
Citation: Alrehili, M. Development

for Cooling Operations through a

Model of Nanofluid Flow with

Variable Heat Flux and Thermal

Radiation. Processes 2022, 10, 2650.

https://doi.org/10.3390/pr10122650

Academic Editor: Blaž Likozar

Received: 26 November 2022

Accepted: 7 December 2022

Published: 9 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

Development for Cooling Operations through a Model of
Nanofluid Flow with Variable Heat Flux and Thermal Radiation
Mohammed Alrehili

Department of Mechanical Engineering, Faculty of Engineering, University of Tabuk, Tabuk 71491, Saudi Arabia;
malrehili@ut.edu.sa

Abstract: This article discusses the flow of a non-Newtonian Carreau nanoliquid across a stretching
radiative nonlinear sheet that is exposed to a variable heat flux. Analysis is done with changing
thermal conductivity since it affects how heat and mass transfer occur. Nanoparticles are modelled
using the Brownian motion and the thermophoresis phenomenon. The introduction of a similar
solution to our challenge, as obtained by our paper, received significant attention. To create a
dimensionless system, the governing partial differential equations are subjected to the mathematical
model’s convenient similarity transformations after it has been developed. The numerical solution of
the coupled highly nonlinear ordinary differential equations characterizing velocity, temperature and
nanoparticles concentration is shown using an effective shooting approach. Additionally, all factors
affecting the situation that could increase the effectiveness of cooling operations will be looked into.
Results for velocity, the thermal field, the concentration of nanoparticles, the skin-friction coefficient,
and the local Nusselt and Sherwood numbers are provided and explored. Tables and graphics will be
used to illustrate the paper’s conclusions. Results are also given in comparison to existing literature.
Excellent agreement has been reached. Furthermore, it is clear that the local Sherwood number, the
local Nusselt number, and the skin friction coefficient are all observed to increase as the power law
index does.

Keywords: variable heat flux; non-newtonian nanofluid; variable conductivity; thermal radiation;
non-linear stretching sheet; viscous dissipation

1. Introduction

Because of its major impact on a number of technological processes, a significant
amount of attention has been given over the past few decades to a crucial type of fluid called
the non-Newtonian fluid over a stretching surface. Numerous non-Newtonian liquids are
being used more often in engineering and industry, including liquid metals, nuclear fuel
slurries, mercury amalgams, plastic films, biological fluids, synthetic fibres, paper coatings,
and lubricating oils. Models of the behavior of diluted polymeric fluids and biological
fluids have been developed using non-Newtonian fluids of the differential types with great
success. The polymer industry has significant uses for the flow of an incompressible viscous
fluid over a stretched surface. For example, a variety of technological procedures using
polymers entail pulling continuous filaments (or strips) that have been ejected from a die
through a liquid with a regulated cooling system, stretching the strips occasionally while
they do so. Likewise, the amount of heat transferred at the stretching sheet determines
a majority of the final product’s quality. Crane [1] was a pioneer scientist in the area of
fluid flow caused by a stretching sheet who discovered an exact and precise solution to the
fluid flow problem. Several non-Newtonian models, including the viscoelastic model [2],
the power-law model [3,4], the Sisko model [5,6], the Maxwell model [7,8], the Williamson
model [9,10], and the micropolar model [11,12], are particularly important and can be used
in engineering applications and industry. Another crucial and essential category of rate
type non-Newtonian fluids is the Carreau model which first came up by Carreau [13]. The
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non-Newtonian Carreau model reveals a fundamental link between low shear rates and
greater shear rates. Since then, a large number of scientists [14–16] have looked into the
behavior of the Carreau fluid in diverse morphologies.

