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Abstract: In industrial practice, excessive alarms and high alarm rates are mostly generated from
unreasonable settings to variable alarm thresholds, which have become the significant causes of
impact on operation stability and plant safety. A correlation degree and clustering analysis-based
approach was presented to optimize the variable alarm thresholds in this paper. The correlation
degrees of variables are first obtained by analyzing correlation relationships among them. Second,
the variables are grouped according to the gray correlation coefficients and clustering analysis,
given the weight for fault alarm rate (FAR) in each group. An objective function about the FAR,
missed alarm rate (MAR), and the maximum acceptable FAR and MAR is then established with
variable weight. Eventually, based on an optimization algorithm, the objective function can be
optimized for obtaining the optimal alarm threshold. Cases study of the Tennessee Eastman (TE)
industrial simulation process and an actual industrial ethylene production process, in comparison
to the initial situation, show that the method can effectively reduce FAR according to correlation
degrees among variables in the system, and decrease the number of alarms with reduction rates of
40.5% and 35.3%, respectively.

Keywords: alarm threshold; correlation degree; clustering analysis; FAR; MAR

1. Introduction

With the complexity and refinement of the process of industrial production, the
production process is more and more inseparable from real-time monitoring of the system.
An alarm management system, as an indispensable part in the safety operation of industrial
production, has been paid more and more attention by all walks of life. In industrial
practice, cases with more false alarms, a higher false alarm rate (FAR) and a missed alarm
rate (MAR) always arise in processes [1], which are mainly caused through the unreasonable
threshold settings for variables and ineffective management for alarm systems. Based on
the studies from EEMUA, the range of alarm numbers that an operator could effectively
handle for one alarm is from every 5 min to 10 min [2].

Regarding the methods of alarm optimization, academia has given many methods,
each of which plays a certain role in its corresponding system to a greater or lesser extent.
There are many kinds of alarm optimization methods, and classification methods are incon-
clusive. Generally speaking, they can be divided into univariate methods and multivariate
methods, threshold optimization methods and algorithm optimization methods, off-line
methods and dynamic methods, etc.

For determining the process variable threshold, academia has studied many opti-
mization methods. For instance, in terms of FAR and MAR, an approach for estimating
the threshold was proposed on account of an adaptive fuzzy-neural network and genetic
learning algorithm [3]. As the threshold can be determined by the deadband, a method
with the objective function about FAR and MAR, and the relation between the optimal
threshold and deadband to estimate the threshold, was presented [4]. Combining FAR and
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MAR with a correlation coefficient, an off-line method for optimizing thresholds was given
to reduce alarms for multi-variables based on time delay [5]. For improving the robustness
classification performance in the system with regard to separation threshold selection,
different intelligent pattern classifiers were used to mine industrial batch dryer data to
determine thresholds [6]. In addition, there also have many methods in setting thresholds in
early warning and damage systems [7,8], alarms reduction [9], systems monitoring [10,11],
and performance optimization [6,12].

Over the past five years, based on intelligent algorithms, some similar methods
have been improved. For instance, to remove chattering alarms, a univariate method was
presented for addressing the reduction of alarms with median filters [13]. Taking the missed
alarms and false alarms into account, an off-line univariate approach for determining alarm
threshold in debris flow forecasting was presented, with the lowest missed-alarm and false-
alarm probabilities [14]. By optimizing positioning accuracy, the pulse-width multiplexing
Φ-OTDR and multisensor information fusion algorithm were utilized to reduce the nuisance
alarm rate [15]. For target tracking in a chaotic environment, a mul-tivariate approach
was proposed to optimize the joint threshold and power allocation strategy with a two-
variable nonconvex optimization problem for the cognitive radar network, containing
the detection stage and transmitting stage [16]. Based on the test observations, an off-
line simple and robust approach was proposed to determine the detection thresholds for
detecting defluidization in the early stage [17]. Some approaches about optimal alarm
identification [18], design and evaluation analysis for an alarm system [19–23], management
framework [24], alarm threshold [25], and an overview of industrial alarm systems [26]
also have appeared. Variables in most of the above approaches have not been clustered
with optimized thresholds, which could be suitable for analyzing interlinks among similar
variables. Therefore, Zhang et al. presented an off-line multivariate method based on
ROC curve and sensitivity, considering the sensitivity relationship and clustering analysis
among variables, to optimize the alarm threshold [27]. A multivariate alarm clustering
method was proposed that takes advantage of the information contained in the alarm logs
themselves, of which the clustering analysis for process alarms was achieved through word
embedding [28]. Analyzing alarm data, Lucke et al. presented an on-line method that
conducted a practical application for alarm flood classification based on a set of historical
alarm floods [29]. In the process, for high-dimension variables, the number of alarms
needing addressing increases significantly when the number of measurable variables
increases. False alarms caused by redundant disturbances will disturb operators, leading
to alarms having more significance on the system being missed as a consequence. Thus,
clustering variables into groups is necessary for alarm optimization.

Most of the above alarm optimization methods are based on the off-line system
optimization, and the results obtained in the corresponding systems are also obvious,
large or small, effectively optimizing the production process and reducing losses. Thus,
to promptly detect the chattering alarms and effectively reduce the number of chattering
alarms, an on-line method was given to detect alarms in a timely manner [30]. As for the
HVAC systems, Chakraborty et al. put forward a novel dynamic threshold method with a
data-driven model using extreme gradient boosting (XGBoost), which mainly utilized early
fault detection [31]. The static and dynamical performance analyses were used to update
evidence in designing the industrial alarm system to reduce unnecessary alarms [32]. There
are also some corresponding approaches for optimization, such as alarm management
strategy [33], alarming mechanism [34], and threshold setting [35], which have promoted
the development of dynamic methods to a certain extent.

