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Abstract: Anthropogenic climate change, global warming, environmental pollution, and fossil fuel
depletion have been identified as critical current scenarios and future challenges. Cement plants
are one of the most impressive zones, emitting 15% of the worldwide contaminations into the
environment among various industries. These contaminants adversely affect human well-being,
flora, and fauna. Meanwhile, the use of cement-based substances in various fields, such as civil
engineering, medical applications, etc., is inevitable due to the continuous increment of population
and urbanization. To cope with this challenge, numerous filtering methods, recycling techniques,
and modeling approaches have been introduced. Among the various statistical, mathematical, and
computational modeling solutions, Python has received tremendous attention because of the benefit
of smart libraries, heterogeneous data integration, and meta-models. The Python-based models are
able to optimize the raw material contents and monitor the released pollutants in cement complex
outputs with intelligent predictions. Correspondingly, this paper aims to summarize the performed
studies to illuminate the resultant emissions from the cement complexes, their treatment methods,
and the crucial role of Python modeling toward the high-efficient production of cement via a green
and eco-friendly procedure. This comprehensive review sheds light on applying smart modeling
techniques rather than experimental analysis for fundamental and applied research and developing
future opportunities.

Keywords: cement plant; pollution treatment; pollution monitoring; modeling; python

1. Introduction

The urbanization and industrialization of communities have led to environmental pol-
lution and global warming concerns around the world. Among diverse polluting industries,
cement complexes are one of the most critical zones under the red class [1–3]. After water,
cement is ranked as the most consumed substance in developing and developed societies.
Cement is used in construction, civil engineering [4,5], decorative applications [6–8], medi-
cal and dental fields [9–11], and many more. Statistics illustrated the production of about
3600 million metric tons of cement in 2021 by several countries: China, India, Vietnam,
the United States, Turkey, Indonesia, Brazil, Iran, Russia, Japan, Mexico, South Korea, and
Egypt [12,13]. Based on the predictions, cement consumption will reach up to 5800 million
metric tons by 2050, as presented in Figure 1a [12]. Meanwhile, the CO2 pollution emitted
by these plants constitutes around 10–15% of the total CO2 released into the environment
per year among the main industries, including refineries, iron and steel, high-purity sources,
and other sectors (see Figure 1b) [13]. The extraction of limestone and various production
procedure of cement cause hazardous impacts on the environment and degradation of
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landscapes, resulting from dust pollutants and overburdened material dumping [14,15].
The cement industries generate a wide range of contaminations affecting human health
directly and indirectly. The emission of the particulate materials, oxides, sulfides, and other
contaminants through the output air into the environment is potentially able to affect human
well-being. The released wastewater and solid wastes can pollute the soil, drinking water,
and agricultural products, which impact human life indirectly. Therefore, the prediction,
monitoring, and treatment of the resulting pollution from cement plants have been initiated
for several years [16,17]. It is noteworthy that solar calcination has been extremely focused
in developed countries in recent years to dramatically reduce CO2 emissions. Using such
progressed systems efficiently decreases the need for pollution monitoring systems while
approaching the solar calcination seems to be not realistic in the near future [18].
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Figure 1. (a) Production of cement from 1990 up until now and the predicting the cement manufac-
turing up to 2050 (reprinted under open access license from Ref. [12]), (b) the emitted CO2 pollution
from various industries, (c) the number of Scopus-indexed papers regarding the pollution-treatment
in the cement industries, and the number of Scopus-indexed published research to treat pollution in
the cement industries using Python.

To evaluate the focus of researchers on treating the pollution released by the cement
plants and other sectors, the studies published in the Scopus and Web of Science were
assessed by the following search strings: “pollution AND cement plants”, “cement plants
AND Python”, “pollution AND modelling”, and “pollution AND cement plant AND
Python.” After screening the papers, the English papers published after 2000 based on
the modeling techniques were included. Accordingly, several attempts have been carried
out in this era using modeling investigations based upon various methods, such as experi-
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mental [19,20], mathematical [21,22], and machine learning [23–25] techniques. Software,
intelligent models, and sensors are increasingly applied in today’s technology-based age to
monitor and control air and water quality. Streeter et al. [26] introduced the Streeter-Phelps
model to monitor the water quality in the Ohio River. The research in this era has been
continued till now regarding the importance of environmental issues as well as the high
efficacy of the modeling toward the prediction and monitoring of contaminations. As an
example, Chapra et al. [27] modified and developed the classical Streeter-Phelps model to
generalize the obtained water quality data to the world’s rivers. Among various introduced
models, Python is extensively employed in the fields relating to environmental concerns.
The open-source nature, accessibility of the online databases, and feasible readability of
this modeling program potentiate advanced mathematical performance, the development
of machine-learning-based models, and the prediction of environmental data. For example,
Kumar et al. simulated air pollution using Python in Indian cities, showing a high accuracy
for the Gaussian Naïve Bayes model [28].

Based on the above considerations, we concentrated on treating various pollutants
emitted by the cement industries, using the machine learning model obtained via Python.
Figure 1c shows the number of published studies on the pollution-treatment in cement
complexes using various methods. In addition, employing Python-based models for
improving the product quality and reducing pollution in cement industries is displayed in
Figure 1c. According to the number of publications, the attention gained by the pollution-
treatment from these plants has increased from year to year. In addition, the Python-
related models have been progressively applied to overcome this challenge in recent years,
confirming the importance of this critical issue.

