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Abstract: The development of active packaging for food storage containers is possible through
impregnation of natural extracts by supercritical CO2-assisted impregnation processes. The chal-
lenge of scCO2-impregnation of natural extracts is to control the total loading and to ensure that
the composition of the loaded extract may preserve the properties of the crude extract. This study
aimed at investigating the scCO2-impregnation of clove extract (CE) in polycarbonate (PC) to develop
antibacterial packaging. A design of experiments was applied to evaluate the influences of tempera-
ture (35–60 ◦C) and pressure (10–30 MPa) on the clove loading (CL%) and on the composition of the
loaded extract. The CL% ranged from 6.8 to 18.5%, and the highest CL% was reached at 60 ◦C and
10 MPa. The composition of the impregnated extract was dependent on the impregnation conditions,
and it differed from the crude extract, being richer in eugenol (81.31–86.28% compared to 70.06 in
the crude extract). Differential scanning calorimetry showed a high plasticizing effect of CE on PC,
and high CL% led to the cracking of the PC surface. Due to the high loading of eugenol, which is
responsible for the antibacterial properties of the CE, the impregnated PC is promising for producing
antibacterial food containers.

Keywords: Eugenia caryophyllus; eugenol; multicompound systems; active packaging

1. Introduction

Natural extracts have appeared as potential antimicrobial and antioxidant agents
for use in food, cosmetic and pharmaceutical applications. They are especially attractive
because they are obtained from natural sources and are environmentally friendly [1–3]. For
instance, many natural extracts are already classified by the Food and Drug Administration
(FDA) as Generally Recognized as Safe (GRAS), including clove, oregano, peppermint,
thyme, basil, tea tree, and cinnamon essential oils [4], allowing their application for human
consumption in food. Recently, natural extracts have been loaded into polymeric matrices
to develop active food packaging [5–7], drug release systems [8,9], and repellent and
antioxidant fabrics [10,11]. By loading natural extracts into polymers, some shortcomings
related to their high volatility and hydrophobicity are overcome while their properties are
maintained [12,13].

Among the natural extracts, clove extract (CE) is known for its antibacterial, antifungal,
and insecticidal properties, similar to those of synthetic preservatives [14–18]. CE is mainly
obtained from flower buds, rich in eugenol, and contains eugenyl acetate, β-caryophyllene,
and α-humulene. CE, or its majoritarian component eugenol, has been impregnated
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in LLDPE films [19–21], polyamide fibers [22,23], pectin films [24], bacterial cellulose
membranes [25], and gelatin–chitosan films [26].

The most common techniques to load polymeric matrices with natural extracts are
casting [27–30], extrusion [31,32], and supercritical carbon dioxide (scCO2) impregna-
tion [33,34]. The advantage of using scCO2 impregnation compared to the more conven-
tional processes is that it does not require high temperatures or organic solvents, which
could promote extract degradation or require a solvent removal step, respectively. In this
technique, supercritical CO2 (above 31 ◦C and 7.4 MPa) solubilizes the natural extract
compounds, and then the solution of {CO2 + compounds} diffuses into the polymeric
matrix. After a determined contact time, the CO2 is easily removed by decreasing the
system’s pressure, whereas the extract remains impregnated into the matrix. The variables
of this process are pressure, temperature, depressurization rate, and time. Pressure and
temperature directly affect the solubility of the extract in scCO2 and the diffusivity of
the solution {CO2 + compounds} into the polymeric matrix. Depressurization rate and
temperature must be controlled to avoid compounds being dragged out with the CO2 and
the foaming of the matrix. Finally, the supercritical impregnation is also a kinetic process;
thus, the time impacts the final loading. Moreover, the interaction between the matrix and
the compounds will also affect the partition of the compounds between the polymer and
the CO2 phase [35–38].

Polycarbonates (PC) are a group of polymers with a carbonate group in their structure.
Overall, PCs are transparent, rigid, and have high impact strength, ductility, and impact
resistance, in addition to a high glass transition temperature (Tg above 140 ◦C) [39,40]. The
combination of these properties allows them to be applied as engineering thermoplastic
in many areas, including rigid food packaging, construction, and automotive [39,41–43].
PC has been impregnated with compounds using scCO2 in order to develop antimicrobial
systems [44], for dyeing [45,46], and to make composites [47,48]. Herein, we aimed to
impregnate CE in PC to produce food containers with antibacterial properties.

The bioactivity of a natural extract may be attributed to a specific compound or
group of compounds. In some cases, the activity of natural extracts is based on the
synergy between their several compounds [49–51]. Furthermore, their complex composition
allows natural extracts to act in multiple sites [52,53]. Therefore, the challenge of scCO2
impregnation of natural extracts is not limited to controlling the total loading. It is also
essential to ensure that the loaded extract’s composition may preserve the crude extract’s
bioactivity. This can be ensured by impregnating the compound or the group of compounds
responsible for the desired bioactivity. Thus, it is crucial to evaluate the influence of the
operational conditions on the composition of the impregnated extract, in addition to the
total loading. According to the literature, only a few studies focused on quantifying
the relative amounts of the impregnated compounds and explaining why these differ in
composition from the crude extract [8,11,54]. Since CE is composed of only four compounds,
it can be used as a model to understand the influences of operational conditions on the
extract composition.