However, as the current industrial production processes change irregularly, the
preceding production process and the following process cannot be consistent all the
time, such as the changes caused by different conditions or an abnormal process. In
view of the problem, a new alarm threshold optimization method is proposed, which
uses the correlation degrees among the variables and clustering analysis. Herein, this
paper mainly has four significant contributions. (1) It considers the gray correlation
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degree analysis. Variables with similar influence on the system can be found out through
correlation analysis. (2) It could carry on the group sorting according to the intrinsic
clustering analysis. (3) It reduces FAR and also has a significant inhibitory effect on
MAR (significantly reduced invalid alarms). (4) It can be used as a reference for real-time
online optimization. When connecting the current programs to the computer interface in
on-line systems, it could meet the requirements of the fast-changing production processes
through setting an update period and data, which would consider the alarm rates. In
addition, this method could help operators reduce operation load, make more efficient
repair measures in a timely manner, and reduce the losses.

2. Optimum Design Outline
2.1. Alarm Efficiency Index

At present, an alarm system is important for safety, which generally utilizes FAR and
MAR as efficiency indices to measure the accuracy of detecting operation conditions [36].
Based on the operation conditions, industrial processes usually contain normal and abnor-
mal situations, which generally use the FAR and MAR to represent the probability directly
for a variable when its measured values go beyond the threshold in normal operations, and
within the threshold in abnormal operations in an alarm system [37].

The FAR and MAR can be obtained as follows:
Initially, for a variable x, within a period of time, two groups of data under normal

and abnormal situations are obtained. Where a group of data are collected as the normal
data when the process runs normally and steadily, another set of data are collected as the
abnormal data when the process deviates from normal operation state obviously, which
contains added disturbance or failure.

Later, for a variable x, the probability density functions f (x) and g(x) under the two sit-
uations, respectively, are obtained by fitting the corresponding data, which can be shown
in Figure 1, where xT denotes as the alarm threshold. For a certain parameter of the system,
xT indicates that the parameter has a well running state under the current threshold. When
it exceeds or falls below the current threshold, the process may generate redundant false
alarms or missed alarms. Here, false alarms will be activated when normal process variable
values (the blue line) falls below xT, and missed alarms will be activated when the abnormal
process variable values (red dotted line) exceed xT.
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Finally, given the xT , based on Figure 1 and the Equations (1) and (2) [5,36], the FAR
and MAR can be obtained.

FAR =
∫ xT

−∞
f (x)dx (1)

MAR =
∫ +∞

xT

g(x)dx (2)

The following work in this paper can be conducted when the functions (f (x) and g(x))
for a variable can be fitted which was irrelevant to the distribution.

2.2. Alarm Clustering Analysis

Based on the alarm clustering algorithm, variables can be clustered into groups.

1. Correlation degree analysis

A measure of the degree of correlation between two factors in a system that varies from
time to time or from object to object is called the correlation degree [38]. In a system process,
if the trend of change of the two factors is consistent, that is, the degree of synchronous
change is high, then the degree of correlation is high. Conversely, it is lower. Thus, the gray
correlation analysis method is a method to measure the correlation degree among factors
according to the degree of similarity or difference of development trend among factors,
that is, “gray correlation degree”.

Specific calculation steps for correlation analysis:

(1) Determine the reference sequence and comparison sequence. The data sequence that
reflects the behavior characteristics of a system is called a reference sequence and
the data sequence composed of factors that affect the behavior of a system is called a
comparison sequence;

(2) Conduct dimensionless treatment for the reference sequence and comparison sequence.

Due to the different physical meanings of each factor in the system, the dimensionality
of the data may not be the same, which is not convenient for comparison, or it is difficult to
get the correct conclusion when comparing. Therefore, in the analysis of gray relational
degree, dimensionless data processing should be generally required.

(3) Determine the reference sequence and comparison sequence of the gray correlation
coefficient ξ(Xi).

The correlation degree is essentially the difference in geometry among curves. So,
the difference among curves can be used as a measure of the correlation degree. For a
reference sequence X0 = {x0(1), x0(2), . . . , x0(n)}, there are several comparison sequences
X1, X2, . . . , Xm, the correlation coefficient ξi(k) of each reference sequence and comparison
sequence each time is deduced by the following formula:

ξi(k) =
min

j
min

i

∣∣x0(l)− xj(l)
∣∣+ Pmax

j
max

i

∣∣x0(l)− xj(l)
∣∣

|x0(k)− xi(k)|+ Pmax
j

max
i

∣∣x0(l)− xj(l)
∣∣ (3)

where, P is the distinguish coefficient, the value range of which is generally between 0–1,
with 0.5 as the common value; x0(k)− xi(k) represents the absolute difference between
the sequences Xi and X0 at point k; l = 1, 2, . . . , n, min

i

∣∣x0(l)− xj(l)
∣∣ is the minimum

difference of the first level, which represents the minimum difference between sequences
Xj(l) and X0(l) at each point; min

j
min

i

∣∣x0(l)− xj(l)
∣∣ is the minimum difference of the second

level, which represents the minimum difference in all sequences based on the minimum
difference found in each sequence; max

i

∣∣x0(l)− xj(l)
∣∣ is the maximum difference of the

first level, which represents the maximum difference between sequences Xj(l) and X0(l) at
each point; max

j
max

i

∣∣x0(l)− xj(l)
∣∣ is the maximum difference of the second level, which
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represents the maximum difference in all sequences based on the maximum difference
found in each sequence.

In order to avoid the resulting deviation caused by variable units and other factors, it
is necessary to conduct standardized processing on variable data.

(4) Calculate the correlation degree

As the correlation coefficient denotes the value of correlation degree between the
comparison sequence and the reference sequence at each time, it has more than one value,
which could lead the information to be too scattered to facilitate the overall comparison.
Therefore, it is necessary to concentrate the correlation coefficient of each moment into a
value, that is, to find its average value, as the value expression of the correlation degree
between the comparison sequence and the reference sequence.

Correlation degree ri represents the gray correlation degree of comparison sequence
Xi to reference sequence X0, also called sequence correlation degree, average correlation
degree, and line correlation degree, the formula of which is shown as follows:

ri =
1
n

n

∑
k=1

ξi(k) (4)

The closer the value of ri is to 1, the better the correlation is.