When designing very sophisticated energy conversion systems that operate at high
temperatures, consideration of the effects of thermal radiation on flow and heat transfer
mechanisms is crucial. In the polymer processing industry, where the quality of the finished
product depends in part on the variables regulating heat transport, thermal radiation impact
may be a significant factor. When there is a notable change between surface temperature
and ambient temperature, thermal radiation impacts become significant. Additionally,
the effect of thermal radiation on non-Newtonian fluid flow is crucial, particularly in the
fields of nuclear power, solar energy, aircraft propulsion, and chemical processes at high
operating temperatures. The relevance of the thermal radiation phenomenon and its effects
on the Carreau fluid flow have led numerous scientists to explore a variety of problems in
this area [16–18].

In an ordinary heat transfer fluid, nanoparticles are suspended, creating a nanofluid for
heat transfer. A nanofluid is created when a common base fluid is mixed with nanoparticles
no larger than 100 nm. Colloid suspensions make up nanofluids. Compared to fluids
dispersed with micron-sized particles, a nanofluid may have a higher viscosity because
of the rise in effective volume fraction caused by the electrical double layer surrounding
the particles. Additionally, nanofluids have a variety of useful applications in industry
research as well as in the real world, such as the use of nanofluids as a cooling medium
in nuclear systems and the development of highly efficient nano-drugs for the treatment
of a wide range of diseases. Choi [19] has presented his ground breaking work, which
mainly focused on the thermal characteristics of nanofluid flow. Following Choi’s scientific
breakthrough, Buongiorno [20] has discussed the topic of improving heat transmission
by analysing nanofluid flow. Given the importance of the nanofluid flow, especially with
Carreau models, numerous scholars focus on a variety of non-Newtonian Carreau nanofluid
flow problems [21–26].

Because non-Newtonian nanofluids are noteworthy, the flow of a Carreau nanofluid
caused by a nonlinearly stretching sheet with viscous dissipation phenomenon has been
taken into consideration. Nanofluid flow resulting from stretching a surface with ther-
mal radiation. Further consideration is given to nanofluid thermal conductivity that is
temperature-dependent. On the sheet surface, variable heat flux phenomenon is invoked.
Due to the random movement of nanoparticles, Brownian motion and thermophoresis are
taken into consideration when explaining the characteristics of nanoparticles. By using
the shooting approach, the governing equations for the Carreau nanofluid with changing
heat flow are developed. The velocity distribution, temperature profile, and concentration
profile are represented graphically in the results.

2. Flow Analysis

Here, in Figure 1 in the plane xy, we examine the two-dimensional flow of a non-
Newtonian, incompressible Carreau nanofluid that characterized by the time constant Γ
over an impermeable stretched surface that is susceptible to a heat flux qw. Within the
domain y > 0, the flow of nanofluid is restrained. Here, we have the Cartesian coordinates
so that the x−axis runs parallel to the stretching surface and the y−axis runs perpendicular
to the sheet. Assume that the components of the nanofluid velocity in the x, and y directions
be u and v, respectively.
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Figure 1. Sketch of flow geometry.

Throughout this study, it is anticipated that the elastic sheet will be subject to a force
that controls the fluid’s velocity by the equation [27]:

u = axm, (1)

where the stretching is exemplified by the parameter m and a is a positive constant. Also,
the motion of nanofluid is presumptively subject to a radiative heat flux qr that can be
controlled by the following equation [27]:

qr = −
4σ∗

3k∗
∂T4

∂y
, (2)

where σ∗ is the Stefan-Boltzmann constant and k∗ is the coefficient of absorption. Here, it is
important to note that the Rosseland approximation is used in the last equation to represent
the radiative heat flux in order to avoid the non-linear nature of the radiation term. Also,
in order for T4 to be expanded in a Taylor series, it is presumable that the temperature
variation within the flow is quite tiny according to the following relation [27]:

T4 ∼= 4T3
∞T − 3T4

∞. (3)

