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Abstract: The study’s goal is to assess the flexural strength of concrete that includes waste marble
powder using machine learning methods, i.e., ANFIS, Support vector machines, and Gaussian
processes approaches. Flexural strength has also been studied by using the most reliable approach
of sensitivity analysis in order to determine the influential independent variable to predict the
dependent variable. The entire dataset consists of 202 observations, of which 120 were experimental
and 82 were readings from previous research projects. The dataset was then arbitrarily split into
two subsets, referred to as the training dataset and the testing dataset, each of which contained a
weighted percentage of the total observations (70–30). Output was concrete mix flexural strength,
whereas inputs comprised cement, fine and coarse aggregates, water, waste marble powder, and
curing days. Using statistical criteria, an evaluation of the efficacy of the approaches was carried
out. In comparison to other algorithms, the results demonstrate that the Gaussian process technique
has a lower error bandwidth, which contributes to its superior performance. The Gaussian process
is capable of producing more accurate predictions of the results of an experiment due to the fact
that it has a higher coefficient of correlation (0.7476), a lower mean absolute error value (1.0884),
and a smaller root mean square error value (1.5621). The number of curing days was identified as a
significant predictor, in addition to a number of other factors, by sensitivity analysis.

Keywords: waste marble powder; flexural strength; support vector machines; Gaussian processes; ANFIS

1. Introduction

Cement, fine and coarse aggregates and water are the main ingredients of concrete.
Every one of the components, with the exception of cement, is easily accessible in every
region of the world. The only way to create cement is through the process of manufacturing
it. The manufacture of cement results in the emission of carbon dioxide, which is harmful
to the environment. Because of their extensive application, there is currently an increase in
the overexploitation of several resources. As a result of industrialization and urbanization,
concrete is used in a significant amount of construction projects, and the rising demand
for the material will eventually lead to its depletion. If the waste material could meet the
required criteria, then it could be used in the development of the infrastructure, which
would make it economically viable [1,2]. The process of industrialization results in the
production of a variety of hazardous wastes, the management of which can be accomplished
by mixing these wastes into the fundamental components of concrete. There is a possibility
that fly ash, silica fumes, and slag will raise the water demand of the concrete mix. This
issue can be remedied by using a superplasticizer [3]. Waste marble powder (WMP)
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can be utilized in place of cement or fine aggregates as an alternative [4–6]. WMP is a
potentially useful material that might be used to partially replace sand and cement. CaO,
SiO2, Al2O3, Fe2O3 are significant constituents, whereas MgO, SO3, K2O, and Na2O are
minor constituents. India produces the most marble waste throughout the mining process.
The marble industry’s waste can harm the environment and the economy if not properly
managed. The demand for marble on the market is driven in part by its widespread
application in ornamental settings. The production of marble results in the generation
of a number of different chemical forms that are considered to be hazardous waste. The
disposal of waste is not an efficient use of resources, and it also raises concerns for the
environment. When appropriately integrated, the use of waste from industrial processes
has the potential to reduce the amount of cement that must be added to concrete [7]. Marble
sludge can be recycled and utilized as one of the primary components of concrete mix,
which can subsequently be used as a building material or in the construction of road
pavements, amongst other potential applications [8]. Soliman [9] found that as marble
powder (MP) replaces cement in the nominal mix, the concrete strength decreases. Both
the effect of substituting MP for cement (C) and the findings show that the tensile strength
of WMP starts to decrease as the amount of WMP increases [10]. By replacing 10% of the
cement with marble dust, Dhoka [11] noticed a 25% improvement in 28-day tensile strength
compared to the composite samples. Many researchers use waste MP as a replacement of
cement by weight [12–16]. In the experiment that was carried out by Kelestemur [14], on a
concrete mix that contained various amounts of glass fiber, it can be seen that by adding
marble dust, it achieves the highest CS. Workability was not affected by the capillarity
properties of self-compacting concrete caused by the addition of waste marble dust as a
cement replacement, but tensile strength was reduced as a result [15]. Uysal and Yilmaz [17]
investigated the usage of lime, basalt, and MP as Portland cement substitutes. In addition,
the tensile strength after 28 days was improved when both gravel and sand were used as a
substitute [18]. It was determined that the utilization of MP as a filler was satisfactory [19].
According to the findings of the study, replacing sand with 10% mineral powder delivers
the highest possible CS while maintaining a level of workability that is comparable to
that of cement. MP offers good cohesiveness to mortar because of its fineness. MP can
also be used as a substitute for SCC [20]. After 28 days of curing, Demirel [21] found
that the porosity of the matrix began to decrease as the quantity of small particles in the
matrix increased after being replaced with WMP. However, the CS rating improved. The
mechanical and physical qualities of the concrete are altered when WMP is used as a filler
ingredient in the production of SCC [22].