According to the critical concerns stated, we overviewed the pollution resources and
their impactful treatments in the following section of this paper. Then, the defined models
and simulations toward the controlling and treatment of the pollution from the cement
plants focusing on Python are described and evaluated. Finally, limitations, challenges, and
future remarks in this field are highlighted.

2. Overview of Pollution Emission from Cement Industries

In general, four steps are followed to manufacture cement in industries, including the
extraction of the raw materials, processing of the provided substances calcining, and then
clinker grinding. The essential raw materials for cement production are obtained through
mining. Limestone (CaCO3), alumina (Al2O3), silica (SiO2), and iron (Fe) are accounted as
the starting materials in such industries [28,29]. Of note, the mining stage is followed by
quarrying procedures (e.g., blasting, drilling, handling, excavating, and so on) to obtain fine
materials. Afterward, the prepared raw materials are mixed and ground to achieve cement
with the correct chemical configuration and appropriate mechanical characteristics. In this
phase, dry, wet, and semidry processes are employed. In summary, impact, drum, and
paddle-equipped rapid dryers are applied to dry the raw materials before grinding. Then,
water is introduced into the materials during grinding as the wet procedure, and finally,
the pellet of the materials is formed by adding water into a pelletizing device. In the next
step, cement clinkers are produced via a chemical reaction between the raw materials using
a heating procedure, including pre-heating, calcining, and burning [30,31]. The thermal
step causes the formation of spherical nodules of clinkers with diameters in the range of
0.3 to 5.0 cm. In the end, a cooling process is employed to approach high-quality materials,
commonly using airflow. Notably, a final grinding process as a finish milling is applied
before usage to downsize and sort the obtained particles [31,32].

During all production phases, pollutant materials are emitted to various media result-
ing in human health problems. These adverse effects could be transmitted to humans by
direct (air inhalation) and indirect ways (distribution in soil, water, etc.). According to the
literature, respiratory, gastrointestinal, lymphatic, and central nervous system impairments
are the most reported health issues caused by the aforementioned pollutants [16,31,33,34].
Figure 2 describes the drawbacks of cement complexes dealing with environmental prob-
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lems. To overcome the downsides, the inherent physical–chemical features of the various
pollutants, their degradability properties, and many more characteristics should be accu-
rately evaluated. The pollutant materials emitted from the cement industries are classified
into five categories: solid waste, wastewater, air emission, noise pollution, and waste fuels,
which are summarized in the following.
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2.1. Solid Waste

In various cement manufacturing, fly ash, rock spoil, and dust are generated as
solid wastes. Cement bypass dust is the main solid waste in cement industries collected
from the surface of the dust filter membranes. These materials contain pollutant particles
with alkaline behavior (pH~11–12) and a diameter of 1 to 10 µm, known as particulate
matter (PM). The size and chemical composition of the PM is driven by the weather and
emission source. The formation of finer particles makes the pollutant treatment more
challenging. Therefore, the PM pollutant is mainly divided into two classes of PM10 and
PM2.5, respectively attributed to the particles with a diameter below 10 and 2.5 µm. Because
of the high volume of this pollutant, it results in most health and environmental issues.
In addition, these particles can penetrate deeper into the lungs and harm human health.
According to the analysis, Al2O3, Fe2O3, and MgO heavy metals comprise a significant
ratio of the solid waste content [35,36]. These compounds are able to harm biotic and
abiotic elements in the environment. Therefore, treating the mentioned waste components
is essential to prevent their subsequent emissions into the air, water, and soil. Based
on the projections, solid waste would increase up to 2.2 billion tons per year by 2025.
Correspondingly, 40% of the PM emission is linked to cement manufacturing [37,38].

2.2. Wastewater

Water is applied in different sequences of cement production, such as cooling systems
and washing processes. Most of the water amount used is in a non-contact form, such
as processes of kiln bearing, grinding devices, thermal pipes, compressors, and finishing
steps. At the same time, water is employed to feasibly grind the materials in a contact form.
Additionally, the raw materials are required to be washed before processing. During the
material washing, limestone and iron particles, as well as suspended solids, are entered
into the water, leading to water pollution. As an eco-friendly solution, the applied washing
water should be neutralized, followed by waste particle sedimentation to remove toxic



Processes 2022, 10, 2682 5 of 19

materials and reuse them in the production cycle [39–42]. The quality of wastewater in
cement industries is determined using four main indexes, including chemical oxygen
demand (COD), biochemical oxygen demand (BOD), total suspended solids (TSS), and
pH. Based on the standards, the BOD/COD ratio should be below 1 with a COD value
of 250 mg/L. Therefore, reducing this ratio can help to approach a more environmentally
friendly production cycle. In addition, the proper pH of the wastewater could be in the
range of 6.5 to 9, and the standard TSS should be below 100 mg/L [43,44]. Compared with
other pollutant materials released from cement plants, water waste has received the lowest
attention due to its low consumption and environmental hazards during the production
procedure. Therefore, it is not focused much in this paper due to the non-sufficient literature
in this area [45].