Further, the Brownian motion of the nanoparticles and the thermophoresis phenomenon
are taken into account. Additionally, The base fluid’s Brownian diffusion coefficient DB
is used to model the nanoparticles’ motion, which is believed to be random. On the
other hand, in accordance with the thermophoresis diffusion coefficient DT , it is expected
that nanoparticles are thermally dispersed. The concentration of the nanoparticles in the
nanofluid is symbolized by C, whereas the concentration of nanoparticles near the sheet is
assumed to governed by:

Cw(x) = C∞ + Bx2m, (4)

where C∞ is the ambient nanoparticles concentration and B is a constant. The governing
equations in the presence of thermal radiation and viscous dissipation are now provided by
under the presumptions made previously, in terms of velocity components, temperature,
and concentration [27] as follows:

∂u
∂x

+
∂v
∂y

= 0, (5)

u
∂u
∂x

+ v
∂u
∂y

=
µ

ρ

∂

∂y

∂u
∂y

(
1 + Γ2

(
∂u
∂y

)2
) n−1

2
, (6)
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u
∂T
∂x

+ v
∂T
∂y

=
1

ρcp

∂

∂y

(
κ(T)

∂T
∂y

)
+

µ

ρcp

(
∂u
∂y

)2
(

1 + Γ2
(

∂u
∂y

)2
) n−1

2

− 1
ρcp

∂qr

∂y
+

τ

(
DB

∂C
∂y

∂T
∂y

+
DT
T∞

(
∂T
∂y

)2
)

,

(7)

u
∂C
∂x

+ v
∂C
∂y

= DB
∂2C
∂y2 +

DT
T∞

∂2T
∂y2 , (8)

where ρ being the nanofluid density, cp is the specific heat at constant pressure, T∞ is
the ambient temperature and n is the power law index. It is important to note that our
prior non-Newtonian Carreau model can be converted into a Newtonian model when
n = 1. Additionally, the following are the boundary conditions for these earlier governing
equations [27]:

u = axm, C = Cw, v = 0, −κe f f
∂T
∂y

= qw = Axr, at y = 0, (9)

u→ 0, T → T∞, C → C∞ as y→ ∞, (10)

where κe f f is the effective thermal conductivity which can be described as follows based on
the existence of thermal radiation [27]:

κe f f = κ(T) +
16σ∗T3

∞
3k∗

. (11)

As a result of the final expression, the energy Equation (7) can be expressed as follows:

u
∂T
∂x

+ v
∂T
∂y

=
1

ρcp

∂

∂y

(
κe f f

∂T
∂y

)
+

µ

ρcp

(
∂u
∂y

)2
(

1 + Γ2
(

∂u
∂y

)2
) n−1

2

+

τ

(
DB

∂C
∂y

∂T
∂y

+
DT
T∞

(
∂T
∂y

)2
)

.

(12)

Now, the following dimensionless variables [27] are introduced in order to look for similar-
ity solutions for the governing Equations (5)–(8) subject to boundary conditions (9) and (10):

η =

√
ρa(m + 1)

2µ
x

m−1
2 y, ψ(x, y) =

√
2µa

ρ(m + 1)
x

m+1
2 f (η), (13)

T = T∞ +
A

κ∞

√
2µ

ρa(m + 1)
x

2r−m+1
2 θ(η), φ(η) =

C− C∞

Cw − C∞
, (14)

where η is the dimensionless variable, f is the non-dimensional stream function, θ is the
non-dimensional fluid temperature and φ is the dimensionless concentration. Likewise, the
following relationship is used to take into account the fundamental relationship between
the nanofluid thermal conductivity κ(T) and the dimensionless temperature θ [28]:

κ(T) = κ∞(1 + εθ), (15)

where ε is the thermal conductivity parameter and κ∞ is the ambient thermal conductivity.
by considering the supposition of thermal conductivity and after utilizing the aforemen-
tioned dimensionless transformations (13) and (14), the equation for continuity Equation (5)
is quickly and easily satisfied, whereas the remaining fundamental equations are reduced
as follows: (