Waste marble powder (WMP) can be utilized in place of cement or fine aggregates as
an alternative [5,6]. Researchers are currently employing methods of soft computing in an
effort to find solutions to the problems [23–32]. The amount of cement, aggregates, water,
admixtures, and waste products that are included in the mix are the primary factors that
define the strength of the concrete. These elements can be incorporated into the model as
input variables to facilitate more accurate forecasting of the ultimate outcome. In classic
methodologies, the approaches of linear and non-linear regression are utilized the majority
of the time in order to anticipate results. However, in recent years, techniques from the field
of AI such as artificial neural networks (ANN), linear regression, group method of data
handling (GMDH), random forest, and random tree (RT) have been utilized to estimate the
concrete mechanical characteristics [33–38]. The majority of the research effort is being put
towards attempting to forecast the mechanical characteristics of various concrete mixes. In
order to accurately estimate the strength of no-slump concrete, a number of regressions,
neural networks (NNT), and adaptive neuro-fuzzy inference system (ANFIS) models have
been created [25,32]. These models use components of concrete as input parameters. The
findings indicate that the NNT and ANFIS models are superior to the proposed standard
regression models in terms of accuracy when it comes to forecasting the 28-day CS for non-
slumping concrete. In Madandoust’s [39] research, a neural network of the GMDH type was
combined with ANFIS modelling to make a prediction about the strength of concrete made
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from cementitious components. During the course of the research, a genetic algorithm was
utilized to construct a neural network of the GMDH variety. Input parameters consisted
of things like ratios of length to diameter, core diameter, and other similar measurements
in order to forecast the output strength. Ayat [40], in the year 2018, directed the study to
analyses the affectability of the developed model to some basic factors influencing concrete
CS. The goal of the investigation was to determine whether or not the constructed model is
affected by these factors. It was found that the ANNs model that had been suggested was
remarkable as a practical and very effective method for simulating the CS forecast of lime
filler (LF) concrete. When it comes to forecasting the CS of concrete mixtures, tree-based
models perform admirably.

In this paper, the effect of marble powder on flexural strength of concrete is demon-
strated. Experimental investigations to study the effect of marble dust on flexural strength
exploring possible reasons for the gain in strength have been conducted. Techniques from
the field of soft computing have found widespread use in a variety of technical fields over
the course of the past few decades. Fewer studies have been identified on the performance
of soft computing techniques for predicting the FS of concrete mixtures that include waste
MP. Some of the soft computing techniques that were utilized in this work are the Support
Vector Machine (SVM), the Gaussian Process (GP), and the Adaptive Neuro-Fuzzy Inference
System (ANFIS). The results were compared in order to identify the modelling strategy
that proved to be the most reliable in predicting the FS of concrete mix includes waste
marble powder. Additional sensitivity analysis was done to identify the most important
input parameter.

2. Machine Learning Techniques
2.1. ANFIS

An artificial neural network that is built on the Takagi-Sugeno fuzzy inference system
is called an adaptive neuro-fuzzy inference system (ANFIS). It wasn’t until the early 1990s
that the methodology was created. It offers the chance to use the benefits of both types of
systems under a single framework because it combines neural networks and fuzzy logic
concepts. Its inference system is made up of a collection of fuzzy IF–THEN rules with
the capacity to approximate nonlinear functions through learning. As a result, ANFIS is
regarded as a universal estimator. The best parameters acquired by genetic algorithm may
be used to employ the ANFIS in a more efficient and optimal manner. Figure 1 presents
the ANFIS architecture [41]. There are five layers in the ANFIS model. Each layer has its
own set of nodes, which are specified by the node function. Layer one is the layer in which
all of the nodes have a node function and are adaptive nodes. The second layer is where
nodes multiply incoming signals, and the output is the sum of all the incoming signals. The
firing strength of the ith rule is compared to the total firing strength of all node rules, which
is the focus of Layer 3’s calculation. Each node in layer 4 is responsible for calculating
the contribution that the ith rule makes to the overall output. The signal node in layer
5 calculates the final output as the sum of all input signals.

Within the framework of this ANFIS system, the hybrid algorithm was implemented.
The input and output membership functions of the ANFIS model each have their own
unique shape. The ‘trimf’ membership function was chosen out of all the other MF’s
because it displays the lowest test error and the lesser value of mean absolute percentage
error compared to the other membership functions. The ‘trimf’ membership function,
which stands for ‘triangular membership function,’ also has incline and decline features
with a specific value [42].
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Figure 1. The architecture of ANFIS model.