Thus, the present study aimed to impregnate CE into PC using scCO2, to develop
food containers with antibacterial properties, and to rationalize the effects of temperature
(35–60 ◦C) and pressure (10–30 MPa) on the clove loading (CL%) and on the composition of
the loaded extract. For this, a face-centered design was applied to determine the optimized
pressure and temperature for CL%, and to evaluate the effects on the relative amounts of the
four compounds of CE (i.e., eugenol, eugenyl acetate, β-caryophyllene, and α-humulene).
The differences in proportions of the compounds in the crude extract and in the impregnated
one were explained by taking into account the Hansen-type solubility parameters and the
polymer–compounds interactions. The impact of the impregnation on the morphological
and thermal properties was also studied.
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2. Materials and Methods
2.1. Materials

Pellets of bisphenol-A polycarbonate (LEXAN HP1R grade for healthcare products)
were supplied by SABIC Innovative Plastics (São Paulo, Brazil). Carbon dioxide (purity
99.985%) was purchased from Oxilumen (São Paulo, Brazil). Silicone oil (Synth, 350 cps)
was used for thermostated baths. Ethyl acetate (purity 100%) was obtained from Synth
(São Paulo, Brazil) and used as received. Deuterated chloroform (CDCl3, 99.8%) containing
0.05% v/v tetramethylsilane (TMS) as the internal reference was purchased from Cambridge
Isotope Laboratories and used in the NMR analysis. Helium (99.9% purity) for gas chro-
matography analyses was purchased from White Martins (Campinas, Brazil). The analytic
standards of eugenol, eugenyl acetate, β-caryophyllene, and α-humulene were bought from
Sigma-Aldrich (Barueri, Brazil).

2.2. Supercritical CO2 Extraction

The clove (Eugenia caryophyllus) extract was obtained from grounded raw material
via supercritical fluid extraction (SFE) using carbon dioxide as the solvent. The extraction
equipment utilized in this study was a pilot-scale SFE (Thar Technologies, Pittsburgh, PA,
USA). The extraction was performed using a 5 L extractor. The solvent flow rate was
50 gCO2/min. The extraction process conditions were 15 MPa and 40 ◦C. The temperature
and pressure conditions were optimized according to Prado and Meireles [55] and Prado
et al. [56]. The structures of the four main compounds of clove extract obtained by SFE are
presented in Figure 1.
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Figure 1. Structures of the four main compounds of clove extract (obtained by scCO2): (a) eugenol,
(b) eugenyl acetate, (c) β-caryophyllene, and (d) α-humulene.

2.3. Characterization of PC Chemical Structure by 1H NMR

Approximately 50 mg of PC was dissolved in 0.6 mL of CDCl3, and the spectrum
was recorded in a Varian VNMRS 500 MHz at 27 ◦C, using 30,000 transients. 1H NMR
(CDCl3-d1) d (ppm): 1.68 (s, -C-(CH3)2, 6H), 7.17 (d, -CH-CH-C-O-, 4H), 7.25 (d, -CH-CH-
C-C(CH3)2-, 4H), corresponding to poly(bisphenol A carbonate) with high purity [57]. The
1H NMR spectrum is presented in Supplementary Materials. The chemical structure of
poly(bisphenol A carbonate) is represented in Figure 2.
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2.4. Preparation of PC Films

PC pellets were used as received. The polymeric films used in the impregnation
process were obtained by hot pressing on a hydraulic press with heating (model SL-11,
Solab). For this process, the pressure was increased from 0 ton to 6 ton in 10 min, and the
temperature was kept constant at 280 ◦C. Teflon sheets were used for contact between the
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press and the samples. The thickness of the films was 0.4 mm. The films were cut into
squares of approximately 1 cm2, corresponding to approximately 50 mg per sample.

2.5. scCO2 Impregnation Method

The scCO2 impregnations were carried out in a batch process, and the scheme of the
experimental set-up is presented in Figure 3. Approximately 1 mL of clove extract was
placed at the bottom of a 10 mL stainless steel high-pressure cell. The amount permitted
the saturation of the CO2 phase. A stirrer bar was also added to the cell to ensure the
homogeneity of the CO2 phase. Finally, for all batches, around 300 mg of polymer was
placed above the compound(s) in a single glass container to physically separate the films
from the natural extract. All these films were carefully placed so they did not touch each
other. The high-pressure cell was closed and immersed in a thermostated water bath. Then,
a high-pressure pump (pneumatic pump) introduced CO2. Once the desired pressure was
achieved, the magnetic stirring was turned on (100 rpm), and the temperature and pressure
were kept constant for the impregnation time, which was set to 3 h after preliminary tests.
After the impregnation time, the high-pressure cell was dipped in dry ice (−78 ◦C) to freeze
the scCO2 and avoid the extract’s removal during depressurization. Once system pressure
decreased to values between 0.7 and 1 MPa due to the temperature decrease and dry-ice
formation, the cell was opened to carry on the depressurization (2 s).
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2.6. Design of Experiment

The design of experiments methodology was used to evaluate the influences of pres-
sure (10–30 MPa) and temperature (35–60 ◦C) on scCO2 impregnation of CE in PC. There-
fore, for two factors (pressure and temperature), the experimental design consisted of
factorial assays (22 = 4 assays at levels of −l and +1), including four axial points (at levels
of −1 and +1) and three replicates at the central points (at level 0). Thus, a face-centered
design (FCD) was developed using 11 tests (Table 1). The maximum and minimum levels
of pressure and temperature were defined according to data published in the literature for
scCO2 impregnation to enhance loading and to avoid the extract thermodegradation [36,37].
The impregnation time (3 h) was defined after preliminary tests (Supplementary material).
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Table 1. Supercritical impregnation experiments and their clove extract loading (CL%) in PC.