2. Clustering analysis
Specific clustering steps:

(1) Calculate the gray correlation coefficients between every two variables, then
sum the distances;

(2) Calculate the correlation degree standard deviations of the above sums, utiliz-
ing wd to denote the deviation result;

(3) Based on the relationship between wd (the value obtained by 0–1 normalization
for the summation of the correlation coefficients of one variable to all other
variables) and Cg (global correlation degree level), and the relation of Pearson
correlation coefficients and correlation levels [39], variables are clustered into
groups, listed in Table 1. Then, the variable weight of a variable in one group
can be calculated through the data of variables in the group.

Table 1. Relationship between the values of wd and Cg.

wd 0–0.2 0.2–0.5 0.5–0.7 0.7–1

Cg High Well Low Weak

3. Variable weight calculation

The variable weight of a variable in one group can be determined through the mean
square error method with specific steps, as below:

(1) Data normalization

Yij =
xij −min(xij)

max(xij)−min(xij)
(5)

where, xij(i = 1, 2, . . . , n; j = 1, 2, . . . , m) denotes the initial data of the jth variable in
group i.

(2) Mean value

Yij =
1
m

m

∑
j=1

Yij (6)
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(3) Mean square error

σij =

√√√√ m

∑
j=1

(Yij −Yij)
2 (7)

(4) Variable weight

wij = σij

/
m

∑
j=1

σij (8)

Herein, two efficiency indices are introduced totally, FAR and MAR. Compared
with MAR, the correlation degree mainly reflects on FAR, which has a significant effect
on the system. Therefore, the weight wij is given for FAR. Meanwhile, MAR/RMAR is
used in case of overlarge MAR, where RMAR denotes the maximum acceptable MAR,
values of which generally less than the engineering required error (0.05) with 0.01,
recommended by [2].

2.3. Threshold Optimization

The optimization objective function, shown as Equation (9), is established according
to the alarm information under normal and abnormal situations, which is solved by the
numerical optimization method from the point of view of minimizing.

F(x) = Min(
FAR

RFAR/
(
1 + wij

) + MAR
RMAR

) (9)

where, RFAR denotes the maximum acceptable FAR, the value of which generally less than
the engineering required error (0.05) with 0.01, recommended by [2].

Figure 2 depicts the flow chart of a quadratic interpolation optimization algorithm
with the basic thought shown as: for F(x) = Min ϕ(x) (x∈R1), the ϕ(x) can be fitted by
y(x), which consists of some dots. Then, the extreme point µ of y(x) is an estimate value
of x*.

A threshold optimization algorithm is implemented as follows:

(1) Give the initial interval [x1,x3], three points (x1, y1), (x2, y2), (x3, y3), and convergence
precision ε, where, x1 < x2 < x3, ε > 0;

(2) Calculate c1, c2 (where, c1 = (y3 − y1)/(x3 − x1), c2 = [(y2 − y1)/(x2 − x1) − c1]/(x2 −
x3)), and xp = 0.5(x1 + x3 − c1/ c2), yp = f (xp);

(3) If |y2 − yp| ≥ ε, then go step (4), otherwise, go step (9);
(4) If xp > x2, then go step (5), otherwise, go step (7);
(5) If y2 ≥ yp, then x3 = xp, y3 = yp, return to step (2) otherwise, go step (6);
(6) Let x1 = x2, y1 = y2, x2 = xp, y2 = yp, return to step (2);
(7) If y2 < yp, then x1 = xp, y1 = yp, return to step (2) otherwise, go step (8);
(8) Let x3 = x2, y3 = y2, x2 = xp, y2 = yp, return to step (2);
(9) If y2 < yp, then x* = x2, y* = y2, otherwise, go step (10);
(10) x* = xp, y* = yp;
(11) Output x* = xp, f* = f (x*).

2.4. Optimization Process Description

Figure 3 gives the optimization algorithm, the specific explanations of which are
shown as follows:

To begin with, the correlation degrees of variables are obtained by analyzing cor-
relation relationships among them. Subsequently, the variables are grouped according
to the gray correlation coefficients and clustering analysis, given the weight ωi for FAR
in each group. An objective function about the FAR, MAR, RFAR, RMAR, and ωi is then
established with variable weight. Eventually, based on the optimization algorithm, the
objective function is optimized for obtaining the optimal alarm threshold.
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3. Theory Study—Tennessee Eastman (TE) Simulation Process
3.1. Process Description

TE process was put forward by J. J. Downs and E. F. Vogel. It can be used as a data
source, which is commonly utilized for comparing various methods, such as control
optimization. Therefore, this work uses the TE simulation process as a case.
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Figure 4 shows the flow diagram for a TE process, which contains five major
operating units: reactor, condenser, compressor, separator, and stripper. The TE
process consists of 15 known failures and 5 unknown failures. Meanwhile, it also
consists of 12 operational variables and 41 measured variables. Table 2 lists the selected
10 measured variables for researching the applicability analysis of the method. To
verify the accuracy of the results, the same sampling environment (the faults were
after 8 simulation hours introduced) should be necessary, sampling interval of which
is ∆T = 3 min by considering the time constants of the process in a closed loop [40,41],
as the process under the sampling time can be considered reaches a relatively steady
running state, which could reflect the running state with a long period of time, to
some extent. Meanwhile, 960 groups of data under a normal condition and 500 groups
of data under an abnormal condition with failure 6 are collected.
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Table 2. Ten measured variables in TE process.

Variable Variable Name Reference Value Unit

V1 A feed flow 0.25052 kscmh
V2 D feed flow 3664 kg·h−1

V3 E feed flow 4509.3 kg·h−1

V4 Feed flow of A and C 9.3477 kscmh
V5 Cycle flow 26.902 kscmh
V6 Reactor feed flow 42.339 kscmh
V7 Reactor pressure 2705 kPa
V8 Reactor level 75 %
V9 Reactor temperature 120.4 ◦C
V10 Blow-down flow 0.3372 kscmh
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3.2. Cluster Variables and Calculate Weights

(1) Variable clustering

The selected ten variables can be regarded as 10 vectors with 960 dimensions,
containing 960 observations of normal data. Table 3 lists the correlation degree of these
ten variables.