2.2. Support Vector Machine (SVM)

Vapnik initially demonstrated the SVM in 1995. Researchers utilize this method to
tackle categorization, prediction, and regression difficulties. It’s a part of artificial intelli-
gence (AI) [43,44]. SVM analysis involves training and testing data sets and input/output
parameters. The optimal margin classifier is used in SVM analysis to segment the decision
surface. The product of two vectors is determined using the kernel function approach.
Fixed mapping is used to fit a non-linear kernel function in high-dimensional space after
input data has been mapped using n-dimensional characteristics. When high-dimensional
data is mapped using a kernel, the information separates linearly without altering the
input space [44]. The input space is converted into a high-dimensional feature space via the
kernel function, which enables non-linear relationships to be expressed in a linear fashion.
The particular selection of a kernel function to map the non-linear input space into a linear
feature space is highly dependent on the nature of the data, which refers to the type of
underlying relationship that needs to be estimated in order to relate the input data with
the desired output property. Finding such a kernel will be quite valuable. The Pearson VII
Universal Kernel was utilized for use as the basis for the GP and SVM kernel function. The
Pearson VII function offers outstanding flexibility and the opportunity to simply shift from
a Gaussian into a Nonlinear peak shape and more by modifying its parameters. It also has
the ability to transition from a Nonlinear peak shape to a Gaussian peak shape. As a result,
the Pearson VII function can be utilized in place of a generic kernel [45].

2.3. Gaussian Processes (GPs)

Over the course of the last several years, a large amount of research and development
effort has been concentrated on the study of machine learning as an area of study. The
Gaussian process is a method for machine learning that involves performing analyses of
models using kernels. It gives kernel machine novices hands-on experience [46,47]. Each
finite random variable has a joint normal distribution. This collection is called a random
variable ensemble. It is generally agreed that the mean function, which is represented by
the symbol m(x), and the kernel function, which is represented by the symbol n(x,x′), are
the two most important functions of the Gaussian process, which is represented by the
symbol l (x).

2.4. Purpose of the Study

A comprehensive literature analysis found that fewer studies had utilized these mod-
elling methodologies to assess the FS of concrete mixes including WMP. In civil engineering,
their ability to predict the FS of concrete mixtures was evaluated using literature and lab
data. In this paper, the effect of marble powder on flexural strength of concrete is demon-
strated. Experimental investigations to study the effect of marble dust on flexural strength
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exploring possible reasons for the gain in strength have been conducted. The study’s goal
is to assess the flexural strength of concrete that includes waste marble powder using
machine learning methods, i.e., ANFIS, Support vector machines, and Gaussian processes
approaches. Other algorithms were also tested on the dataset used for the study in ad-
dition to GP, SVM, and ANFIS, but they showed a poor coefficient of correlation value
for the dataset. Therefore, in place of other conventional methodologies, ANFIS, support
vector machine, and Gaussian process methods were used to predict the flexural strength
of concrete.

In order to determine which modelling technique was the most effective at predicting
the FS of concrete mix, the results were compared. This was done so that the most de-
pendable modelling strategy could be selected. Flexural strength has also been studied by
using the most reliable approach of sensitivity analysis in order to determine the influential
independent variable to predict the dependent variable.

3. Methodology

In order to accomplish the goal of the study, which was to predict the FS of concrete,
the following approach was taken: data was gathered on the FS of concrete, and various
forms of soft computing were utilized. It was important to collect adequate data for the
purpose of predicting the FS, and this was accomplished by carrying out experimental
study and data from previously published studies.

3.1. Experimental Investigation

Each of the 120 beam specimens measuring 700 mm × 150 mm × 150 mm provided
the following information regarding the testing materials and procedures:

3.1.1. Aggregate

CA with nominal diameters between 10 and 20 mm was incorporated in the concrete
mixture. The particle size distribution of the aggregate was graded [48]. The SG, crushing,
and impact were found to be 2.61, 23.67, and 6.74 percent, respectively, by ASTM C-128 and
ASTM C-127 [49,50]. The mechanical characteristics of FA and CA are shown in Table 1.

Table 1. Mechanical Characteristics of Fine and Coarse Aggregates.

Experiment Unit Observed Value Permissible
Limit Standard

Impact test of CA % 6.74 <10 [50]
Crushing value of CA % 23.67 >45 [50]

SG of CA gm/cm3 2.61 -
[49]Apparent SG of CA gm/cm3 2.82 -

WA of CA % 2.82 -
SG of FA gm/cm3 2.47 -

[49]Apparent SG of FA gm/cm3 2.51 -
WA of FA % 0.6 -

3.1.2. Cement

Cement according to ASTM C-150 [51] Type-I cement was utilized in this study. Table 2
lists the mechanical characteristics of cement.