1 + W2
e f ′′2

) n−3
2
[(

1 + nW2
e f ′′2

)
f ′′′
]
−
(

2m
m + 1

)
f ′2 + f f ′′ = 0, (16)
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1
Pr

(
εθ′2 + (1 + R + εθ)θ′′

)
+

(
f θ′ +

(
m− 2r− 1

m + 1

)
f ′θ
)
+ Ntθ′2 + Nbθ′φ′+

Ec f ′′2
(

1 + W2
e f ′′2

) n−1
2

= 0,

(17)

φ′′ + PrLe
(

f φ′ − 4m
m + 1

φ f ′
)
+

Nt
Nb

θ′′ = 0. (18)

Accordingly, the modified boundary conditions are as follows:

f = 0, f ′ = 1, φ = 1, θ′(0) =
−1

1 + R + εθ(0)
, at η = 0, (19)

f ′ → 0, θ → 0, φ→ 0, as η → ∞. (20)

The following definitions for each of the parameters that control the momentum, energy,
and concentration equations are given:

Nb =
τDBρ(Cw − C∞)

µ
, We =

(
ρa3(m + 1)Γ2x3m−1

2µ

) 1
2

, R =
16σ∗T3

∞
3κ∞k∗

, Pr =
µcp

κ∞
, (21)

Nt =
τDTρ

(
A

κ∞

√
2µ

ρa(m+1) x
2r−m+1

2

)
µT∞

, Ec =
u2

w

cp

(
A

κ∞

√
2µ

ρa(m+1) x
2r−m+1

2

) , Le =
κ∞

ρcpDB
, (22)

which accordingly, indicates the Brownian motion parameter Nb, the local Weissenberg
number We, the radiation parameter R, the Prandtl number Pr, the thermophoresis param-
eter Nt, the Eckert number Ec and the Lewis number Le.

3. Applicable Quantities in Engineering and Industry

The physical parameters of the Carreau nanofluid flow based on the variable heat
flux that are significant to engineering and industry in the processing of materials are the
skin-friction coefficient C fx, heat transfer coefficient Nux, and mass transfer coefficient Shx,
and they can be identified as follows:

Re
1
2
x C fx = −2

√
m + 1

2

[
1 + W2

e
(

f ′′(0)
)2
] n−1

2 f ′′(0), (23)

Re
−1
2

x Nux =

√
m+1

2

θ(0)
, Re

−1
2

x Shx = −
√

m + 1
2

φ′(0), (24)

where Rex = uwx
ν is the local Reynolds number.

4. Validation of the Numerical Solution

The fourth-order Runge-Kutta method combined with the shooting technique is
used here to solve the non-dimensional governing Equations (16) through (18) and their
associated boundary conditions (19) and (20). To ensure the efficacy and correctness of the
current analysis, findings on the skin-friction coefficient in terms of − f ′′(0) were compared
with Cortell’s stated results for Newtonian case n = 1 over a nonlinearly stretching
sheet with different values of the stretching parameter m and in the absence of the local
Weissenberg number We = 0. Table 1 demonstrates that there is excellent agreement
between the comparisons in the aforementioned cases. After this positive assessment of
our numerical strategy, we will discuss the numerical results for the Carreau nanofluid
model that was impacted by the variable heat flux.
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Table 1. Comparison values of − f ′′(0) for various values of m with n = 1.0 and We = 0.0.

m Cortell [29] Present Study

0.1 0.705897 0.705896891
0.3 0.815696 0.8156951478
0.6 0.918172 0.9181715984
0.9 0.983242 0.9832417810
1.0 1.000000 1.0000000000
1.5 1.061587 1.0615865590
3.0 1.148588 1.1485877582