Table 3. Correlation degree of ten variables.

d V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

V1 0.00 0.10 0.19 0.53 0.16 0.15 0.55 0.32 0.55 0.90
V2 0.0 0.67 0.19 0.37 0.15 0.43 0.67 0.24 0.52
V3 0.00 0.19 0.22 0.24 0.23 0.18 0.22 0.24
V4 0.00 0.56 0.18 0.70 0.90 0.66 0.87
V5 0.00 0.78 0.97 0.88 0.10 0.49
V6 0.00 0.72 0.66 0.84 0.61
V7 0.00 0.10 0.88 0.65
V8 0.00 0.66 0.12
V9 0.00 0.65

V10 0.00

Calculating the sum (dT) of the correlation degree between one variable and all other
variables is necessary for treating ten variables as a whole. Table 4 lists the sums and the
normalized result (wd).

Table 4. Sums of the correlation degree and normalized result of ten variables.

d V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

dT 3.45 3.34 2.38 4.78 4.53 4.33 5.23 4.49 4.8 5.05
wd 0.38 0.34 0.00 0.84 0.75 0.68 1.00 0.74 0.85 0.94

Based on the normalization result and criterions given in Table 1, the original ten
variables are clustered into four groups. Variables V1 and V2 constitute the first group,
variable V3 constitutes the second group, variable V6 constitutes the third group and the
rest belong to the last group.

(2) Variable weight

Table 5 lists the weights for variables in four groups.

Table 5. Variable weights.

Group Number Variable Weight

1
V1 0.521
V2 0.479

2 V3 1

3

V4 0.164
V5 0.147
V7 0.195
V8 0.145
V9 0.166

V10 0.183

4 V6 1



Processes 2022, 10, 224 11 of 23

For the FAR and MAR, the impact on the system caused by the correlation degree
of variables commonly reflect on FAR more directly than MAR, therefore, giving the
correlation weight to FAR.

3.3. Optimization Solution

Steps of the optimization solution are listed as below, using the first variable V1 as
an example.

First, the probability density function Equations (10) and (11) of V1 in the normal and
abnormal cases are fitted with 960 observations of normal data and 500 observations of
abnormal data, respectively. Figure 5 shows the corresponding probability density curves.

f (x) = 13.973 · e−613.36·(x−0.25114)2
(10)

g(x) = 4.2301 · e−56.214·(x−0.041936)2
(11)
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Second, the objective function is obtained as Equation (12), the parameters of which,
including weight w1 = 0.521, Equations (1) and (2), RFAR = RMAR = 0.01, are input into
function Equation (9).

F(x) = Min( FAR
RFAR/(1+wij)

+ MAR
RMAR

)

= Min(
∫ xT
−∞ 13.973·e−613.36·(x−0.25114)2 dx

RFAR/(1+wij)

+

∫ +∞
xT

4.2301·e−56.214·(x−0.041936)2 dx
RMAR

)

(12)

Eventually, the objective function is optimized as Figure 6, with optimum xT = 0.22,
F(xT) = 6.5098, FAR = 0.00654, MAR = 0.06710. The thresholds of other variables are
optimized similarly.



Processes 2022, 10, 224 12 of 23

Additionally, to verify the effectiveness of this method, some other methods should
be utilized for comparison, such as the deadband [42], alarm delay [36], and moving
average filter (MAF) with original reference value [27]. The summarized results listed in
Table 6.

To verify the effectiveness of the method, an abnormal data set of fault 8 is added.
Table 6 lists the results under the two failures (failure 6: f6, failure 8: f8).

3.4. Results and Analysis

Shown in Figure 7, the FAR calculated by the proposed method has an effective reduc-
tion in cases with initial thresholds, and the MAR of which under control simultaneously.

In Figure 8, the numbers of variable alarms in total under 5 cases under the case
with failure 6 (8) are 3532, 3414, 2916, 2928, 1733 (3532, 3417, 2968, 2992, 1744), respec-
tively. Compared with the other four methods, the alarm reduction rates calculated by the
presented method are 50.9%, 49.2%, 40.5%, and 40.8% (50.6%, 48.9%, 41.2%, and 41.7%),
respectively. From which, it reflects the method could have some impact on the alarm
threshold optimization, bring a lower FAR and fewer alarms.
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Figure 6. Optimization result of V1.
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Table 6. Optimized results for ten variables.

Variable V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

Threshold

The initial 0.25052 3664.00 4509.30 9.3477 26.9020 42.3390 2705.00 75.0000 120.400 0.33720
Deadband 0.25052 3664.00 4509.30 9.3477 26.9020 42.3390 2705.00 75.0000 120.400 0.33720

MAF 0.25052 3664.00 4509.30 9.3477 26.9020 42.3390 2705.00 75.0000 120.400 0.33720
Alarm delay 0.25052 3664.00 4509.30 9.3477 26.9020 42.3390 2705.00 75.0000 120.400 0.33720

The proposed (f6) 0.22000 3637.89 4452.98 9.4501 26.9080 42.3390 2723.21 74.4153 120.409 0.32122
The proposed (f8) 0.23153 3654.51 4478.39 9.3801 26.9053 42.3380 2721.32 74.4567 120.407 0.33457

FAR

The initial 0.49130 0.50604 0.47213 0.49210 0.48818 0.49959 0.01698 0.51133 0.87689 0.48667
Deadband (f6) 0.26829 0.33600 0.30906 0.32424 0.32298 0.33306 0.01155 0.33833 0.46720 0.30738
Deadband (f8) 0.25312 0.31472 0.30001 0.33114 0.32978 0.33309 0.01251 0.33612 0.46851 0.29315

MAF (f6) 0.47888 0.51467 0.43264 0.48082 0.47132 0.49900 0.00001 0.52749 0.99361 0.46766
MAF (f8) 0.44321 0.49876 0.42367 0.48587 0.48075 0.49900 0.00001 0.51387 0.99697 0.46451

Alarm delay (f6) 0.55287 0.51352 0.45118 0.49591 0.47952 0.50421 0.01682 0.52420 0.94702 0.30689
Alarm delay (f8) 0.52315 0.51031 0.45003 0.49791 0.48367 0.50697 0.01735 0.52032 0.94821 0.30222