Table 2. Mechanical Characteristics of cement.

Test Unit Value Permissible Limit Standard

Fineness % 5.77 <10 [52]
Consistency % 32 >45 [53]
Soundness mm 3.33 <10 [54]

SG gm/cm3 3.1 - [55]
Setting Time min Initial 40 - [56]

Final 360 -
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3.1.3. Marble Powder

The Waste Marble Powder that was obtained came from its source, which was a marble
company that was located locally. While Table 3 provides an explanation of the WMP’s
mechanical qualities, Figure 2 depicts the chemical analysis of the marble powder. An EDS
analysis was carried out so that the elemental make-up of the WMP could be ascertained.
The X-ray spectra, which can be seen in the image, are laid out with the energy, which is
measured in keV, along the x-axis and the number of counts, which is measured along the
y-axis. The information shown in Figure 2 makes it abundantly evident that Calcium and
Oxygen have the highest weightage of all the elements.

Table 3. Mechanical Characteristics of MP.

Test Unit Value

Fineness % 2.01
SG gm/cm3 2.44

Apparent SG gm/cm3 2.56
WA % 1.96

Bulk SG gm/cm3 1.63
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Figure 2. Chemical Analysis of Marble Powder.

3.1.4. Mix Design

When making batches, the amounts of C, FA, and MP that were specified were em-
ployed. Other components, such as CA and the ratio of water to cement, were always used
in the same proportions throughout the process. Several unique sets of specimens, each
of which had three beams, were manufactured as a part of the experiment. A total of one
hundred and twenty beams were manufactured. The composition of the control specimens,
as well as the composition of the specimens with 5, 10, 15, and 20% replacement by the
weight of cement and sand, is detailed in Table 4.
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Table 4. Mix Design.

Sr. No. Mix-ID
Materials in kg/m3

Cement FA CA Water MP

1 M0 395.74 600.15 1103.09 217.65 0
2 A04 395.74 570.14 1103.09 217.65 30.00
3 A13 390.79 577.65 1103.09 214.93 27.44
4 A22 385.85 585.15 1103.09 212.21 24.89
5 A31 380.89 592.64 1103.09 209.49 22.34
6 A40 375.95 600.15 1103.09 206.77 19.78
7 B04 395.74 540.13 1103.09 217.65 60.01
8 B13 385.85 555.13 1103.09 212.21 54.90
9 B22 375.95 570.14 1103.09 206.77 49.75

10 B31 366.06 585.15 1103.09 201.33 44.68
11 B40 356.16 600.15 1103.09 195.89 39.57
12 C04 395.74 510.12 1103.09 217.65 90.02
13 C13 380.89 532.63 1103.09 209.49 82.35
14 C22 366.06 555.13 1103.09 201.33 74.69
15 C31 351.21 577.65 1103.09 193.16 67.02
16 C40 336.37 600.15 1103.09 185.00 59.36
17 D04 395.74 480.12 1103.09 217.65 120.03
18 D13 375.95 510.12 1103.09 206.77 109.80
19 D22 356.16 540.13 1103.09 195.89 99.58
20 D31 336.37 570.14 1103.09 185.00 89.43
21 D40 316.59 600.15 1103.09 174.12 79.14

M0 = control mix; (A represents 5% MP, B represents 10% MP, C represents 15% MP, D represents 20% MP)
replacement.

ASTM D790 and ASTM C78 determine flexural strength using a two-point loading
test. This method determines the flexural strength of hardened concrete test specimens
by two-point loading [57,58]. Figure 3 shows a schematic of a flexural machine with two
supports and two loads. Two supports considered as simply supported. The specimen’s
center was loaded and then two points until failure. The flexural test machine directly
measured the load.
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3.1.5. Result and Discussion

The samples A04 and D40 that contained marble powder instead of sand and cement,
respectively, showed an extra improvement in strength in the strength activity results as
shown in Figure 4. After 28 days, the strength ratio for the samples was 15% and 3% higher,
respectively, showing that a chemical reaction was occurring. The components with the
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biggest weightage, according to an EDS study, are calcium and oxygen in marble powder,
which contribute to the increase in strength.
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Figure 4. FS Results Based on Experimental Studies.