2.3. Air Pollutant Emission

Air pollution is accounted for one of the biggest downsides of cement factories world-
wide. The emission of dust, hydrogen chloride, nitrogen oxides, sulfur dioxides, greenhouse
gases, ammonia, etc. during cement production into the environment causes air pollution.
According to the statistics, cement plants produce 500,000 tons of SO2, NOx, and CO pol-
lutants into the atmosphere per year. As an example, dust originates from packing and
storage steps, transportation machines, and milling equipment. Additionally, nitrogen
oxides are generated from fuel combustion in cement kilns. Moreover, the presence of
sulfur in raw materials as well as the combustion of sulfur compounds in fossil fuels leads
to the release of SO2 into the atmosphere. The greenhouse gas is also entered into the air
through heating the calcium carbonate, limestone preparation, and burning fuels [46,47].
Cement industries are known as the second highest industrial source of CO2 release. The
presence of these pollutants in the air causes acid rain, global warming, health problems,
crop yield reduction, and decreased biodiversity. Therefore, the WHO has emphasized
crabbing the emission of pollutant substances via employing efficient air treatments [48–50].
Based on the data obtained from the Chinese laboratories, 30% of PM contaminations,
10% of nitrogen oxides, and 4% of SO2 in the atmosphere are resulted from cement plants.
Various indexes have been reported to date for indicating air pollution around the cement
industrial areas. The air quality index (AQI) is the most well-known parameter obtained
through periodic measurements (daily, weekly, monthly, or annually) of PM, oxides, and
greenhouse gases. Noteworthy, the proper AQI is highly dependent on the cement factories’
area and differs from place to place. For example, the nitrogen and sulfur oxides’ limit
in China is assumed to be 400 and 200 mg/Nm3, respectively, whereas the permissible
exposure limit (PEL) of these pollutants in the European Union is considered 200–450 and
50–400 mg/Nm3 [50,51].

2.4. Noise Pollution

One of the most harmful parameters in all cement plants is noise pollution. Various
resources have been declared as a noise-generating factors in such areas, including gas
dynamic, mechanical, and electromagnetic noises, by forming noises in the range of 68.8 to
103.3 dBA. Meanwhile, the Vietnamese Standard determined for the PEL for eight working
hours is 85 dBA. Gas dynamic noises are produced by compressors, collectors, and blower
equipment. Mechanical noises refer to the pollutants caused by milling and crusher devices.
In addition, electric motors are the fundamental cause of electromagnetic noises. Cement
industrial workers are in danger of hearing loss due to noise pollution. In addition, long-
term working in these environments results in neurasthenia syndrome, which can lead
to high blood pressure, memory loss, and insomnia. Therefore, noise-induced hearing
loss has been introduced to evaluate the health issues of the laborers annually via using
audiometric examinations [30,52,53].
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2.5. Emissions from Fuel Consumption

The main part of fossil fuel consumption during cement manufacturing corresponds
to the need for energy and thermal treatments. In fact, thermal treatment in the calcination
procedure and the kiln forming in the clinker require fuel consumption. The average fuel
consumption in wet and dry kilns has been reported around 6 and 4.5 GJ/t, respectively. [54].
Coal, fuel oil, pet coke, and gas are the primary fossil fuels employed in the processes
mentioned above, costing about 50% of the total expenses in cement plants. Pyro-processing
is linked with 92.7% of the consumed energy while the remaining is attributed to the raw
grinding (1.9%) and finishing (5.4%) phases. It is declared that the equivalent of 400 pounds
of coal is essential for producing a ton of cement. Meanwhile, applying fossil fuels has been
assumed as a critical resource for environmental pollution via emitting greenhouse gasses
and heavy metals (e.g., mercury, lead, and cadmium) into the atmosphere. Hence, global
warming issues and ecologically sustainable development suggest recycling the applied
fossil fuels or substituting them with alternative ones [16,32,55,56].

Overall, the cement plants cause various pollution around the factories, as stated in
this section. Nevertheless, the data has shown that the major rate of pollution is caused by
dust and gas resources, which are summarized in Table 1 [52–56].

Table 1. Main pollutants from the cement plants and their major resources.

Emission Type Specific Pollutant Resource of the
Pollution Material

Air Emission

SO2

Raw mill and kiln stack exitNOx

CO

Water Pollution

Iron particles
Material washing, thermal

pipes, and finishingSuspended solids

Oxygen demand

Solid Waste

TSP Clinker cooler, cement mill
stacks exit, and outlets of dust

control devices
PM2.5

PM10

Noise

Gas dynamic Compressors and blower
devices,

Mechanic Milling and crusher
equipment

Electromagnetic Electric motors

Fuel Waste Greenhouse gases Energy supplying sections

3. Pollution Prevention Methods in the Cement Plant

According to the data announced by the companies, cement plants have been deter-
mined as one of the most polluting factories. Various strategies have been proposed so
far to sustain the environment and decline waste materials: using green raw materials,
impressive pollution treatment techniques, co-processing methods, and novel models for
integrating the communal applied separation devices. In the following, the most dominant
practical approaches for treating the resultant pollution from the cement industrial areas
are presented.

Filtration membranes are key building blocks in cement factories for hindering the
pollutants from air and water. The efficiency of the air pollution treatment emitted from the
cement plants is impacted by both inherent contaminant features as well as the filtration
media type. The size, density, and temperature of the particulate materials are significant
characteristics of the pollutants [57,58].