The proposed (f6) 0.00654 0.19138 0.02361 0.35420 0.49999 0.49879 0.00859 0.15455 0.71132 0.01546
The proposed (f8) 0.00623 0.18975 0.02097 0.36317 0.49999 0.49999 0.00873 0.15036 0.71354 0.01512

MAR

The initial 0.01271 0.04000 0.03830 0.51772 0.51752 0.31243 0.46972 0.08867 0.49999 0.02224
Deadband (f6) 0.14641 0.00001 0.03410 0.02498 0.02276 0.00041 0.23371 0.00001 0.00001 0.04727
Deadband (f8) 0.18735 0.00001 0.03595 0.02149 0.01642 0.00029 0.15491 0.00001 0.00001 0.04859

MAF (f6) 0.00001 0.00020 0.00018 0.54295 0.54247 0.12568 0.42688 0.00230 0.49998 0.00003
MAF (f8) 0.00001 0.00021 0.00019 0.52137 0.53126 0.11064 0.41978 0.00233 0.49998 0.00003

Alarm delay (f6) 0.02965 0.02476 0.03712 0.53185 0.53948 0.22475 0.46808 0.07623 0.50000 0.02593
Alarm delay (f8) 0.03123 0.02574 0.03821 0.49870 0.53125 0.22379 0.44364 0.07711 0.50000 0.02634

The proposed (f6) 0.06710 0.21004 0.06756 0.87869 0.44817 0.30321 0.95422 0.28201 0.78332 0.06545
The proposed (f8) 0.06857 0.21174 0.06838 0.85413 0.44105 0.30021 0.92154 0.28713 0.78114 0.06637

Number
of total
alarms

The initial 303 301 287 301 687 301 340 333 390 289
Deadband (f6) 188 301 287 301 687 301 340 333 390 286
Deadband (f8) 193 311 295 295 673 300.973 321 336 393 300

MAF (f6) 269 230 234 229 574 243 332 252 321 232
MAF (f8) 273 241 239 231 596 243 332 259 320 233

Alarm delay (f6) 295 288 298 321 296 320 215 321 313 261
Alarm delay (f8) 307 290 299 331 310 323 230 323 314 265

The proposed (f6) 76 190 115 149 320 298 98 170 212 105
The proposed (f8) 81 195 123 137 313 293 94 181 207 120
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4. Real Industrial Verification—Industrial Ethylene Production Process
4.1. Process Description

To verify the effectiveness of the method in actual industry, an industrial ethylene
production process was selected as an actual case, the process of which generally consists
of four major processes: cracking, compression, quenching, and separation.

Figure 9 shows the flow chart of the ethylene production process, the separation
section of which contains the most of research object. Due to the large number of
variables in this process, in order to avoid the influence of blind selection on the results,
we try to objectively select variables with correlation relationships among them not
easy to judge and which have significant impact on the yield and quality of ethylene
through empirical knowledge and analysis. Therefore, ten variables are selected to
represent the process, which are listed in Table 7. For this process, the time-lag effect
under start-up or shut-down cases is great. Therefore, the data under the steady
state are selected as normal data and the data under the state with disturbances are
then chosen as abnormal data for study, respectively, are selected for study. In total,
1000 observations of data for 10 variables are extracted with a sampling interval of
1 min, containing 500 observations of normal data and 500 observations of abnormal
data with the feed flow of cracking furnace increases by 10%.
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Figure 9. Flow chart of ethylene production process.

Table 7. Ten measured variables in ethylene production process.

Variable Variable Name Reference Value Unit

V1 Vapor fraction of separator to dethanizer 0.71
V2 Feed flow into C2/C3 column with high pressure 175 t·h−1

V3 Feed flow into C2/C3 column with low pressure 88 t·h−1

V4 Feed flow into C2 reactor 200 t·h−1

V5 Vapor fraction of separator to demethanizer 0.69
V6 Feed flow into demethanizer 101 t·h−1

V7 Bottom flow of ethylene distillation tower 25 t·h−1

V8 Feed flow into C3/C4 tower 130 t·h−1

V9 Feed flow to C3 reactor 155 t·h−1

V10 Circulation flow from C3 stripping tower to the former 1.5 t·h−1
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4.2. Cluster Variables and Calculate Weights

(1) Variable clustering

The selected ten variables can be regarded as 10 vectors with 500 dimensions, con-
taining 500 observations of normal data. Table 8 lists the correlation degree of these
10 variables.

Table 8. Correlation degree of 10 variables.

d V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

V1 0.00 0.12 0.15 0.43 0.23 0.15 0.43 0.67 0.24 0.52
V2 0.0 0.57 0.43 0.22 0.24 0.23 0.18 0.22 0.24
V3 0.00 0.10 0.56 0.18 0.70 0.90 0.66 0.87
V4 0.00 0.35 0.97 0.78 0.34 0.10 0.49
V5 0.00 0.72 0.66 0.53 0.84 0.61
V6 0.00 0.10 0.22 0.88 0.65
V7 0.00 0.12 0.66 0.12
V8 0.00 0.23 0.18
V9 0.00 0.43
V10 0.00

Calculating the sum (dT) of the correlation degree between one variable and all other
variables is necessary for treating ten variables as a whole. Table 9 lists the sums and the
normalized result (wd).

Table 9. Sums of the correlation degree and normalized result of ten variables.

D V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

dT 2.82 2.33 3.97 3.13 4.27 3.72 3.14 2.52 3.8 3.35
wd 0.25 0.00 0.85 0.41 1.00 0.72 0.42 0.10 0.76 0.53

Based on the normalization result and criterions given in Table 1, the original ten vari-
ables are clustered into four groups. Variables V1, V4, and V7 constitute the first group,
variables V2 and V8 constitute the second group, variable V10 constitutes the third group
and the rest belong to the last group.

(2) Variable weight

Table 10 lists the weights for variables in four groups.

Table 10. Variable weights.