4. Statistical Analysis
4.1. Data Collection

The dataset is absolutely necessary for making an accurate prediction. Table 5 contains
the range of the 202 observations that were gathered for this study from various sources,
including the literature (82 readings), as well as laboratory data (120 readings). Table 6
contains detailed information regarding the observations that were analyzed as part of the
investigation. After then, the 202 observations were divided into two subgroups at random,
with a ratio of 70–30 for the training and testing subsets, respectively. In this study, FS
served as the output variable, while ANFIS, SVM, and GP were the three methods that
were employed to obtain the intended outcome. The input variables included C, FA, CA, w,
MP, and CD. The software platforms that were used were MATLAB and Weka 3.9. In order
to achieve the desired outcome, the researchers used independent variables including C,
FA, CA, w, MP, and CD. In Table 7, the characteristics of the complete dataset, the dataset
used for training, and the dataset used for testing are outlined. Consideration was given to
the CC, MAE, RMSE, RAE, and RRSE when attempting to ascertain which model produced
the most accurate results. These factors were helpful in determining which model was the
most accurate. Better results are likely to have a higher CC value as well as a lower error
value. Table 8 is a listing of the user-defined criteria that must be met when evaluating
the FS of a concrete mixture using WMP. These user-defined optimal settings for various
procedures are the product of a significant amount of research that were conducted. The
effectiveness of each model was determined by the optimal configurations. Because the
optimal parameters will have an effect on the performance of the model, it is essential that
they be determined with extreme care. As a consequence of this, the example parameters
were perfectly suitable for both the datasets used for training and for testing.
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Table 5. Range of the dataset used.

Sr. No.

Independent Variable Range Dependent
Variable Range

Reference
(kg/m3)

CD FS (MPa)
C FA CA W MP

1. 316.59–
395.74

480.12–
600.15 1103.09 174.13–

217.66
0.00–

120.03 7.00–28.00 0.71–
11.73

Experimental
Reading

2. 225.00–
300.00 450.00 900.00 120.00 0.00–

75.00 7.00-28.00 0.40–
3.10 [59]

3. 383.00 273.00–
546.00 1187.00 191.60 0.00–

273.00 28.00 4.18–
5.73 [60]

4. 340.00–
400.00 672.00 1113.00 120.00–

160.00
0.00–
60.00

7.00–
28.00

3.30–
4.21 [61]

5. 240.00–
300.00 312.30 1721.40 150.000 0.00–

30.00
7.00–
90.00

4.80–
6.10 [62]

6. 270.20–
337.80

741.40–
927.00 1046.20 189.140–

212.800
0.00–

185.20
7.00–
90.00

1.76–
3.40 [63]

Table 6. Detail of dataset.

Sr. No. 1 2 3 4 5 6 Total

Author Mansoor [59] Anitha
Selvasofia [60]

Sounthararajan and
Sivakumar [61] Ergun [62] Kirgiz

[63]
Experimental

Readings
202

No. of
observation 18 6 14 22 22 120

Table 7. Characteristics of Datasets.

Dataset Statistics Minimum Maximum Mean Standard
Deviation Kurtosis Skewness

Total Dataset
(202 observations)

C 225.00 400.00 345.23 48.54 −0.43 −0.89
FA 273.00 927.00 556.21 132.14 0.59 0.12
CA 900.00 1721.40 1149.32 209.67 3.40 2.07
w 120.00 217.66 186.23 31.89 −0.32 −1.01

MP 0.00 273.00 59.71 46.51 2.48 1.29
CD 7.00 90.00 20.10 16.64 8.33 2.44
FS 0.40 11.73 4.55 2.52 0.01 0.67

Training Dataset
(142 Observations)

C 225.00 400.00 343.55 50.30 −0.60 −0.82
FA 273.00 927.00 554.14 137.09 0.53 0.15
CA 900.00 1721.40 1155.17 218.49 2.80 1.96
w 120.00 217.66 185.80 32.29 −0.45 −0.95

MP 0.00 273.00 59.21 48.52 2.95 1.44
CD 7.00 90.00 21.05 18.62 6.82 2.39
FS 0.40 11.73 4.59 2.62 0.04 0.75

Testing Dataset
(60 Observations)

C 225.00 395.74 349.21 44.23 0.14 −1.05
FA 312.30 834.30 561.10 120.60 0.81 0.05
CA 900.00 1721.40 1135.46 188.16 5.90 2.46
w 120.00 217.66 187.26 31.15 0.13 −1.17

MP 0.00 185.20 60.89 41.72 0.34 0.73
CD 7.00 28.00 17.85 10.34 −2.02 −0.05
FS 0.71 10.31 4.46 2.27 −0.44 0.32
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Table 8. Use Defined Parameters.