Assay Pressure
(MPa) 1

Temperature
(◦C) 1

scCO2 Density
(kg/m3) CL (%)

1 10 (−1) 35 (−1) 712.8 15.8
2 30 (+1) 35 (−1) 929.1 9.5
3 10 (−1) 60 (+1) 289.9 18.5
4 30 (+1) 60 (+1) 829.7 9.4
5 10 (−1) 47.5 (0) 432.7 18.0
6 30 (+1) 47.5 (0) 880.4 6.8
7 20 (0) 35 (−1) 865.7 9.4
8 20 (0) 60 (+1) 723.7 13.9
9 20 (0) 47.5 (0) 798.6 11.2
10 20 (0) 47.5 (0) 798.6 9.8
11 20 (0) 47.5 (0) 798.6 10.2

1 Coded values in parentheses.

The experimental design allowed the study of a wide range of scCO2 densities (289.9
to 929.1 kg/m3). All assays were performed in triplicate and in random order. Data were
analyzed using the Protimiza Experimental Design software, with a significance level of 5%.
Initially, the effects of pressure and temperature were calculated, and the results were used
to determine the regression coefficients (β0, β1, β11, β2, β22, and β12) of the coded model
(Equation (1)).

CL% = β0 + β1x1 + β11x2
1 + β2x2 + β22x2

2 + β12 x1x2 (1)

Equation (1) is a quadratic polynomial equation that relates the total clove extract
loading (CL%) to the coded values (Table 1) of pressure (x1) and temperature (x2). Analysis
of variance (ANOVA) was used to verify the fitting quality of the model. Response surfaces
(three-dimensional (3D) plots) and their respective contour plots were obtained based
on the validated models and were later used to define the optimal conditions for scCO2
impregnation.

2.7. Clove Extract Loading

The clove extract loading (CL%) was defined as the mass of CE impregnated in the
polymeric matrix per mass of polymer and was measured gravimetrically using a balance
(precision 10−4 g, model AY-220, Marte, Shimadzu) and calculated using Equation (2).

CL% =
ma f ter impregnation − mbe f ore impregnation

mbe f ore impregnation
× 100 (2)

where ma f ter impregnation is the mass of the film after the impregnation and mbe f ore impregnation
is the mass of the film before the impregnation.

For each operational condition, the impregnation was performed by placing at least
three PC films in the high-pressure cell. The results presented are the average loadings of
all the samples. The samples were weighed 48 h after impregnation to ensure that the CO2
was removed from the polymer. The impregnated samples were stored at −20 ◦C until
further analysis.

In order to confirm that the measured mass corresponded to the compounds im-
pregnated in the polymer bulk, some samples were weighted, and their surfaces were
cleaned with tissue paper soaked with ethanol and weighted again. No mass variation was
observed, confirming that all the extract was impregnated in the polymer bulk and not
deposited on the polymer surface.
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2.8. Composition of the Impregnated Extract

The loading of each of the four majoritarian compounds of CE was obtained by
extracting the impregnated extract from the polymeric films and quantifying it using gas
chromatography (GC). For the extraction, one film was immersed in 5 mL of ethyl acetate
in a closed flask. This flask was sonicated in an ultrasound bath (Unique, model 750 A,
25 kHz) for 1 h every day for one week, at room temperature. Preliminary tests confirmed
that this procedure permitted the complete extraction of the impregnated extract. All
compounds are soluble in ethyl acetate.

The crude CE composition and the composition of the impregnated extract (i.e., recov-
ered from the impregnated films by extraction) were determined using a gas chromatograph
with a flame ionization detector. A chromatograph GC–FID (Shimadzu, CG17A, Kyoto,
Japan) equipped with a capillary column of fused silica DB-5 (J&W Scientific, 30 m ×
0.25 mm × 0.25 µm, Folsom, CA, USA) was used. For each sample, 1 µL of the ethyl
acetate/extract solution was injected into the chromatograph using a split ratio of 1:20.
Helium was used as carrier gas and flowed at 1.1 mL/min. The injector and the detector
temperatures were 220 and 240 ◦C, respectively. The column was heated from 60 ◦C to
246 ◦C at 3 ◦C/min. Eugenol (C10H12O–CAS 97-53-0), eugenyl acetate (C12H12O3–CAS
93-28-7), β-caryophyllene (C15H24–CAS 87-44-5), and α-humulene (C15H24–CAS 116-04-1)
were identified by comparing the retention indices with chemical standards (25.440, 28.266,
29.710, and 32.656 min, respectively). Their quantification was performed using external
standard calibration curves, so the mass mGC,X of each compound was determined. For
the quantification of compounds, calibration curves for all compounds were analyzed in
the range 0.04–1.0 mg/mL. The proportion of each compound present in the impregnated
extract (PX%) was calculated using Equation (3).

(Px%) =
mGC,X

mimpregnation
× 100 (3)

where X represents the compound, mGC,X is the mass of the impregnated compound
obtained by GC, and mimpregnation is the mass of the impregnated extract. The reported
value for the proportion of each compound is the average of two samples prepared in two
different impregnation batches. The central point of the DoE was performed in triplicate

The crude extract was analyzed right after its extraction from clove buds and again
when the impregnations were performed. No composition variation was observed over
time when storing the crude extract at 8 ◦C and in the dark.

2.9. Attenuated Total Reflectance Fourier-Transform Infrared Spectroscopy

The impregnation of the CE was evaluated by comparing the FTIR spectra of the neat
PC, the clove extract, and impregnated PC (sample impregnated with CL = 18.5% prepared
at 60 ◦C and 10 MPa). For Fourier-transform infrared spectroscopy (FTIR), a Spectrum
Two FTIR spectrometer from PerkinElmer was used in ATR mode (diamond crystal doped
with zinc selenide ATR accessory). The analyses were performed at room temperature with
resolution of 1 cm−1, in 16 scans from 700 to 4000 cm−1. The surfaces of the impregnated
PC samples were first cleaned with ethanol to avoid the interference of any compounds
deposited on their surfaces. The sample was stored for two hours to allow the ethanol to
evaporate before the measurement.