10.0 1.234875 1.2348748792

5. Interpretation of Numerical Results

This study examines the problem of flow and heat mass transfer in a viscous non-
Newtonian Carreau nanofluid across a stretching surface that is nonlinearly stretched
in the influence of viscous dissipation and thermal radiation. The radiative heat flux is
approximated using the Rosseland approximation. We look at how the relevant parame-
ters, including the power-law index parameter n, the local Weissenberg number We, the
radiation parameter R, the thermal conductivity parameter ε, the Prandtl number Pr, the
thermophoresis parameter Nt, the Eckert number Ec, and the Lewis number Le, affect
the velocity f ′(η), temperature θ(η), and concentration φ(η) profiles in order to obtain a
comprehensive physical understanding of the problem. Figure 2 depicts how the power
law index n affects the velocity, temperature, and concentration curves. The boundary
layer tends to become thicker with higher values of the power law index, which causes the
velocity distribution f ′(η) through the boundary layer to grow. Additionally, Figure 2b
shows that as the power law index rises, the temperature θ(η) and concentration φ(η) of
nanofluids both fall. Because the sheet temperature θ(0) is lowered as n rises due to the
existence of heat flux in our research, the power law index acts as a coolant factor for the
stretching sheet. Furthermore , Khan and Hashim’s earlier work [30] produced results for
the power law index parameter that were consistent with our current findings.

2 4 6 8
Η
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Figure 2. (a) f ′(η) via n; (b) θ(η) and φ(η) via n.

With the variation of the local Weissenberg number We, Figure 3 plots the velocity,
temperature, and concentration fields. The velocity field is seen to diminish as the local
Weissenberg number does, although the temperature and concentration fields have the
opposite impact for the same parameter. Additionally, the same figure shows that a thinner
boundary layer is caused by a high value of the local Weissenberg number. Physically, as
the Weissenberg number increases, so does the resistance to fluid motion. Additionally ,
identical outcomes involving the same local Weissenberg number were obtained on both
the momentum and temperature fields in Megahed’s earlier work [29], supporting our
current findings.

(a) (b)

Figure 2. (a) f ′(η) via n; (b) θ(η) and φ(η) via n.

With the variation of the local Weissenberg number We, Figure 3 plots the velocity,
temperature, and concentration fields. The velocity field is seen to diminish as the local
Weissenberg number does, although the temperature and concentration fields have the
opposite impact for the same parameter. Additionally, the same figure shows that a thinner
boundary layer is caused by a high value of the local Weissenberg number. Physically, as
the Weissenberg number increases, so does the resistance to fluid motion. Additionally,
identical outcomes involving the same local Weissenberg number were obtained on both
the momentum and temperature fields in Megahed’s earlier work [27], supporting our
current findings.
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Figure 3. (a) f ′(η) via We; (b) θ(η) and φ(η) via We.

In Figure 4, for various values of the radiation parameter R, temperature θ(η) and
concentration φ(η) profiles throughout the boundary layer with variable heat flux are
shown. This figure shows, as anticipated, that both the temperature profiles θ(η) along the
sheet and the sheet temperature θ(0) demonstrate a decreasing behavior as the radiation
parameter R rises, whereas the inverse correlation is seen away from the sheet for the
temperature profiles θ(η). Since k∗ reduces as the divergence of the radiative heat flux
∂qr
∂y grows, the rate of radiative heat transfer to the fluid also increases, raising the fluid’s

temperature. So, the thickening of the thermal boundary layer is caused by the radiation
parameter R. In terms of physics, this allows the fluid to escape the heat energy from
the flow zone and cools the system. Further, we notice that the radiation parameter
has a minimal impact on the concentration profiles across the whole boundary layer
since it indirectly influences the concentration field. Moreover, the pioneering work of
Megahed [27], which supports our present findings, shows that the radiation parameter
has the same impact on the thermal field when heat flux is present.
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Figure 4. (a) θ(η) via R; (b) φ(η) via R.