Model Used User Defined Parameters

SVM C = 1.5, PUK kernel O = 0.7, S = 0.7
GP Noise = 0.1, PUK kernel O = 0.8, S = 0.8

ANFIS Epoches = 10

Figure 5, show how distinct each data point’s colors are. The color alterations on
the pair charts depend on the output’s level of intensity. Figure 5 shows how the color
for flexure strength, which ranges from 0.4 MPa to 11.73 MPa, varies from blue to orange
depending on the intensity of the output. As a result, each data point’s color is unique
for each variable and ranges from blue at 0.4 MPa to orange at 11.73 MPa. In addition,
Figure 5 illustrates a pair plot that was created to visualize the given dataset and discover
their relationship. Figure 5 depicts the complex relationship that exists between the flexural
strength of concrete and the constituent elements of marble powder, curing days, water,
and cement. As can be seen, an increase in the dependent variables such as cement, water,
marble powder, and curing days has an effect on the FS of the concrete.
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4.2. Criteria for Evaluative Assessment

Using evaluating parameters ensures that algorithms perform to their greatest capacity.
The CC, MAE, RMSE, RAE, and RRSE were used in this investigation.

CC =
x(∑x

i=1 OV)− (∑x
i=1 O)(∑x

i=1 V)√
[x ∑x

i=1 O2 − (∑x
i=1 O)2]

√
[x ∑x

i=1 V2 − (∑x
i=1 V)2]

(1)

RMSE =
√ 1

x

(
x

∑
i=1

(V −O)2

)
(2)

MAE =
1
x
(

x

∑
i=1
|V −O|) (3)

RAE =
∑x

i=1|O−V|
∑x

i=1
(∣∣O−O

∣∣) (4)

RRSE =

√√√√ ∑x
i=1(O−V)2

∑x
i=1
(∣∣V −V

∣∣)2 (5)

O = Observed readings; O = the average of the Observed readings
V = Predicted readings; V = Predicted Values Average
x = the total number of readings.

The numbers assigned to the CC might range from minus one to plus one. The higher
the CC number, the more favorable the outcomes are projected to be. Lower values of
evaluation parameters such as RMSE, MAE, RAE, and RRSE, on the other hand, predict
better outcomes; that is, if the computed error is low, it means that the output results will
be better [64–70].

5. Findings and Discussion
5.1. ANFIS Based Assessment

Trial-and-error is used in the development of ANFIS-based models. Matlab can be
used to predict FS. The model used in the study is triangular. The performance metrics for
each membership function-based ANFIS model are listed in the later section. ANFIS model
based on triangular membership function (MFs) predicts FS of concrete mix containing
WMP. The CC values for training and testing were 0.8592 and 0.4687, respectively. The
RMSE, MAE, RAE, and RRSE values were 1.3351 and 2.5116, 0.8487, 39.77% and 59.93%,
respectively. Figure 6 illustrates observed and predicted ANFIS-based results for both
phases. These numbers show how well the ANFIS trimf-based model predicts the FS of
concrete mixes containing WMP. Reliable outcomes are predicted by a value that is closer
to the line of perfect agreement [71–76].
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5.2. Support Vector Machine (SVM) Based Assessment

The Pearson VII function kernel, often known as the PUK kernel, is used in this model
along with a number of user-defined parameters, such as C, omega (O), and sigma (S). The
ideal method, which involved getting the maximum CC value while also minimizing the
number of errors, was found after a substantial number of experiments were run [77–80].
The dataset that was used in this investigation yielded the most successful outcomes, with
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a c value of 1.5, O = 0.7, and S = 0.7, respectively. The performance metrics of the SVM are
listed in Table 9, and it includes both the training and testing datasets. The RRSE was 50.88
percent during the training phase and 78.36 percent during the testing phase. The RAE was
31.49 percent during the training phase and 61.61 percent during the testing phase. The
MAE was 0.6720 during the training phase and 1.1604 during the testing phase. The CC
values were 0.8656 and 0.7020. A comparison of the actual and anticipated FS values of the
concrete mix resulted in the creation of the agreement plot, which is depicted in Figure 7.
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Table 9. Performances of SVM, GP, and ANFIS.