2.10. Thermal Analysis

Differential scanning calorimetry (DSC) analyses were performed to evaluate the
impact of CO2 treatment and of the impregnation process on the thermal properties and
crystallinity of the PC. The instrument Q200 from TA Instruments was used. The neat
PC, scCO2-treated PC, and impregnated PC films were analyzed. The scCO2-treated PC
and impregnated PC were prepared at 60 ◦C and 10 MPa, but the scCO2-treated PC was
prepared in the absence of extract. Small film pieces with 7 to 8.5 mg were sealed in an
aluminum pan, and the thermograms of the first heating cycle were obtained by heating
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the pans from 25 to 240 ◦C at a heating rate of 10 ◦C·min−1. The second heating cycle was
also obtained by cooling the samples to −80 ◦C at a rate of 20 ◦C·min−1 and heated again
to 240 ◦C at a rate of 10 ◦C·min−1. The crystallinity of the samples was obtained using
Equation (4).

χ =
∆H f − ∆Hc

W · ∆H100 f
× 100 (4)

where ∆H f (J·g−1) is the experimental fusion enthalpy, ∆Hc (J·g−1) is the experimental
crystallization enthalpy, W is the polymer mass fraction, and ∆H100 f is the fusion enthalpy
of 100% crystalline polymer, 109.6 J·g−1 for the PC [58].

2.11. Scanning Electron Microscopy

The films morphology of neat PC, scCO2-treated PC, and impregnated PC films were
evaluated by SEM using a JEOL JSM 6010LA microscope. The cross-section of the samples
were analyzed after cryogenic fracture. The samples were sputtered with a 15 nm layer
of gold.

3. Results and Discussion
3.1. Influences of the Impregnation Conditions on the Clove Extract Loading

The clove extract loading (CL%) obtained for each experimental condition in PC is
reported in Table 1 and Figure 4. High loadings were obtained: CL% ranged from 6.8%
(30 MPa and 47.5 ◦C) to 18.5% (10 MPa and 60 ◦C), and the standard deviation was 0.7%
(calculated with the central-point test). These results indicate that the impregnation yield
depends on the pressure and temperature used in the impregnation of CE in PC.
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Figure 4. Influences of pressure (10–30 MPa) and temperature (35–60 ◦C) on the clove extract loading
(CL%) in PC. Standard deviation of 0.7%.

3.1.1. Effects of Pressure

In isothermal conditions, scCO2 pressure had a negative effect on CL% (Figure 4);
i.e., an increase in pressure resulted in a decrease in the extract loading. These negative
effects can be explained by the increased density of scCO2 with pressure. Regarding the
polymer/CO2 system, Tang et al. [59] and Zhao et al. [60] reported an increase in the CO2
sorption in PC with an increase in pressure at a constant temperature of between 40 and
80 ◦C [60,61], which should favor the impregnation. They found that the CO2 sorption
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rises from 7.6 to 12.98 wt% by increasing the pressure from 10 to 30 MPa at 60 ◦C [61].
On the other hand, an increase in pressure tends to increase the solubility of CE [62,63],
along with the solubility of its individual compounds, in scCO2 [64,65]. The values are
reported in Supporting Information—Table S1. A high solubility means high affinity of
the solutes for CO2. This can lead to the partitioning of the solutes for the CO2 phase, to
the detriment of the polymer phase, which is deleterious to its impregnation [11,36,37].
Thus, CE–CO2 interactions were probably favored over the CE–PC interactions at higher
pressures, negatively affecting the CL% in PC.

Varona et al. [66] reported similar results for the supercritical impregnation of lavandin
essential oil in starch modified with n-octenyl succinate (OSA). They investigated the effect
of pressure in the range of 10–12 MPa and observed that the amount of essential oil
impregnated per unit mass of OSA-starch decreased with increasing pressure. In another
study, Belizón et al. [36] investigated the effect of pressure in the range of 10–20 MPa and
observed that the most favorable conditions for impregnating mango polyphenols into
a multilayer polyethylene terephthalate (PET)/polypropylene (PP) food-grade film were
obtained at 10 MPa.

3.1.2. Effects of Temperature

ScCO2 temperature globally positively affected CL% in PC (Figure 4). Temperature
impacts the extract solubility in scCO2 and the CO2 sorption of PC. The influence of
temperature on the solubility of a solute in scCO2 depends on the pressure. Below the so-
called crossover pressure, the solubility of the solute decreases with increasing temperature
due to the decrease in CO2 density. However, above the crossover pressure, the solubility
increases due to the increase in the vapor pressure of the solute that overcoming the effect
of the CO2 density diminution. The crossover pressure of CE can be estimated from the
results of Wei et al. [63] at the intersection of the three isotherms, which is between 9 and
12 MPa [63] (Figure 5).
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The general influence of the temperature on the CO2 sorption in PC is related to the
CO2 density [60,61] and to the plasticizing effect of CO2 on PC [61,67]. CO2 can increase
PC chain mobility, which is favorable for CO2 sorption, but it has also been reported to
enhance PC crystallization and thus be detrimental to CO2 sorption [67]. Crystallization
of PC after scCO2 treatment was observed in the literature [67–69]. However, in the range
of temperatures investigated, no crystallization was expected [45,67] which was further
confirmed by DSC curves (Section 3.5). Concerning CO2 density, it tends to decrease
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with increasing temperature in isobaric conditions. Tang et al. [59] reported that at a CO2
density lower than 700 kg/m3, a decrease in CO2 sorption with an increase in temperature
occurred. The contrary was observed at densities greater than 700 kg/m3 due to increased
chain mobility, which permitted accommodating more CO2 molecules [61]. Zhao et al. [60]
reported a similar trend with a change in the effect of temperature observed at 11.2 MPa.
Below 11.2 MPa, the CO2 sorption in PC ranged from 3.85 to 5.87 m/m% at 80 and 40 ◦C,
respectively. Between 11.2 and 18 MPa, the CO2 sorption increased to a small extent up
to 6.56 m/m% at 40 ◦C, whereas it rose to 7.83 wt% at 60 ◦C [60]. The authors suggested
that the PC glass transition temperature (Tg) must have been reached at 11.2 MPa. Above
this point, the increase in CO2 sorption favored chain mobility and CO2 sorption, whereas
below this point the decrease in CO2 density was adverse to CO2 diffusivity in PC, and
consequently, CO2 sorption. Note that the absorbed CO2 has a strong plasticizing effect on
PC, since the Tg drops from ~ 140 ◦C to a temperature between 40 and 60 ◦C in situ [61,70].