Processes 2022, 10, 2682 7 of 19

Regarding the air filtration media, several solutions have been introduced in the
studies. The first category is linked with the regular membranes consisting of a simple
fabric layer that filters the air and gases. The second class of filtration media corresponds to
the electrostatic precipitator (ESP). In this system, a negative or positive charge is applied
to the dust particles by a corona discharge, forcing them to precipitate on the oppositely
charged electrode as a result of the provided potential difference. Then, the collected
particles are removed via washing or dry-eliminating techniques. The efficiency of this
filtration media is determined through the ability to collect the particles on the electrode
and then the potential of eradicating them, which is influenced directly by the electrode
geometry, gas direction, and particles’ resistivity. A prominent challenge linked with
these filtering systems is the agglomeration of the pollution on the electrode surfaces
and so the weakening of the electric field [59–63]. With the effective parameters and
limitations in mind, Ando et al. [64] applied moving electrodes in ESP systems to enhance
filtration efficiency and remove highly-resistive particles such as coal and sintering ashes.
In addition, Kherbouche et al. [65] employed a novel ESP with an asymmetrical wire-
to-cylinder configuration to boost the collection efficiency up to 95% with low power of
consumption (0.2 W).

Bag filters are the best solution for hindering PMs, categorized as the third filtration
group. During this procedure, the dust-laden air is entered into the bag filter, the fibrous
network on the surface of the filtration device traps the pollutant particles, and then
the clean air exits using a vigorous fan. Then, the filtration surfaces are cleaned using
mechanical shakers, reverse air, or pulse jet [66,67]. For enhancement of the bag filter
performance, Abhishek and Ramachandran [68] designed a novel pleated bag filter with
the potential of trapping the particles to 30 mg/Nm3. Meanwhile, the commonly used
filters can restrict the solid pollutants between 50 to 150 mg/Nm3. Furthermore, they
reduced the size of bag house filters compared with the regular woven or non-woven ones.

Wet scrubbers are another procedure applied in cement plants to diminish the pol-
lutants. In this case, the scrubbing liquid eliminates the pollutant particles by caging
them in the droplets. This method mainly removes mercury elements from the dust-laden
airflow [69,70]. As a water-treating procedure, settling, containment, and clarifying ponds
are applied to suspend solid particles and modify the water pH [71].

Coal, coke, natural gas, and oil are the foremost communal fuel used in cement plants.
However, in recent years, numerous attempts have been devoted to replacing conventional
fuels with alternative fuels provided from biomass and biowastes, waste oils, refuse-
derived fuels, used tires, industrial residues, and byproducts, such as the combination
of non-recycled polymers and papers, wastewater sludge, etc. It is worth noting that
several characteristics of the alternative fuels should be considered before the burning step,
such as the fuel’s state and morphology, toxicity, compatibility with the system, material
ingredients, and chemical and physical characteristics [72,73].

There has also been some attention to cement industrial zones contributing to water
treatment. As a solution, the water used in the cooling systems is then recycled by installing
cooling towers and reusing it in preparation for raw materials and dust leaching [74].

Since the pollution emission from cement factories is a worldwide concern, researchers
and manufacturers have declared a broad range of other solutions. For example, for NH3
and urea, reducing agents are suggested to be employed in selective catalytic and non-
catalytic reduction for reducing the amount of NOx in the emission output [75]. Based
on the research carried out by Rahman et al. [76], the control of the oxygen content in the
raw materials as well as the employed fuels has been identified as an influential parameter
toward decrement of the SO2 release. Moreover, several functional materials, such as
activated carbon, could absorb the SO2 content in the output air. They also reported that
the CO and CO2 concentrations could be suppressed by reducing the organic materials in
the raw substances and the carbon ratio in the used fuel.

Regarding the noise pollution in cement factories, it is highly proposed to use man-
agement and technical control subsystems. Four aspects are introduced as a management
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monitoring system, including decrement in shift hours, updating machinery and equip-
ment, regular maintenance and adjustment of the devices, and using a reasonable and
proper layout for the machinery installation. Additionally, the technical control system is
attributed to vibration attenuation, noise absorption and isolation, and employing sound-
proofing systems. In developed countries, hearing conservation programs consisting of
identifying and controlling noise resources, labor training, and applying hearing protection
devices are utilized to decline the difficulties of noise pollution in cement plants [52,77].

Although the mentioned techniques could potentially prevent the emission of var-
ious pollutants, current studies suggest applying modeling solutions to obtain a more
eco-friendly procedure in the production cycles of different sectors through providing
simultaneous monitoring and controlling systems. In the following section, the most useful
prediction and control modeling techniques with a focus on Python is summarized.

4. Modeling Techniques for the Prediction and Control of Pollution Focusing
on Python

To date, a wide range of statistical, mathematical, and computing models has been
declared for various industrial areas, specifically cement plants. The main goal of such
analysis is to boost product quality and suppress environmental pollution. The defined
models generally assist in increasing the performance of the filtering media, decreasing the
PM contents in the output, representing the distribution of pollutants in the environment,
and so on.

As an example, the finite element method is a numerical solution for solving complex
problems using one or more differentiated equation(s). In a case study, Kherbouche
et al. [65] used the finite element method (using the COMSOL Multiphysics software) to
model and analyze the particle’s trajectory inside a novel ESP containing an asymmetrical
wire-to-cylinder configuration. This model assumed all effective parameters, including the
electric field, particle flow, particle charges, and charge density. The collection efficiency of
the particles in size range from 1 to 1.075 µm was estimated through the defined model
and the experimental analysis. The obtained data from the suggested model was in line
with the experimental results. In addition, the simulation showed that the particles could
even be collected in the cylinder’s less intense electric field zone.

The relationship between an independent and a dependent variable could be evaluated
using a single regression model. A multivariate linear regression model is another common
method applied for estimating a single regression model containing two or more outcome
variables. Purnomo et al. [67] applied a multivariate linear regression model to compare the
efficiency and performance of the ESP and bag filter to treat dust. The results represented
that the bag filter system can reduce the dust to 6 mg/m3, while the ESP media displayed a
dust emission of about 35 mg/m3.

Fuzzy logic helps to solve a problem with multiple possible truth values. In this
method, the variables’ truth values could be any number between 0 and 1. Regarding this,
Zermane and coworkers [78] used the fuzzy logic algorithm with the aim of continuous
emission monitoring. Using this intelligent monitoring system, they could control the
cooling system, compressed air, air pressure, and temperature with superior efficiency.

The Gaussian model is a probabilistic model commonly applied toward modeling
pollutant dispersion, following normal statistical distribution. In 2019, Adeniran et al. [79]
utilized air quality modeling tools and an air quality index to investigate the impact of
cement plant activities on the dispersion of pollutant materials released into the atmosphere.
The emission dispersion of air pollution parameters was investigated by AERMOD (Amer-
ican Meteorological Society/U.S. Environmental Protection Agency Regulatory Model)
view. AERMOD, as a Gaussian-type dispersion model, has been applied in many case
studies to predict air pollution dispersion. Based on the results, average daily concentra-
tions of PM10 were in the range of 14.32 to 31.54% of the statutory limit in all the locations,
whereas SO2 and NOX concentration values exceeded their borders in some locations. As a
result, several point sources of atmospheric emissions were identified using the proposed
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model. Correspondingly, the comprehensive investigation and periodic evaluation of air
pollution control facilities are suggested for future studies. Yazdi et al. [80] also used the
steady-state dispersion AERMOD model to investigate the concentration level of PM10.
Based on the results, the data obtained through the model was in agreement with the
experiment data. As predicted, the filler agglomeration was the most at 200 m from the
factory zone. Furthermore, it was concluded that the emitted particles could be harmful to
human wellbeing in locations less than 1000 m from the cement plants.

Overall, the modeling evaluations have been more desirable than experimental analy-
sis in recent years due to the potential for the simulation, prediction, and monitoring of the
various procedures. Python is one of the most motivating candidates in this era because of
lower syntactical constructions, smart libraries in the environmental fields, etc.

Python is an open-source, free, dynamic, and high-level programming language
that is widely used in different areas for various purposes, including software and web
development, mathematics, unit testing, system scripting, documentation generation,
threading, cryptography, XML, HTML, GUI, etc. [81]. These aims are achieved using
Python on a server, connecting it to the database systems, and handling big data. This
language was first created in 1991 by Guido van Rossum and has been developed daily
by software developers under the support of the Python Software Foundation. It has
specific features and code readability, making it popular in a few years and one of the
first choices for coders to reach their goals in every field [82,83]. Among its versatile
features, code readability, accessible writing, unique and simple syntax, existing inbuilt
functions, expressing logical concepts shortly leading to fast coding, the codes with fewer
lines compared to other languages like C++ and Java, and efficient system integration are
highlighted. Moreover, Python is able to work on every platform, like Windows, Linux,
and Mac. It also provides quick prototyping because it can run on an interpreter system.
Accordingly, there is no need for a separate compilation and execution, and the program
runs as soon as the codes are written [83,84].

A wide range of interpreters containing CPython, Pycharm, IronPython, PyPy, etc.
can be employed for Python. An interpreter is a virtual machine that translates the codes
written by the user into a language that the computer can understand. Python can also
be integrated with C/C++ to provide scripting capabilities. Furthermore, several pro-
gramming paradigms consisting of procedural, object-oriented, and practical ways can be
supported by Python. Installing and learning Python is very feasible. There are two main
versions of Python: version 2 and version 3, which are relatively different. Version 2 is not
updated anymore except for the security but has more complete libraries than version 3.
The standard library of Python is very extensive and provides lots of facilities such as Built-
in Functions, Built-in Constants, Text Processing Services, and Numeric and Mathematical
Modules, allowing the programmers to reach their goals easily. Along with the standard
library, there are other diverse libraries to ease programming. Each library contains many
precompiled codes applied based on the program’s application when needed. Using the
defined libraries prevents writing repeated codes and enables faster coding. Some of
the more popular and applicable libraries are named: Numpy, which is responsible for
large matrices and multi-dimensional data by suggesting in-built mathematical functions;
TensorFlow, which Google developed by for high-level calculation; machine learning and
deep learning algorithms; Matplotlib, which is suitable for plotting numerical data and
figures and is favorable for data analysis; Pandas, which is a good tool for data scientists by
providing several operations like Re-indexing, iterating, concatenation, and the conversion
of data; PyGame, which is employed for creating video games and audio libraries; and
PyTorch as the largest machine learning library which optimizes tensor computations.
Due to the characteristics and philosophy mentioned above, organizations like Google,
Yahoo (Maps), YouTube, Mozilla, Dropbox, Microsoft, Cisco, Spotify, and Quora use this
programming language. Python has also found a practical and valuable level in various
industries [85–88]. Additionally, various models can be applied in Python, including the
support vector machine, linear regression, random forest, and so on. Table 2 describes
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and compares the common models employed in Python. The Python model approaches,
aiming at treating pollution in different sectors and the cement plants, are summarized in
the following sub-sections.