Machine
Learning

Techniques
CC MAE RMSE RAE RRSE

Training
GP 0.8967 0.7180 1.1563 33.64% 44.32%

SVM 0.8656 0.6720 1.3275 31.49% 50.88%
ANFIS_trimf 0.8592 0.8487 1.3351 39.77% 59.93%

Testing
GP 0.7476 1.0884 1.5621 57.79% 69.19%

SVM 0.7020 1.1604 1.7691 61.61% 78.36%
ANFIS_trimf 0.4687 1.6305 2.5116 86.99% 98.74%

5.3. Gaussian Processes (GPs) Based Assessment

The type of regression known as Gaussian Processes makes use of a Pearson VII func-
tion kernel, often known as a PUK kernel, together with specific user-defined parameters
such as L, Omega (O), and Sigma (S). Numerous trials had to be conducted in order to
find the optimal value, which was defined as the greatest CC value that could be achieved
with the fewest errors [81–84]. With L values of 0.1, O = 0.8, and S = 0.8, respectively, the
dataset employed in this experiment yielded the most effective findings. Table 9 can be
accessed here and contains the performance metrics for the general practice training and
testing datasets. The training and testing phases’ respective RMSE values were 1.1563 and
1.5621, the training and testing phases’ respective MAE values were 0.7180 and 1.0884, the
training and testing phases’ respective RAE values were 33.64 percent and 57.79 percent,
and the training and testing phases’ respective RRSE values were 44.32 percent and 69.19
percent. The actual FS of the concrete mix is compared to the projected FS in Figure 8,
which illustrates the agreement plot.
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Figure 8. The scatter graph displays the observed and GP-predicted FS.

6. Comparison

Throughout the course of this investigation, a variety of distinct strategies for machine
learning were utilized. The GP model appears to outperform the others when these models
are compared, both in terms of the training datasets and the testing datasets [65]. Both
the training dataset and the testing dataset showed that the GP model had the greatest
possible CC values of 0.8967 and 0.7476, respectively, for the testing dataset. Figure 9a,b
illustrates the disparity that exists between the projected dataset and the actual dataset on
which machine learning methods were performed.
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GP model also had the lowest MAE (1.0884), RMSE (1.5621), RAE (57.79%), and RRSE
(69.19%) for the testing dataset. These results can be seen in Table 9 and Figure 10.
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Figure 10. Performance Evaluation by Statistical Parameters.

In order to determine the FS of concrete mix that included MP, it was necessary to
evaluate not only the actual value but also the quartile values of 25%, 50%, and 75% in ad-
dition to the actual value. Table 10 displays the findings obtained from the aforementioned
assessments. Interquartile range (IQR) of GP is relatively near to IQR of the real data that
was followed by ANFIS trimf, as can be shown in Figure 11 and Table 10, respectively.
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Table 10. Statistics of observed and predicted output of testing dataset utilizing soft computing
algorithms.

Output Statistic Criteria Actual GP SVM ANFIS_Trimf

FS

Minimum 0.71 1.23 0.90 1.29
Maximum 10.31 10.38 10.68 14.48

1st Quartile 2.90 2.81 2.42 2.58
Mean 4.46 4.50 4.41 4.83

3rd Quartile 5.96 6.31 6.40 6.48
IQR 3.06 3.50 3.98 3.90Processes 2022, 10, x FOR PEER REVIEW 19 of 25 
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Figure 11. Box plots for all Testing Dataset models.

In addition, based on the examination of the data, the set of data has been separated
into two groups, which are FS < 10 MPa and FS > 10 MPa. Table 11 and Figure 12 show the
increasing trend in error with decreasing FS based on the modelling methodologies that
were used, and they indicate that the error increases from 0.6411 to 1.3511 MPa for FS > 10
to FS < 10, respectively, for GP based model.

Table 11. Performances of SVM, GP, and ANFIS for FS < 10 MPa and FS > 10 Mpa.

MAE

GP SVM

FS < 10 1.3511 1.6208
FS > 10 0.6411 0.6647
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Figure 12. Relationship between Flexural Strength and MAE.

7. Sensitivity Assessments

The most important component of the input variable that affects the prediction of
the FS of concrete mixes containing waste MP was identified as a possible variable using
sensitivity analysis. It can be seen from Figure 4, which shows the experimental results,
that curing days and the change in quantity of MP affects the concrete flexural strength of
concrete. Further, sensitivity study was undertaken on the GP model because it performed
the best among the other models for this dataset [85–87]. As shown in Table 12, this
analysis involved changing the input combination and removing one input parameter one
by one. For the purpose of determining which model performed the best, the study utilized
statistical evaluation criteria such as CC, MAE, and RMSE. Table 12 indicates that one of the
most important factors to consider when attempting to predict the FS of a concrete mixture
is the number of curing days followed by the water. Figure 13 represents the relationship
between removed parameter and the CC value based on the GP model. The following
equation represents the best-fit model for independent variables:

y = −0.003x5 + 0.0648x4 − 0.5341x3 + 2.0406x2 − 3.4785x + 2.68 (6)

where, x = independent variable, y = dependent variable

Table 12. GP-based sensitivity model results.