Thus, the positive effect of temperature on CL% is dominated by different phenomena
depending on the temperature. At 10 MPa, the pressure is close to the crossover pressure of
CE (Figure 5), and the CO2 density varies between 712.8 and 289.9 kg/m3 at 35 and 60 ◦C.
Thus, the increase in temperature leads to a decrease in both the extract solubility in CO2
and, to a small extent, the CO2 sorption in PC. The decrease in extract solubility in CO2
must increase the affinity of the extract for the polymer phase and favor the impregnation,
dominating the negative effect of CO2 sorption.

At 20 and 30 MPa, the temperature tends to increase the extract solubility (above the
crossover pressure) and the CO2 sorption in PC due to high chain mobility. Furthermore,
an increase in temperature may have caused an increase in the free volume of the matrix
(i.e., swelling), thereby enhancing the extract loading while reducing the resistance to solute
diffusion in PC. Thus, as a result of all these combined factors, the temperature positively
affected CL% [35–38,71,72].

Medeiros et al. [19] investigated the impregnation of CE in linear low-density polyethy-
lene, an apolar polymer, in the temperature range of 25–45 ◦C and at 15 and 25 MPa. The
higher impregnation yield was obtained at 45 ◦C (the effect of pressure was insignificant),
leading to a CL% of 4.02% [19].

3.1.3. Optimum Conditions for the Clove Extract Loading

Based on the experimental data (Table 1) and with the aid of the Protimiza Experi-
mental Design software, a mathematical model (Equation (5)) was obtained that relates the
extract loading (CL%) to the coded values of pressure (x1) and temperature (x2).

CL% = 10.47 − 4.43x1 + 1.82x2
1 + 1.18x2 + 1.07x2

2 − 0.70x1x2 (5)

To assess the quality of the model’s fit (Equation (5)), Table 2 presents the ANOVA
data. The model can be considered valid, wherein the coefficient of determination (R2)
is 0.9433 (the model represents 94.33% of the experimental data), that is, close to unity.
Moreover, Fregression/residuals ≥ Ftab and Flack of fit/pure error ≤ Ftab. Thus, when adjusting to
the experimental data, the model can be used for predictive purposes, thereby satisfying
the requirements for the construction of the response surface and contour plot (Figure 6).

As observed in Figure 6, the model confirmed that increasing the pressure from the
lowest (10 MPa) to the highest (30 MPa) level induced a decrease in CL%. The negative
effect of pressure outweighed the effect of temperature. As shown in Figure 6b, the maximal
CL% (>18%) can be achieved within the following optimal ranges: pressures of 10–12 MPa
and temperatures of 55–60 ◦C. Furthermore, the optimal values (> 18%) in Table 1 are a
pressure of 10 MPa and a temperature of 60 ◦C.
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Table 2. Analysis of variance (ANOVA) of the predictive model for the clove extract loading in PC.

Variation
Source

Sum of
Squares

Degrees of
Freedom

Mean
Square F 1 Ftab

2 p-Value

Regression 143.2 5 28.6 16.6 5.05 0.00392

Residuals 8.6 5 1.7

Lack of fit 7.6 3 2.5 4.9 19.16 0.17552

Pure error 1.0 2 0.5

Total 151.8 10

R 2,3 94.33%
1 F distribution (calculated); 2 F distribution (tabulated); 3 coefficient of determination.
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3.2. Influences of the Impregnation Conditions on the Composition of the Loaded Extract

GC analysis confirmed that the crude CE from Eugenia caryophyllus is composed of four
main compounds: eugenol, eugenyl acetate, β-caryophyllene, and α-humulene (Table 3).
Eugenol is the majoritarian compound (70.1%), followed by eugenyl acetate (17.06%).
Both compounds are phenylpropanoids and have a tri-substituted phenyl group. Eugenyl
acetate is derived from eugenol, having an acetate ester instead of the hydroxyl group
in eugenol. β-caryophyllene (10.67%) and α-humulene (2.20%) are two sesquiterpenes;
they are bicyclic and monocyclic, respectively. α-Humulene is a ring-opened isomer of
β-caryophyllene. Both are commonly found as a mixture in various extracts.

The extraction of the compounds from impregnated PC was performed in ethyl acetate
for one week; we submitted the solution to ultrasound for 1 h per day. Preliminary tests
proved that this procedure was efficient in guaranteeing the complete extraction and that
no compounds were detected in a second extraction in a fresh solvent. This confirms the
efficiency of the protocol tested with other systems [54,73].