Group Number Variable Weight

1
V1 0.453
V4 0.241
V7 0.306

2
V2 0.542
V8 0.458

3

V3 0.274
V5 0.176
V6 0.392
V9 0.158

4 V10 1
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4.3. Optimization Solution

Steps of the optimization solution are listed as below, using the first variable V1 as
an example.

First, the probability density functions Equations (13) and (14) of V1 in normal and
abnormal cases are fitted with 500 observations of data, respectively. Figure 10 shows the
corresponding probability density curves.

f (x) = 12.756 · e−213.36·(x−0.71021)2
(13)

g(x) = 2.1321 · e−34.231·(x−0.019436)2
(14)
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Second, the objective function is obtained as Equation (15), parameters of which in-
cluding weight w1 = 0.453, Equations (1) and (2), RFAR = RMAR = 0.01 are inputted into
function Equation (9).

F(x) = Min( FAR
RFAR/(1+wij)

+ MAR
RMAR

)

= Min(
∫ xT
−∞ 12.756·e−213.36·(x−0.71021)2 dx

RFAR/(1+wij)

+

∫ +∞
xT

2.1321·e−34.231·(x−0.019436)2 dx
RMAR

)

(15)

Eventually, the objective function is optimized as Figure 11, with optimum xT =
0.73, F(xT) = 6.5095, FAR = 0.00354, MAR = 0.0661. The thresholds of other variables are
optimized similarly.

To verify the effectiveness of the method, an abnormal data set of the feed flow of
cracking furnace decreases by 10% and is added. Table 11 lists the results under the
two cases (cracking furnace increases by 10%: c1, cracking furnace decreases by 10%: c2).

4.4. Results and Analysis

Shown as the Figure 12, the FAR calculated by the proposed method has an effective re-
duction in cases with initial thresholds, and the MAR of which under control simultaneously.
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Table 11. Optimized results for 10 variables.

Variable V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

Threshold

The initial 0.71 175.0 88.0 200.0 0.69 101.0 25.0 130.0 155.0 1.50
Deadband 0.71 175.0 88.0 200.0 0.69 101.0 25.0 130.0 155.0 1.50

MAF 0.71 175.0 88.0 200.0 0.69 101.0 25.0 130.0 155.0 1.50
Alarm delay 0.71 175.0 88.0 200.0 0.69 101.0 25.0 130.0 155.0 1.50

The proposed (c1) 0.73 174.8 87.7 198.6 0.70 101.7 24.8 131.2 156.1 1.47
The proposed (c2) 0.72 174.9 87.8 199.3 0.70 101.5 25.0 130.8 155.6 1.49

FAR

The initial 0.48830 0.50304 0.46913 0.48910 0.48518 0.49659 0.48367 0.50833 0.57389 0.01398
Deadband (c1) 0.26529 0.33300 0.30606 0.32124 0.31998 0.33006 0.30438 0.33533 0.46420 0.00855
Deadband (c2) 0.27356 0.32570 0.29870 0.31520 0.33780 0.32151 0.30112 0.32154 0.47330 0.00911

MAF (c1) 0.47588 0.51167 0.42964 0.47782 0.46832 0.49600 0.46466 0.52449 0.79061 0.00299
MAF (c2) 0.45677 0.50117 0.43213 0.45712 0.46552 0.49710 0.46351 0.51023 0.73542 0.00278

Alarm delay (c1) 0.54987 0.51052 0.44818 0.49291 0.47652 0.50121 0.30389 0.52120 0.74402 0.01382
Alarm delay (c2) 0.53123 0.50174 0.45133 0.46151 0.48773 0.51010 0.32331 0.51530 0.74731 0.01231

The proposed (c1) 0.00354 0.18838 0.02061 0.3512 0.49699 0.49579 0.01246 0.15155 0.70832 0.00559
The proposed (c2) 0.00401 0.17321 0.01987 0.36215 0.49012 0.50164 0.01574 0.19541 0.65410 0.00379

MAR

The initial 0.01171 0.03900 0.03730 0.51672 0.51652 0.31143 0.46872 0.08767 0.49899 0.02124
Deadband (c1) 0.14541 0.00099 0.03310 0.02398 0.02176 0.00059 0.23271 0.00099 0.00099 0.04627
Deadband (c2) 0.14221 0.00103 0.03712 0.02531 0.01827 0.00061 0.24213 0.00101 0.00097 0.04518

MAF (c1) 0.00099 0.00080 0.00082 0.54195 0.54147 0.12468 0.42588 0.00130 0.49898 0.00097
MAF (c2) 0.00102 0.00082 0.00081 0.56749 0.54423 0.12440 0.42694 0.00133 0.52643 0.00103

Alarm delay (c1) 0.02865 0.02376 0.03612 0.53085 0.53848 0.22375 0.46708 0.07523 0.499 0.02493
Alarm delay (c2) 0.02995 0.02422 0.03623 0.56264 0.53236 0.22202 0.44372 0.07615 0.50217 0.02897

The proposed (c1) 0.0661 0.20904 0.06656 0.87769 0.44717 0.30221 0.95322 0.28101 0.78232 0.06445
The proposed (c2) 0.05817 0.22982 0.06913 0.85166 0.45297 0.30167 0.76713 0.23012 0.85964 0.09701

Number
of total
alarms

The initial 235 233 219 233 319 233 272 265 322 221
Deadband (c1) 120 233 219 233 319 233 272 265 322 218
Deadband (c2) 138 229 227 209 303 252 289 247 311 225

MAF (c1) 201 162 166 161 306 175 264 184 253 164
MAF (c2) 211 182 181 147 321 187 278 199 248 175

Alarm delay (c1) 227 220 230 253 228 252 147 253 245 193
Alarm delay (c2) 234 201 238 248 222 237 152 274 233 200

The proposed (c1) 18 162 147 81 252 230 43 102 144 137
The proposed (c2) 21 154 165 75 278 223 31 91 157 151
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In Figure 13, the numbers of variable alarms in total under 5 cases under the case of c1
(c2) are 2552, 2434, 2036, 2248, 1316 (2552, 2430, 2129, 2239, 1346), respectively. Compared
with the other four methods, the alarm reduction rates calculated by the method are 48.4%,
45.9%, 35.3%, and 41.4% (47.2%, 44.6%, 36.8%, and 39.9%), respectively. From which, it
reflects the method could have some impact on the alarm threshold optimization, bring a
lower FAR and fewer alarms.
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5. Conclusions

In this work, correlation degree and clustering analysis based method is presented
to achieve threshold optimization: the gray correlation coefficients of variables are first
obtained by analyzing correlation degrees among them; the variables are grouped later
according to the correlation degree and clustering analysis, given the weight ωij for FAR in
each group; optimization algorithm is finally utilized to optimize objective function about
FAR, MAR, RFAR, RMAR, and ωij to complete threshold optimization.

According to the analysis of case theory study with TE simulation process and actual
industrial verification for industrial ethylene production process, the results manifest the
presented approach can not only reduce FAR, have significant inhibitory effect on MAR,
and decrease the number of alarms effectively in total, but could carry on the grouping
sorting according to the intrinsic clustering analysis, which could help operators reduce
operation load. Meanwhile, it will also leave operators more time to make more efficient
repair measures timely and reduce losses through helping them to identify variables that
have larger and more rapid impact on system, extend the deteriorative time for abnormity.
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12. Simşek, B.; İç, Y.T. Multi-response simulation optimization approach for the performance optimization of an Alarm Monitoring

Center. Saf. Sci. 2014, 66, 61–74. [CrossRef]
13. Sun, Y.; Tan, W.; Chen, T. A method to remove chattering alarms using median filters. ISA Trans. 2018, 73, 201–207. [CrossRef]

[PubMed]
14. Wu, M.-H.; Wang, J.P.; Chen, I.-C. Optimization approach for determining rainfall duration-intensity thresholds for debris flow

forecasting. Bull. Eng. Geol. Environ. 2018, 78, 2495–2501. [CrossRef]

http://doi.org/10.3182/20090630-4-ES-2003.00107
http://doi.org/10.1016/j.sigpro.2007.02.007
http://doi.org/10.1016/j.jlp.2016.01.022
http://doi.org/10.1111/j.1365-2648.2009.05048.x
http://doi.org/10.1016/j.ymssp.2011.01.005
http://doi.org/10.1016/j.cherd.2009.09.003
http://doi.org/10.1016/j.measurement.2012.09.011
http://doi.org/10.1016/j.marpolbul.2013.09.035
http://doi.org/10.1016/j.ssci.2014.02.001
http://doi.org/10.1016/j.isatra.2017.12.012
http://www.ncbi.nlm.nih.gov/pubmed/29287610
http://doi.org/10.1007/s10064-018-1314-6


Processes 2022, 10, 224 23 of 23

15. Zhong, X.; Zhao, S.; Deng, H.; Gui, D.; Zhang, J.; Ma, M. Nuisance alarm rate reduction using pulse-width multiplexing Φ-OTDR
with optimized positioning accuracy. Opt. Commun. 2020, 456, 124571. [CrossRef]

16. Sun, H.; Li, M.; Zuo, L.; Cao, R. Joint threshold optimization and power allocation of cognitive radar network for target tracking
in clutter. Signal Process. 2020, 172, 107566. [CrossRef]

17. Jaber, S.; Pierre, S.; Jamal, C. A simple and robust approach for early detection of defluidization. Chem. Eng. J. 2017, 313, 144–156.
18. Venkidasalapathy, J.A.; Mannan, M.S.; Kravaris, C. A quantitative approach for optimal alarm identification. J. Loss Prev. Process.

Ind. 2018, 55, 213–222. [CrossRef]
19. Aslansefat, K.; Gogani, M.B.; Kabir, S.; Shoorehdeli, M.A.; Yari, M. Performance evaluation and design for variable threshold

alarm systems through semi-Markov process. ISA Trans. 2020, 97, 282–295. [CrossRef]
20. Kaced, R.; Kouadri, A.; Baiche, K. Designing alarm system using modified generalized delay-timer. J. Loss Prev. Process. Ind. 2019,

61, 40–48. [CrossRef]
21. Lucke, M.; Chioua, M.; Grimholt, C.; Hollender, M.; Thornhill, N.F. Integration of alarm design in fault detection and diagnosis

through alarm-range normalization. Control. Eng. Pract. 2020, 98, 104388. [CrossRef]
22. Taheri-Kalani, J.; Latif-Shabgahi, G.; Shooredeli, M.A. On the use of penalty approach for design and analysis of univariate alarm

systems. J. Process. Control. 2018, 69, 103–113. [CrossRef]
23. Wang, J.; Li, H.; Huang, J.; Su, C. A data similarity based analysis to consequential alarms of industrial processes. J. Loss Prev.

Process. Ind. 2015, 35, 29–34. [CrossRef]
24. Goel, P.; Pistikopoulos, E.; Mannan, M.; Datta, A. A data-driven alarm and event management framework. J. Loss Prev. Process.

Ind. 2019, 62, 103959–103973. [CrossRef]
25. Spross, J.; Gasch, T. Reliability-based alarm thresholds for structures analysed with the finite element method. Struct. Saf. 2018,

76, 174–183. [CrossRef]
26. Wang, J.; Yang, F.; Chen, T.; Shah, S.L. An Overview of Industrial Alarm Systems: Main Causes for Alarm Overloading, Research

Status, and Open Problems. IEEE Trans. Autom. Sci. Eng. 2016, 13, 1045–1061. [CrossRef]
27. Zhang, G.; Wang, Z.; Mei, H. Sensitivity clustering and ROC curve based alarm threshold optimization. Process. Saf. Environ. Prot.

2020, 141, 83–94. [CrossRef]
28. Cai, S.; Zhang, L.; Palazoglu, A.; Hu, J. Clustering analysis of process alarms using word embedding. J. Process. Control. 2019, 83,

11–19. [CrossRef]
29. Lucke, M.; Chioua, M.; Grimholt, C.; Hollender, M.; Thornhill, N.F. Advances in alarm data analysis with a practical application

to online alarm flood classification. J. Process. Control. 2019, 79, 56–71. [CrossRef]
30. Wang, J.; Chen, T. An online method for detection and reduction of chattering alarms due to oscillation. Comput. Chem. Eng. 2013,

54, 140–150. [CrossRef]
31. Chakraborty, D.; Elzarka, H. Early detection of faults in HVAC systems using an XGBoost model with a dynamic threshold.

Energy Build. 2019, 185, 326–344. [CrossRef]
32. Xu, D.L.; Xu, H.Y.; Hu, Y.Z.; Li, J.N. Evidence updating with static and dynamical performance analyses for industrial alarm

system design. ISA Trans. 2020, 99, 110–122. [CrossRef]
33. Zhu, J.; Shu, Y.; Zhao, J.; Yang, F. A dynamic alarm management strategy for chemical process transitions. J. Loss Prev. Process Ind.

2014, 30, 207–218. [CrossRef]
34. Qi, X.-G.; Wang, H.; Liu, Y.; Chen, G. Flexible alarming mechanism of a general GDS deployment for explosive accidents caused

by gas leakage. Process. Saf. Environ. Prot. 2019, 132, 265–272. [CrossRef]
35. Yu, C.; Wang, H.; Yao, J.; Zhao, J.; Sun, Q.; Zhu, H. A dynamic alarm threshold setting method for photovoltaic array and its

application. Renew. Energy 2020, 158, 13–22. [CrossRef]
36. Xu, J.; Wang, J.; Izadi, I.; Chen, T. Performance Assessment and Design for Univariate Alarm Systems Based on FAR, MAR, and

AAD. IEEE Trans. Autom. Sci. Eng. 2012, 9, 296–307. [CrossRef]
37. Tian, W.; Zhang, G.; Liang, H. Alarm clustering analysis and ACO based multi-variable alarms thresholds optimization in

chemical processes. Process. Saf. Environ. Prot. 2018, 113, 132–140. [CrossRef]
38. Abdou, L.; Taibaoui, O.; Moumen, A.; Ahmed, A.T. Threshold optimization in distributed OS-CFAR system by using simulated

annealing technique. In Proceedings of the 2015 4th International Conference on Systems and Control (ICSC), Sousse, Tunisia,
28–30 April 2015; Volume 4, pp. 295–301.

39. Salleh, F.H.M.; Arif, S.M.; Zainudin, S.; Firdaus-Raih, M. Reconstructing gene regulatory networks from knock-out data using
Gaussian Noise Model and Pearson Correlation Coefficient. Comput. Biol. Chem. 2015, 59, 3–14. [CrossRef]

40. Amin, T.; Khan, F.; Imtiaz, S.A.; Ahmed, S. Robust Process Monitoring Methodology for Detection and Diagnosis of Unobservable
Faults. Ind. Eng. Chem. Res. 2019, 58, 19149–19165. [CrossRef]

41. Hu, C.; Xu, Z.; Kong, X.; Luo, J. Recursive-CPLS-Based Quality-Relevant and Process-Relevant Fault Monitoring With Application
to the Tennessee Eastman Process. IEEE Access 2019, 7, 128746–128757. [CrossRef]

42. Xiao, D.H. Optimization Approached to Multi-Variable Alarm Thresholds with Priorities in Process Productions. Master’s
Thesis, Beijing University of Chemical Technology, Beijing, China, 2014. Available online: https://d.wanfangdata.com.cn/thesis/
ChJUaGVzaXNOZXdTMjAyMTEyMDESCFkyNjI4NzI1Gghla3J2a3U2cw%253D%253D (accessed on 26 November 2021).

http://doi.org/10.1016/j.optcom.2019.124571
http://doi.org/10.1016/j.sigpro.2020.107566
http://doi.org/10.1016/j.jlp.2018.05.012
http://doi.org/10.1016/j.isatra.2019.08.015
http://doi.org/10.1016/j.jlp.2019.04.010
http://doi.org/10.1016/j.conengprac.2020.104388
http://doi.org/10.1016/j.jprocont.2018.07.018
http://doi.org/10.1016/j.jlp.2015.03.005
http://doi.org/10.1016/j.jlp.2019.103959
http://doi.org/10.1016/j.strusafe.2018.09.004
http://doi.org/10.1109/TASE.2015.2464234
http://doi.org/10.1016/j.psep.2020.03.029
http://doi.org/10.1016/j.jprocont.2019.08.011
http://doi.org/10.1016/j.jprocont.2019.04.010
http://doi.org/10.1016/j.compchemeng.2013.03.025
http://doi.org/10.1016/j.enbuild.2018.12.032
http://doi.org/10.1016/j.isatra.2019.09.006
http://doi.org/10.1016/j.jlp.2013.07.008
http://doi.org/10.1016/j.psep.2019.10.001
http://doi.org/10.1016/j.renene.2020.05.091
http://doi.org/10.1109/TASE.2011.2176490
http://doi.org/10.1016/j.psep.2017.09.020
http://doi.org/10.1016/j.compbiolchem.2015.04.012
http://doi.org/10.1021/acs.iecr.9b03406
http://doi.org/10.1109/ACCESS.2019.2939163
https://d.wanfangdata.com.cn/thesis/ChJUaGVzaXNOZXdTMjAyMTEyMDESCFkyNjI4NzI1Gghla3J2a3U2cw%253D%253D
https://d.wanfangdata.com.cn/thesis/ChJUaGVzaXNOZXdTMjAyMTEyMDESCFkyNjI4NzI1Gghla3J2a3U2cw%253D%253D

	Introduction 
	Optimum Design Outline 
	Alarm Efficiency Index 
	Alarm Clustering Analysis 
	Threshold Optimization 
	Optimization Process Description 

	Theory Study—Tennessee Eastman (TE) Simulation Process 
	Process Description 
	Cluster Variables and Calculate Weights 
	Optimization Solution 
	Results and Analysis 

	Real Industrial Verification—Industrial Ethylene Production Process 
	Process Description 
	Cluster Variables and Calculate Weights 
	Optimization Solution 
	Results and Analysis 

	Conclusions 
	References