Removed Variable
GP Based Model

CC MAE RMSE

NIL (no parameter
has been removed) 0.7713 1.2034 1.6713

CD 0.5441 1.5499 2.0857
w 0.7365 1.3137 1.8028
FA 0.7419 1.3177 1.7863
CA 0.7690 1.2135 1.6808
C 0.7641 1.2367 1.6909

MP 0.7774 1.1642 1.6194
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Table 13. GP-based sensitivity model results for FS < 10 and FS > 10. 

Removed Variable 
MAE 
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NIL (no parameter has 

been removed) 
0.6411 1.3511 

C 0.6378 1.0110 

FA 0.6340 1.0131 

CA 0.6411 0.9268 

w 0.6379 1.0267 

MP 0.6570 0.9492 

CD 4.8163 1.4743 

8. Conclusions 

In this study, the algorithms that were used to predict the FS of concrete mixes that 

included WMP were compared using three different machine learning techniques. These 

techniques were ANFIS, SVM, and GP. The effectiveness of these models was assessed 

using the CC, MAE, RMSE, RAE, and RRSE metrics, respectively. 

According to the results of the research, the GP model yields the most reliable pre-

dictions of the FS of concrete. This conclusion may be drawn from the data of the investi-

gation. GP also predicts more accurate outcomes for the testing dataset than SVM, with 

corresponding CC values of 0.7476 and 0.7020, lower MAE values of 1.0884 and 1.1604, 

and lower RMSE values of 1.5621 and 1.7691, respectively. 

The scatter plot demonstrates that the GP has the least error band width and is an 

important predictor of output. This is demonstrated by the fact that the GP has the small-

est error band width. The amount of curing days that are subsequently followed by water 
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Figure 13. Relationship between Removed Parameters and CC Value Based on GP Model.

In addition, sensitivity analysis has been performed to check the sensitive variable
when FS is divided into two parts, i.e., FS < 10 Mpa and FS > 10 Mpa. It can be seen from
Table 13 that curing days has an influential effect on the flexural strength of the concrete
with maximum MAE value, i.e., 4.8163 Mpa and 1.4743 Mpa for FS > 10 Mpa and FS < 10
Mpa, respectively. A gel is created during the pozzolanic reaction, which causes the FS to
increase. Concrete can become stronger when the curing time is extended because it is a
gradual process [66].

Table 13. GP-based sensitivity model results for FS < 10 and FS > 10.

Removed Variable
MAE

FS > 10 FS < 10

NIL (no parameter has been
removed) 0.6411 1.3511

C 0.6378 1.0110
FA 0.6340 1.0131
CA 0.6411 0.9268
w 0.6379 1.0267

MP 0.6570 0.9492
CD 4.8163 1.4743

8. Conclusions

In this study, the algorithms that were used to predict the FS of concrete mixes that
included WMP were compared using three different machine learning techniques. These
techniques were ANFIS, SVM, and GP. The effectiveness of these models was assessed
using the CC, MAE, RMSE, RAE, and RRSE metrics, respectively.

According to the results of the research, the GP model yields the most reliable predic-
tions of the FS of concrete. This conclusion may be drawn from the data of the investigation.
GP also predicts more accurate outcomes for the testing dataset than SVM, with corre-
sponding CC values of 0.7476 and 0.7020, lower MAE values of 1.0884 and 1.1604, and
lower RMSE values of 1.5621 and 1.7691, respectively.

The scatter plot demonstrates that the GP has the least error band width and is an
important predictor of output. This is demonstrated by the fact that the GP has the smallest
error band width. The amount of curing days that are subsequently followed by water is
the most significant variable to take into consideration when attempting to estimate the FS
of concrete. This is because, when compared to the other variables that are utilized as input
for this data set, it is the most relevant variable.
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CA Coarse aggregate
CC Coefficient of correlation
CS Compressive strength
CD Curing days
FA Fine aggregate
FS Flexural strength
GP Gaussian Process
GMDH Group method of data handling
MP Marble powder
MAE Mean absolute error
RAE Relative absolute error
RMSE Root mean squared error
RRSE Root relative squared error
SG Specific Gravity
SVM Support vector machine
w Water
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WA Water absorption
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76. Bakır, H.; Ağbulut, Ü.; Gürel, A.E.; Yıldız, G.; Güvenç, U.; Soudagar, M.E.M.; Hoang, A.T.; Deepanraj, B.; Saini, G.; Afzal,
A. Forecasting of Future Greenhouse Gas Emission Trajectory for India Using Energy and Economic Indexes with Various
Metaheuristic Algorithms. J. Clean. Prod. 2022, 360, 131946. [CrossRef]
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