Figure 5 displays a temperature θ(η) and concentration φ(η) impact graph for various
values of the thermal conductivity parameter ε. When the thermal conductivity parameter’s
values increase, the nanofluid temperature distribution slows down, particularly close to
the sheet, while the opposite scenario occurs away from the sheet, thickening the thermal
boundary layer. In light of this, systems, especially those with variable heat flux, may
choose to use the thermal conductivity parameter as a coolant parameter. The concentration
field is indirectly impacted by the thermal conductivity parameter, thus as it grows, the
concentration of nanoparticles somewhat declines.
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Figure 5. (a) θ(η) via ε; (b) φ(η) via ε.

Figure 6 displays a graph illustrating the relationship between temperature θ(η) and
the concentration φ(η) of nanoparticles as the Eckert number Ec varies. The graph of
nanoparticle concentration increases slightly with increasing Eckert number value, as does
the temperature of the nanofluid but with a significantly variance behavior. If we look at
Megahed’s earlier published work [27] on the Eckert number, the current results are also
supported by it.
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Figure 6. (a) θ(η) via Ec; (b) φ(η) via Ec.

Temperature θ(η) and concentration φ(η) distribution are depicted in Figure 7 to-
gether with the thermophoresis parameter’s Nt variation. In the temperature profile, the
thermophoresis parameter marginally improved the temperature distribution compared to
the nanoparticle concentration distribution. This behavior will assist to thicken the thermal
boundary layer and raise the sheet temperature θ(0). The thermophoresis phenomenon, in
terms of its physical meaning, entails the evacuation of warmed particles from a heated
surface and their transport to a cool environment. As a result, the fluid’s temperature
goes up.
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Figure 7. (a) θ(η) via Nt; (b) φ(η) via Nt.

Figure 8 shows how the Brownian motion parameter Nb affects thermal behavior and
mass diffusion of nanoparticles. Because of the nature of the Brownian motion parameter,
raising it causes the nanoparticles to move randomly more often, which lowers the concen-
tration φ(η) of the nanofluid as observed. Additionally, it is implied that the temperature
profile near the stretching sheet area tends to significantly boost as Nb increases. According
to the definition of Brownian motion, rising Nb results from the sparsity of the fluid’s
viscosity. As a result, the kinetic energy of the nanoparticles is enhanced by the erratic
flow movement, which raises the temperature of the Carreau nanofluid. Furthermore, the
results of earlier research by Alrihieli et al. [31] regarding the Brownian motion parameter
support our current findings.
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Figure 8. (a) θ(η) via Nb; (b) φ(η) via Nb.

Figure 9 provides an illustration of the impact of the Prandtl number Pr on the thermal
field θ(η) and the mass diffusion of nanoparticles φ(η). According to the meaning of the
Prandtl number, boosting its magnitude indicates either an increase in nanofluid viscosity
or a decrease in flow thermal diffusivity; as a consequence, both the sheet temperature θ(0)
and the thickness of the thermal boundary layer falls as the Prandtl number enhances. Ad-
ditionally, the Prandtl number makes it easy to see how the concentration of nanoparticles
has decreased.
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Figure 9. (a) θ(η) via Pr; (b) φ(η) via Pr.

Figure 10 illustrates how the Lewis number Le affects the temperature θ(η) and
concentration φ(η) curves. This figure shows that as the Lewis number Le grows, both the
sheet temperature θ(0) and the temperature θ(η) of nanofluids moving through the thermal
layer somewhat increase, and as a result, the thickness of the thermal boundary layer also
slightly increases. Additionally, this graph elucidate that as the Lewis number increases,
the molecular diffusivity drops, which leads to a fall in the nanofluid concentration.
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Figure 10. (a) θ(η) via Le; (b) φ(η) via Le.

Now, in Table 2 an review of all the governing factors and how they affect the sug-
gested model reveals that, for high values of the radiation parameter, thermal conductivity
parameter, and power law index, the cooling process that is hoped to be reached in more
industrial processes can be attained. