602 0.9977 0.9900
25 25 −0.0450 −0.0810 0.0026 0.0083 0.0470 0.0823 0.1844 0.3225 0.9960 0.9851
30 30 −0.0447 −0.0808 0.0025 0.0079 0.0429 0.0752 0.1682 0.2946 0.9899 0.9763

10 10

(2
,1

.5
)

−0.0303 −0.0509 0.0024 0.0068 0.0786 0.1327 0.3082 0.5203 0.9992 0.9983
15 15 −0.0293 −0.0501 0.0018 0.0053 0.0642 0.1088 0.2516 0.4266 0.9994 0.9984
20 20 −0.0291 −0.0498 0.0016 0.0047 0.0556 0.0944 0.2180 0.3701 0.9992 0.9981
25 25 −0.0288 −0.0497 0.0014 0.0041 0.0497 0.0846 0.1950 0.3316 0.9994 0.9981
30 30 −0.0289 −0.0490 0.0013 0.0038 0.0454 0.0772 0.1781 0.3028 0.9989 0.9974

10 10

(1
.5

,1
.5

)

−0.0023 −0.0004 0.0016 0.0041 0.0837 0.1360 0.3280 0.5331 0.9989 0.9989
15 15 −0.0095 −0.0019 0.0010 0.0028 0.0682 0.1116 0.2673 0.4375 0.9993 0.9993
20 20 −0.0014 −0.0002 0.0008 0.0022 0.0593 0.0968 0.2324 0.3794 0.9995 0.9997
25 25 −0.0010 −0.0003 0.0006 0.0017 0.0530 0.0867 0.2077 0.3399 0.9995 0.9997
30 30 −0.0004 −0.0007 0.0005 0.0014 0.0483 0.0793 0.1895 0.3107 0.9995 0.9998

10 10

(1
.5

,2
)

0.0321 0.0525 0.0030 0.0073 0.0884 0.1378 0.3465 0.5402 0.9928 0.9959
15 15 0.0332 0.0517 0.0024 0.0058 0.0723 0.1132 0.2833 0.4436 0.9913 0.9958
20 20 0.0328 0.0522 0.0020 0.0050 0.0627 0.0983 0.2459 0.3852 0.9932 0.9963
25 25 0.0336 0.0521 0.0019 0.0045 0.0561 0.0880 0.2198 0.3451 0.9888 0.9954
30 30 0.0332 0.0524 0.0017 0.0043 0.0513 0.0805 0.2009 0.3154 0.9887 0.9928
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Table 2. Cont.

n m (α, β)
ABias AMSE ASE ALCI ACP

R1,3 R3,5 R1,3 R3,5 R1,3 R3,5 R1,3 R3,5 R1,3 R3,5

10 10

(1
.5

,2
.5

)

0.0623 0.0907 0.0061 0.0131 0.0920 0.1383 0.3607 0.5422 0.9769 0.9877
15 15 0.0622 0.0906 0.0053 0.0115 0.0754 0.1136 0.2956 0.4454 0.9645 0.9855
20 20 0.0615 0.0902 0.0049 0.0106 0.0655 0.0987 0.2568 0.3870 0.9536 0.9777
25 25 0.0622 0.0902 0.0048 0.0101 0.0586 0.0885 0.2296 0.3468 0.9324 0.9677
30 30 0.0621 0.0901 0.0046 0.0098 0.0535 0.0808 0.2098 0.3169 0.9121 0.9491

10 10

(1
.5

,3
)

0.0872 0.1194 0.0101 0.0194 0.0950 0.1380 0.3725 0.5409 0.9443 0.9787
15 15 0.0867 0.1186 0.0091 0.0175 0.0780 0.1134 0.3056 0.4444 0.9136 0.9605
20 20 0.0868 0.1179 0.0088 0.0165 0.0676 0.0985 0.2651 0.3860 0.8618 0.9325
25 25 0.0871 0.1176 0.0086 0.0159 0.0605 0.0883 0.2373 0.3461 0.8008 0.8984
30 30 0.0867 0.1174 0.0083 0.0155 0.0553 0.0807 0.2169 0.3163 0.7391 0.8356

The AMSE decreases as the sample size increases for both combinations of the param-
eters. In addition, it is witnessed that the direction of bias is both positive and negative
in both situations of (s, k). The values of ABias are positive for fixed values of “α” and
increasing values of “β” and vice versa the values of ABias are negative. The values of
the ASE decrease as the sample size increases and the same pattern follows for the same
combination of the parameters (s, k). The ALCI also decreases as the sample size increases.
The coverage probability is close to the nominal value in all cases but slightly less than
0.95 in some cases e.g., when α = 1.5 and β = 3.0 and sample sizes 25 and 30. Overall, the
performance of the confidence interval (CI) is quite good for all combinations of parameters.