Table 2. The common models used in Python modelling.

Model Description Accuracy Interpretation

Artificial intelligence

It developes problem solving
ability, allows continuous

learning, promotes creativity,
and encourages social

intelligence.

0.95 [0.85, 0.99] 0.88 [0.63, 0.99]

Support Vector Machine

This model can evaluate data for
classification and data analysis
via classification algorithms for

two-category problems.

0.92 [0.77, 0.99] 0.85 [0.53, 0.99]

Linear regression
It describes the relationship

between an independent
variable and a dependent one.

0.85 [0.69, 0.96] 0.72 [0.51, 0.94]

Random forest regressor

Its potential is to integrate the
accuracy and control overfitting
through fitting and averaging a

number of decision trees.

0.88 [0.69, 0.99] 0.73 [0.33, 0.99]

K-Nearest Neighbors
Regression

This method approximates the
relationship between

independent variables via
averaging in the same

neibourhoods.

0.78 [0.51, 0.94] 0.69 [0.38, 0.91]

Gradient Boosted
Regression

It is derived from the idea of
decision tree model and can
predict both continuous and
categorical target variables.

0.85 [0.75, 0.96] 0.45 [0.11, 0.88]

4.1. Python Models for Pollution Treatment in Various Sectors

The environmental industry is an example where ecological data analysis using the
software resources such as Python to reach scalable information has attracted attention in
recent years. In this field, Anaconda is exploited by researchers as an excellent platform
to distribute Python and R programming languages [89]. This platform supports differ-
ent interpreters. It has 150 pre-installed packages, and over 8000 open-source packages
can be available through the Anaconda repository. Scikit-learn is a desirable library for
environmental data analysis applications. According to the literature, this library has been
considered and utilized in most of cases, resulting from its various efficient tools, including
classification, regression, clustering, and reduction of dimensionality. As an example,
Kadiyala and Kumar [89] used this library to demonstrate the necessary steps, including
importing data, performing investigative data analysis, selecting features (dimensionality
reduction), generating regression models, and creating machine learning models. This
study can be helpful for other researchers to carry out Python for their own data analysis.
According to the literature, the Python model could be beneficial in treating the pollutions
related to air, water, and noise, which are explained respectively.

Ma et al. [90] presented a novel Python-based software to model air pollution by
employing Land use regression (LUR) models. GDAL/OGR, Statsmodels, and Scikit-learn
Python libraries were employed in this software. Additionally, it was illustrated that the
proposed software increased processing speed by inheriting the benefits and features of
Python, especially when the concentrations of forecasting air pollutants were mapped at
a high spatial resolution. The Python Tkinter module was exploited to provide a GUI
for uploading the input data. GDAL, the abbreviation of Geospatial Data Abstraction
Library, is an open-source library developed to perform on raster data, such as the Digital
Elevation Model. The statsmodels module is also designed to build statistical models,
execute statistical tests, and investigate statistical data by providing classes and functions.
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This library, along with Scikit-learn, was employed for making and testing the regression
equations [90]. Air pollution analysis was performed by Lella et al. using Python [91]. In
this effort, a large-scale data set of the concentration of the pollutants was applied in the first
stage. Then, the AQI prediction was performed employing Python by machine learning
algorithms. Notably, supervised learning and regression techniques, including Linear
regression and Random Forest regressor, were utilized for the prediction. Moreover, the
Jupyter Notebook platform, the most used coding environment for Python based pollution
prediction, was used as the editor [91].

In another case, the deep learning method was applied to predict CO2 emissions
as an air pollutant in India in the study carried out by Amarpuri and coworkers [92].
The proposed method combined the Convolution Neural Network and Long Short-Term
Memory Network (CNN-LSTM). Python was also used for creating the model and sev-
eral libraries, such as Tensorflow, Keras, Numpy, and Pandas. In the model, ReLU and
Adam were considered the activation function and optimizer, respectively [92]. The effects
of buildings’ material on climate change and air pollution is the main approach of the
investigation represented by Resch and colleagues [93]. In the mentioned study, Python
was applied to obtain the changes’ effects on global study parameters. To reach this, the
SALib library was used, which is responsible for sensitivity analysis and contains various
sensitivity methods, including Sobol, Morris, Fourier Amplitude Sensitivity Test, Random
Balance Designs-Fourier Amplitude Sensitivity Test, Delta Moment-Independent Measure,
Derivative-based Global Sensitivity Measure, Fractional Factorial Sensitivity Analysis, and
High Dimensional Model Representation. Accordingly, building lifetime, time horizon,
and the factors linked with the construction waste were the most sensitive.

The internet of things (IoT) for smart monitoring of the environment is a progressive
field in which Python plays an important role. This intelligent control and monitoring
covers pollution, air, water, and agricultural systems. To this end, the data collected by
several wireless sensors using the Wireless Sensor Network (WSN) should be evaluated.
Python is a valuable tool for the IoT backend development due to its readable syntax,
easy learning, ability to use on Linux systems, and compatibility of MicroPython with
microcontrollers. The various libraries of Python are proper for this purpose. Open CV
for image and video processing and Tensorflow and Keras for artificial neural networks
are among these libraries [94]. In the evaluation study performed by Pătrăs, coiu et al. [95],
air quality was monitored using the related sensors. The IoT architecture contained a
LoPy 4, which is a board to connect the objects and works based on Python. The commands
were written in Python and used for further execution. Using LoRa radio communication
technique, they could serve both acquisition (temperature, humidity, energy consumption,
etc.) and actuation (engines, pumps, tanks, etc.) systems, enabling the remote monitoring
of various sections.

As another application of Python in the environmental industry, Khoi et al. [96] utilized
the machine learning models based on the Scikit-learn library for the water quality index
prediction in the Vietnam zone, declaring the highest efficiency of 98% for the XGBoost
boosting algorithm. Cascone et al. [97] developed a Python toolbox called AbspectroscoPY
for water quality monitoring purposes. This toolbox was used for analyzing the time-series
datasets gathered by situ spectrophotometers. AbspectroscoPY provides functions for
importing, preprocessing, exploring, and analyzing the sensor data. Some Python built-in
functions, including rolling for noise reduction and kdeplot for Visualizing data distribution,
are employed directly in this toolbox [97]. Shah et al. [98] utilized and compared three
Python models, including a decision tree, SVM, and random forest, to detect the accuracy
of the noise pollution level. Accordingly, the Python model based on SVM should have the
highest accuracy of 98%.

4.2. Application of Python Models in Cement Industries

Another industry in which Python can improve data analysis is cement complexes. In
most cases, the product quality based on the used component is analyzed, or the properties
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of the manufactured cement are predicted. For both approaches, Python is employed for
the assessment. In this regard, Yao et al. [99] investigated the quality of cement mixing
pile production by proposing an IoT-based model and implementing it in PHP and Python.
According to the results, cement mixing piles in real-time can be monitored using IoT, which
can be effective for yield advantages [99]. Using the finite element numerical simulation
method, Wang et al. [100] evaluated the Nonlinear Mechanical behavior of cement-based
solidified sand mixture (CBSSM) affected by interphase. To this end, as the first step, the
composite was geometrically modeled in Python by manipulating the Monte Carlo method.
The results revealed that the macro mechanical properties of CBSSM can be improved
by increasing interphase strength and stiffness [100]. To predict cement strength, Kumar
et al. [101] introduced a machine learning-based method. In this technique, the cloud-based
prediction model was made by defining a Levenbarg-Marquardt back-propagation-artificial
neural network. The Tensor flow, Scikit-learn, and Pandas libraries of Python were applied
to implement the neural network. Additionally, the Tensor flow was employed to form the
neural network because of its simultaneous training and responsive construction. From
the Scikit-learn package, cross-validation, feature extraction, and unsupervised learning
algorithms were selected for the goal of this study. Pandas was considered for the data
analysis, and dropout was used to remove the outliers in order to prevent overfitting. Based
on the results, the proposed algorithm could predict the cement strength with an accuracy
of about 99% [101].

Danila and Tamas [102] suggested an image processing method for estimating the
parametric model of a rotary kiln to seek its thermal field for cement manufacturing. The
codes to reach this goal were written in Python. It was represented that this method could
give an acceptable polynomial model for the distribution of thermal power losses over the
kiln’s surface. Using machine learning and image processing techniques, the durability of
lightweight cement composites with hydrophobic coatings modified by nanocellulose was
analyzed by Barnat-Hunek et al. [103]. A scanning microscope was used to capture the
images and detect textural features. The Support Vector Machine method was employed
for the classification of the images. The Scikit-learn library of Python was utilized for the
data preprocessing. The proposed model, with an accuracy of 82%, could help measure
the amount of hydrophobization of building materials. In another study, Nayak et al. [104]
assessed the fracture of metallic particulate-articulate-reinforced cementitious composites
using experiments and numerical simulation. A cohesive zone model-based debonding was
selected for this simulation. To predict the fracture response, the unit cells were generated
where Python was engaged to implement the microstructural information, which was then
imported to a finite element software. The meshing of the unit cells was also performed
using Python, and periodic boundary conditions were used. Based on the obtained results,
a desirable match between the experiment and computer simulation was gained.

Plattenberger et al. [105] proposed a method to display the possibility of using Calcium
Silicate Carbonation to reach high-performance and low-carbon types of cement. The role
of Python in this work was to visualize the map data of each manufactured sample. Viridis
library was selected as the most appropriate library for this respect. This package provides
the color maps with the following characteristics: colorful as possible to represent the most
visible output to the user; perceptually uniform so that the color differences increases as the
values get far away from each other; and robust to colorblindness meaning the two previous
features hold true by transforming to the grey-scale for the people with colorblindness,
and pretty. In addition, Python-based models have recently been applied to estimate and
predict the pollutants from the cement plants. For example, Kurnaz et al. [106] suggested a
Long-short term memory method using Python software to predict SO2 and PM10 emitted
into the air from the cement plants in Sakarya industrial city. Compared to the actual data,
correlation values of 0.67–0.88 were obtained based on the statistical analysis performed
in this study. Exceeding the PM10 from the legal rate was observed three times during
peak production days. Table 3 summarizes various proposed models for the control and
monitoring of the emissions from the cement plants.



Processes 2022, 10, 2682 13 of 19

Table 3. Monitoring of industrial pollution using various modeling techniques.

Purpose of the Study Zone Model and Software References

Predicting PM10 Sakarya city, Turkey

Multi-linear regression and
multilayer perception neural

network models and
MATLAB software

2018
[107]

Modeling of PM2.5 Tehran, Iran Random forest model and Python
software (XGBoost library)

2019
[108]

Estimation of CO, SO2,
NOx, and PM10

Bojnourd Cement plants,
Iran

AUSTAL 2000 model and Arc
GIS software

2019
[109]

Water pollution Langat River, Malaysia Support vector regression model 2019
[110]

Forecasting PM10 Mexicocity, USA
Multilayer perception model

enhanced with Bagging ensemble
model

2020
[111]

Assessing the emitted NO2 Auckland, Newzealand Land use regression model and
Python software

2020
[90]

Fuel consumption Cement plant, Greece Machine learning-based model 2021
[112]

Water pollution Guangxi, China Support vector regression model
and MATLAB software

2021
[113]

CO2 emission Cement plant, India Artificial neural
network-based models

2021
[114]

Assessing the health
effects of PM2.5, PM10,

NOx, and O3

Cement plant, Pakistan Air Q+ software 2022
[115]

Prediction of SO2
and PM10

Sakarya city, Turkey Python software 2022
[106]

Estimation of PM2.5
and PM10

Talca, Chile Support vector regression model
and Python software

2022
[116]

Evaluating the relationship
between the air pollutants

and the meteorological
variables

Ningxia, China Decision tree regression model 2022
[117]

Fuel consumption Cement plant, Iran Support vector regression, random
forest, and XGBoost models

2022
[118]

Fuel consumption Cement plant, Spain Neural network and genetic
algorithm models

2022
[119]

Assessing the emitted CO2,
SO2, and NO Cement plant Machine learning-based model and

MATLAB software
2022
[120]

With a closer look at what is mentioned in this section, it can be concluded that a new
approach has not been addressed as it should and, perhaps, is predicting the pollution
level in the cement industry using machine learning and Python. Based on the literature,
most of the performed studies toward monitoring the air pollution in various sectors
have employed the Scikit-learn library and support vector machine possibly due to its
desirable accuracy and interpretation. In addition, applying hybrid libraries as well as
combined models has been declared as versatile methods to approach highly efficient
outcomes. As the cement industry is the third-largest industrial pollution source because of
the emission of sulfur dioxide, nitrogen oxide, and carbon monoxide pollutants, this line of
research requires special attention. Therefore, it is highly suggested to emission monitoring
units around the world to employ a remote controlling platform, in which the pollution
evaluation occurs in 3 steps, including (a) collecting the pollutant data from the sensors,
(b) simulating the pollution distribution around the factory by Python, and (c) observing
the emissions from the factory online and making a thorough decision.
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5. Conclusions and Future Remarks

Environmental pollution has continued to gain a great deal of interest worldwide, re-
sulting from its direct and indirect adverse impacts on human health, whereas the growing
rate of non-eco-friendly activities has caused the unceasing release of contaminations in
industrialized and modernized societies. Cement is accounted as a key substance to satisfy
construction and civil engineering, as well as dental and medical applications. Meanwhile,
the whole cement production procedure emits various contaminants into the environment.
Therefore, effective monitoring and treatment are mandatory to treat the resultant wa-
ter, solid, and fuel wastes along with air and noise pollution. Numerous strategies have
been proposed to deal with these challenges, classifying them into practical and modeling
techniques. Based on novel explorations, a wide range of statistical and computational
modeling has been suggested in recent years to enhance production quality as well as
predict and control emission rates.

As high-performance modeling, Python has been broadly recommended in the literature.
This object-oriented programming could predict and monitor the released pollutants as a
result of smart and powerful libraries, readability, and powerful syntax. According to the
literature, the major Python-based modeling is linked to monitoring air pollution, harmful
gases, and different conditional parameters of the environment. Correspondingly, this paper
reviewed and summarized various contaminations from the cement plants as well as their
beneficial treatment. In addition, the role of Python as an impactful tool was highlighted and
investigated to cope with the challenges mentioned above in cement complexes.

Although efficient methods have been declared to overcome the drawbacks concerning
cement production, several downsides could be efficiently addressed via Python. First,
it calculates the required high temperature for calcinating and thermal treatment results
in fuel consumption as well as environmental pollution. The essential temperature could
be optimized by modifying the precursor materials using the Python models. Second,
the oxygen concentration in the raw materials and the applied fuels requires adjustment
with Python with the aim of reducing air pollution. Third, it is recommended to use
successful Python packages, such as seaborn or pyGAM, to monitor water quality and
reduce the water waste. Fourth, it is vital to apply the practical and efficient Python models
in other sectors, including Scikit-Learn, Keras, and native TensorFlow packages, in the
cement plants to predict the emissions into the air. Finally, the lack of unified standards
for the cement plant activities is sensed. Overall, future studies should concentrate on
data collection, pollutants characterization, and the analysis of the contaminant dispersion.
Afterward, the Python-based models should be developed using the accurately collected
data to provide precise prediction and monitoring programs.
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