Table 3 shows the compositions of the extracts impregnated into PC in the different
conditions and the crude CE. These results indicate that the composition of the extract
impregnated in PC depends on the impregnation conditions. First, eugenol content sig-
nificantly increased from 70.06 to values ranging between 81.31 and 86.28%, whereas the
eugenyl acetate decreased from 17.06 to 11.22–13.86%, depending on the conditions. The
proportions of the two sesquiterpenes were lower in the loaded extract than in the crude
one. The content of β-caryophyllene dropped from 10.67 to 2.07–4.83%, whereas the content
of α-humulene decreased from 2.20 to values below 0.51. These results suggest the selec-
tivity of the impregnation process. Cejudo Bastante et al. [54] also reported the selective
character of the process, as only four of the eleven compounds of the red grape pomace
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extract were impregnated in jute fibers [74]. Catechin and p-coumaric acid, which are two
low-molecular weight phenolic compounds, were the compounds impregnated in higher
proportions, even though they were not the main compounds of the extract. On the other
hand, anthocyanins present in high quantity in the extract were not impregnated. In a
previous study, Cejudo Bastante et al. [54] observed that the proportions of compounds
in the impregnation of olive leaf extract polyphenols in PET/PP films varied with the
pressure (10–40 MPa) and time (5 min to 22 h). Oleuropein was the majoritarian compound
in the impregnated films, representing 58 to 71% of the total polyphenols, depending
on the impregnation pressure. The authors also highlighted that the proportions of the
compounds varied with time. They explained that each compound had a different affinity
for CO2 and for the polymer, and different molecular weights (the higher the molecular
weight, the lower the diffusion coefficient in the matrix).

Table 3. Compositions of the extracts impregnated into PC and the crude clove extract, shown as
percentage weight for each compound.

Assay Pressure
(MPa)

Temperature
(◦C) 1

Eugenol
(%)

Eugenyl Acetate
(%)

β-Caryophyllene
(%)

α-Humulene
(%)

1 10 (−1) 35 (−1) 84.62 ± 0.29 12.57 ± 0.13 2.33 ± 0.14 0.48 ± 0.03
2 30 (+1) 35 (−1) 85.25 ± 0.65 11.95 ± 0.69 2.32 ± 0.05 0.48 ± 0.01
3 10 (−1) 60 (+1) 81.31 ± 0.73 13.86 ± 0.79 4.83 ± 0.05 0.00 ± 0.00
4 30 (+1) 60 (+1) 85.43 ± 1.28 12.02 ± 1.39 2.13 ± 0.13 0.43 ± 0.02
5 10 (−1) 47.5 (0) 84.16 ± 0.68 12.53 ± 0.35 3.31 ± 0.33 0.00 ± 0.00
6 30 (+1) 47.5 (0) 85.52 ± 0.44 11.55 ± 0.32 2.43 ± 0.09 0.50 ± 0.04
7 20 (0) 35 (−1) 85.52 ± 0.03 11.67 ± 0.00 2.33 ± 0.02 0.49 ± 0.01
8 20 (0) 60 (+1) 85.39 ± 0.05 11.64 ± 0.06 2.16 ± 0.01 0.51 ± 0.01
9 20 (0) 47.5 (0) 86.28 11.22 2.07 0.43

10 20 (0) 47.5 (0) 85.80 11.59 2.19 0.43
11 20 (0) 47.5 (0) 85.96 11.23 2.34 0.47

Clove extract 70.06 17.06 10.67 2.20
1 Coded values in parentheses.

The coded models and the results of the analysis of variance (ANOVA) are presented
in Table 4. In this study, coded statistical models (the quadratic polynomial equation) were
used to predict the compositions of the extracts impregnated into PC (eugenol, eugenyl
acetate, β-caryophyllene, α-humulene) as a function of the pressure and temperature. The
adjustment quality of these models was evaluated using the ANOVA results, and the
experimental data were analyzed in the Protimiza Experimental Design software at a fixed
significance level of 0.05.

Table 4. Coded models and results of analysis of variance (ANOVA).

Model a

Regression/
Residual

Lack of Fit/
Pure Error R2

Fcal,1
b Ftab,1

c Fcal,2
b Ftab,2

c

Eugenol = 86.04 + 1.02 x1 − 1.24 x1
2 − 0.54 x2

− 0.63 x2
2 + 0.87 x1 x2

15 5.05 5.8 19.16 93.76%

Eugenyl acetate = 11.29 − 0.57 x1 + 0.83 x1
2 +

0.22 x2 + 0.45 x2
2 − 0.30 x1 x2

17.4 5.05 1.6 19.16 94.56%

β-caryophyllene = 2.20 − 0.60 x1 + 0.66 x1
2 +

0.36 x2 + 0.04 x2
2 − 0.67 x1 x2

8.6 5.05 12 19.16 89.53%

α-humulene = 0.43 + 0.15 x1 − 0.17 x1
2 − 0.08

x2 + 0.08 x2
2 + 0.11 x1 x2

5.5 5.05 34.5 19.16 84.69%

a x1: coded pressure; x2: coded temperature; b Fcal: F distribution (calculated); c Ftab: F distribution (tabulated).
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The models to describe β-caryophyllene and α-humulene proportions in the loaded
extract were not valid because the values of the determination coefficient (R2) were lower
than 90% (R2 = 89.53 and 84.69%, respectively). In contrast, the models used to describe
eugenol and eugenyl acetate were valid, as the R2 values were greater than 90% (93.76
and 94.56%, respectively). Moreover, the data presented in Table 4 shows that Fcal,1 was
greater than Ftab,1, and that Fcal,2 was less than Ftab,2. When adjusting the experimental
data, the model could be used for predictive purposes, which meets the requirements for
constructing the response surfaces (Figure 7).
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As seen in Figure 7, the pressure and temperature exhibited statistically significant
effects (with 95% confidence) on the eugenol and eugenyl acetate content in the extract im-
pregnated into PC. As shown in Figure 7a, there was a positive correlation (p-value < 0.05)
between the pressure and the overall eugenol content. Thus, the higher the pressure
used in the impregnation, the higher the proportion of eugenol in the loaded extract.
However, there was a negative correlation (p-value < 0.05) between the temperature and
the proportion of eugenol in the extract. The higher the impregnation temperature, the
lower the content of eugenol. As shown in Figure 7b, there was a negative correlation
(p-value < 0.05) between the pressure and the eugenyl acetate content. The higher the
impregnation pressure, the lower the eugenyl acetate content in the loaded extract.