3.2. Real Data Application

For an illustration of how the proposed methods will work two real data sets are
analyzed. The first and second data sets, see Surles and Padgett [45], Kundu and Gupta [46],
and Bi and Gui [35], are:

Strength data (X):
X = {0.762, 0.761, 0.676, 0.644, 0.588, 0.555, 0.537, 0.536, 0.514, 0.509, 0.501, 0.499, 0.495,

0.493, 0.487, 0.485, 0.477, 0.467, 0.459, 0.450, 0.446, 0.444, 0.441, 0.440, 0.440, 0.435, 0.435,
0.424, 0.420, 0.420, 0.412, 0.411, 0.411, 0.404, 0.402, 0.398, 0.398, 0.394, 0.392, 0.390, 0.389,
0.387, 0.380, 0.380, 0.379, 0.378, 0.373, 0.371, 0.367, 0.361, 0.361, 0.357, 0.356, 0.355, 0.354,
0.351, 0.347, 0.339, 0.332, 0.326, 0.324, 0.324, 0.323, 0.320, 0.309, 0.291, 0.279, 0.279}

Stress data (Y):
Y = {0.526, 0.469, 0.454, 0.449, 0.443, 0.426, 0.424, 0.417, 0.409, 0.407, 0.404, 0.397, 0.397,

0.396, 0.395, 0.388, 0.383, 0.382, 0.382, 0.381, 0.376, 0.374, 0.365, 0.365, 0.350, 0.343, 0.342,
0.340, 0.340, 0.336, 0.334, 0.330, 0.320, 0.319, 0.318, 0.311, 0.310, 0.309, 0.308, 0.306, 0.306,
0.304, 0.300, 0.299, 0.296, 0.293, 0.291, 0.286, 0.286, 0.283, 0.281, 0.281, 0.276, 0.260, 0.258,
0.257, 0.252, 0.249, 0.248, 0.237, 0.228, 0.199}

Initially, we have fitted IW distribution to both the data sets to see whether the data
follows IW Model or not. The summary measures for the above data sets are shown in
Table 3.

From Table 3, both data sets are positively skewed, and the variables follow IW
distribution as the p-value of the KS test for both variables exceeds 0.05.

For the MCSS model when data follows the IW distribution, using an iterative process,
the MLE of λ using (8), and the MLEs of α and β are obtained by substituting MLE of λ
in (6) and (7). The final estimates are λ̂ = 5.2605, α̂ = 0.0060, and β̂ = 0.00179. Based on the
estimates of α and β, the MLE of Rs,k becomes R̂1,3 = 0.910125 and R̂3,5 = 0.799968. The
95% confidence interval for R1,3 become (0.882187, 0.938062) and for R3,5 become (0.741289,
0.858648).
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Table 3. Summary Measures for Both Data Sets.

Strength (X) Stress (Y)

Mean 0.42688 0.33987
Median 0.40400 0.33400

Standard Deviation 0.09936 0.06703
Standard Error 0.01196 0.00844

Skewness 1.38091 0.31303
Kurtoses 5.38230 2.67273

α̂, β̂ 0.00469 0.00235
λ̂ 5.50125 5.04997

Log-Likelihood 71.12399 76.47376
KS Test Statistic 0.05329 0.08753
KS Test p-value 0.98371 0.68698

Figures 1 and 2 depict the goodness of fit of IWD for the Strength (X) and Stress (Y)
along with the histograms fitted by the estimated pdfs, and also P-P plot, Q-Q plot, and
comparison of Empirical and theoretical CDFs.
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Figure 2. Examples of fits of IWD for the Stress (Y) dataset: (a) histogram fitted by the estimated pdf,
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4. Conclusions

In this article, we studied the MCSS for two parameters IWD when both the stress
and strength follow IWD. Asymptotic confidence intervals were computed using the ML
method. From the simulation study, it is observed that, the average bias and AMSE decrease
as the sample size increases for both values of (s, k). It verifies the consistency property of
the MLE of Rs,k. In addition, the lengths of asymptotic confidence intervals of Rs,k decrease
as the sample size increases. Overall, the performance of the confidence interval is quite
good for all combinations of parameters. Regarding the sizes of record value samples for
the strengths and stress variables (n, m), it is observed that the MSEs and the lengths of
asymptotic confidence intervals tend to decrease as (n, m) increases. The ACP, it becomes
closer to the nominal value for all sets of parameters considered in the study except when
α = 1.5 and β = 3.0 with sample sizes 25 and 30. The whole procedure has been illustrated
through a real-life data set. The results of the current study support the outcome of the
earlier studies, e.g., Rao [18–20]. In future reliability of Bayes approach for IWD under
MCSS and comparison with the present study be studied.
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