As mentioned in Section 3.1.1, the high solubility of a compound in scCO2 does
not ensure its plentiful impregnation in the polymer, but on the contrary, it can favor its
partitioning in the CO2 phase. However, a high affinity of a compound for the matrix is the
driving force for its partitioning in the polymer. The differences between the compositions
of the crude and impregnated extracts can be accounted for by the affinities between PC
and the diverse compounds, which are evaluated by their solubility parameters and by the
establishment of strong interactions such as H-bonds between a compound and PC [75–77].
The Hansen-type solubility parameters at 25 ◦C were estimated by the group contribution
method, using Van Krevelen and Hoftyzer’s method, and are reported in Table 5 for PC
and the four compounds of CE. β-caryophyllene and α-humulene have low affinity for
PC, as shown by their very different solubility parameters. Moreover, they do not possess
chemical groups that can establish strong secondary bonds with the matrix, and they
have high molecular volumes. Thus, the two sesquiterpenes had lower proportions in the
impregnated PC than in the crude CE. Conversely, eugenol was impregnated in a higher
proportion than according to its proportion in the crude extract. The solubility parameter
of eugenol is not the most similar to that of PC, but its loading is promoted by H-bonding
between OH groups of eugenol and the C=O group of the carbonate of PC. The lower
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proportion of eugenyl acetate in the impregnated extract compared to the crude extract
(11.22–13.86 vs. 17.06%) is more difficult to explain. Eugenol and eugenyl acetate exhibit
similar solubility in scCO2 (see Supplementary Materials—Table S1), and their molecular
volumes are similar, so their diffusion in PC should be comparable. Eugenyl acetate has a
similar solubility parameter to PC’s, suggesting a good affinity, but it may compete with
eugenol during the impregnation process [11,54].

It has been reported that CE and eugenol have antimicrobial activity against food-
borne pathogens. Cui et al. [15] reported that 0.5 mg/mL of CE irreversibly affects the
cell membrane of Listeria monocytogenes, causing its extermination by 99.99% after 8 h.
Pérez-Conesa et al. [78] observed cellular destruction of Escherichia coli O157:H7 (strains
4388 and 43895) after 10–20 min exposure to 0.9% eugenol. In a study conducted by Móran
et al. [79], eugenol showed high antimicrobial activity (bacterial growth inhibition >90% at
100 µg/mL) towards Staphylococcus epidermidis and Staphylococcus aureus. Data from the
literature indicates that PC impregnated with CE would also have antibacterial properties.

Table 5. Estimation of Hansen-type solubility parameters at 25 ◦C by the group contribution method,
using the Van Krevelen and Hoftyzer method [80].

Polymer/Compound δd
(Mpa0.5)

δp
(MPa0.5)

δh
(MPa0.5)

Solubility Parameter (δt)
(MPa0.5)

|δt PC − δt compound|
(MPa0.5)

PC 17.9 3.1 6.9 19.4 -

Eugenol 18.5 4.1 12.2 22.5 3.1

Eugenyl Acetate 17.5 3.3 7.2 19.3 0.1

β-caryophyllene 15.2 0.0 0.0 15.2 4.2

α-humulene 15.7 0.0 0.0 15.7 3.7

3.3. ATR-FTIR

The FTIR spectra of clove extract, neat PC, and impregnated PC are shown in Figure 8.
Peak assignments are presented in Supporting Material D. The characteristic peaks of clove
extract are centered at 1765 cm−1 due to C=O stretching in eugenyl acetate; 1638 cm−1

due to vibrations of allyl groups in eugenol and eugenyl acetate; 1606 and 1512 cm−1 due
to C=C vibrations in the aromatic rings in eugenol and eugenyl acetate [81]; 1266, 1232,
and 1199 cm−1 due to =C-O-C asymmetric stretching and =C-O-H vibrations in eugenol
and eugenyl acetate; 1148, 1122, and 1034 cm−1 due to C-O-C stretching in eugenol and
eugenyl acetate [82]; and 912 cm−1 due to =C-H bending of aliphatic groups [81]. The
characteristic peaks of PC are 1769 cm−1 due to C=O stretching; 1502, 1014, and 828 cm−1

due to C=C vibrations in aromatic rings [82]; and 1220, 1188, and 1159 cm−1 due to O-C-O
stretching [83]. The spectrum of impregnated PC exhibits characteristic peaks of clove
extract, evidencing its impregnation in high concentration; the peaks centered at 1638, 1122,
1034, and 912 cm−1 present in the clove extract spectrum could be clearly observed on the
impregnated PC spectrum at 1639, 1123, 1035 and 915 cm−1; other peaks were superposed
on the neat PC peaks, causing their broadening [81–85].
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3.4. Film Morphology

SEM images enable the analysis of the impact of impregnation on the film’s surface
and cross-sectional morphologies. Figure 9 shows the cross-section and surface of neat
PC, scCO2-treated, and of PC impregnated at 60 ◦C and 10 MPa. The cross-sections of
neat PC (Figure 9b) and scCO2-treated PC (Figure 9d) were dense and homogeneous, and
their surfaces were smooth and free of cracks (Figure 9a,c). The SEM images show that
submitting PC to CO2 in such impregnation and depressurization conditions did not impact
the morphology and did not create pores. Ma et al. studied PC foaming using scCO2 as
a blowing agent and showed that microcellular structures were formed after saturating
PC with CO2 at 60 ◦C and depressurizing at 60 ◦C for 30 s [86]. On the other hand, in the
present study, the high-pressure cell was quenched down to −78 ◦C, which resulted in the
CO2 freezing and a pressure reduction to about 2 MPa. Then, the pressure cell was opened,
and the frozen sample was left at room temperature. This way, the remaining gaseous CO2
was slowly released, avoiding the bubble nucleation and growth from the dissolved CO2
in PC, which justifies the smooth surface and dense cross-sections observed in the SEM
images (Figure 9c,d) [77].

Regarding the morphology of impregnated PC, surface cracking was observed
(Figure 9e), and the cross-section obtained by cryo-fracture was also dense, and no micro-
pores were observed after high clove loading (18.5%). The surface cracking might result
from the high CL% accommodated into the matrix and from the plasticizing effect of CE.
Jiang et al. observed that the infusion of the plasticizer tributyl citrate in poly(bisphenol A
carbonate) at ambient pressure and 60 ◦C for 12 h resulted in the formation of pores and
of a network of cracks on the surface and of pores that were present in a greater extent
compared to our results [87]. Another possibility is that the samples suffered mechanical
stress during the process. These cracks must influence the release kinetics of CE, which
will be an issue for future investigation.
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Figure 9. SEM images of the surfaces (left column) and cross-sections (right column) of (a,b) neat PC
film, (c,d) PC only submitted to scCO2 at 60 ◦C and 10 MPa, and (e–g) PC impregnated with clove
extract at 60 ◦C and 10 MPa with CL% = 18.5%.

3.5. DSC Analysis

The DSC thermograms of neat PC, scCO2-treated PC, and PC impregnated at 60 ◦C
and 10 MPa, which is the condition that resulted in the highest CL%, are compared in
Figure 10. As shown in the first heating curve, the Tg of neat PC slightly decreased from
144.3 to 139.8 ◦C after scCO2 treatment and dropped to 109.9 ◦C after impregnation. Other
authors have reported that PC can crystallize when submitted to scCO2 above its glass
transition [61,67], which was estimated to be lower than 60 ◦C at 40 MPa [61] due to the
interaction of the carbonyl group of PC interacting with CO2 [61,88]. The impregnated PC
film was semi-crystalline with a crystallinity of 18.6% and a melting temperature (Tm) of
207.8 ◦C. The crystallinity can be explained by the plasticizing effect of the scCO2–clove-
extract solution on PC chains, which led to crystallization. The plasticizing effect of the
clove extract was also demonstrated in DSC second-heating thermograms (Figure 10b),
which accounts for the PC in the presence of 18.5% of CE getting rid of the thermal
history produced by the impregnation process. Tg was decreased to 47.7 ◦C, which is
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below the working impregnation temperature, and a large melting peak from 174.9 to
220 ◦C was observed in the impregnated PC. Furthermore, an exothermic peak appeared at
124.5 ◦C, indicating that the presence of CE facilitates the cold crystallization of PC. Both
CO2 and CE plasticize PC during the impregnation process, enhancing CO2 sorption and
impregnation. However, the increased mobility of the chains leads to their reorganization
and crystallization in situ, which is detrimental for the impregnation (since it reduces the
amorphous regions that are the ones impregnated [75]), though high CL% were obtained
after an impregnation time of 3 h.
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4. Conclusions

This study investigated the impregnation of clove extract (CE) into PC by scCO2 to
develop rigid food packaging with antibacterial properties. The influences of the impregna-
tion conditions on the composition of the loaded extract were also explored by determining
the proportions of the four compounds of CE. Face-centered design models were applied
to evaluate the influences of temperature (35–60 ◦C) and pressure (10–30 MPa) on the total
clove loading and the composition of the loaded extract. The clove loading (CL%) ranged
from 6.8 to 18.5%, and the maximal CL% was reached at 60 ◦C and 10 MPa. The temperature
favored the impregnation, whereas the pressure was deleterious. The composition of the
extract impregnated in PC was different from the crude extract, suggesting the selectivity
of the impregnation process. The eugenol content increased from 70.06 to 81.31–86.28%.
The eugenyl acetate, β-caryophyllene, and α-humulene contents decreased from 17.06 to
11.22–13.86%, 10.67 to 2.07–4.83%, and 2.20 to below 0.51%, respectively. The pressure
enhanced the eugenol content, whereas it decreased the eugenyl acetate content in the
loaded extract. Moreover, the temperature decreased the eugenol content. The results
were rationalized using the Hansen-type solubility parameters and the intermolecular
interactions between PC and each compound. Differential scanning calorimetry showed a
high plasticizing effect of CE on PC, which is responsible for increased chain mobility that
is favorable to the impregnation, and a concomitant in situ crystallization of the polymer,
which is deleterious to the impregnation. Besides that, the high loading of the polymer
was responsible for the cracking of the PC surface, but no pores were observed on the
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cross-section. The impregnated polymer is promising for antibacterial food containers due
to the high loading of clove extract that is enabled and the high eugenol content.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pr10122661/s1. Figure S1: 1H NMR of polycarbonate. Figure S2:
Evolution of the clove extract loading in PC with impregnation time in the conditions of highest CO2
density (35 ◦C; 30 MPa), and of lowest CO2 density (60 ◦C; 10 MPa) among the investigated conditions.
Table S1: Solubility of oil extract and of its four individual compounds in scCO2 in conditions close to
the one studied. Data reported from the literature. Table S2: FTIR peak assignments of clove extract,
neat PC and impregnated PC. References [65,81–85,89] are cited in the supplementary materials
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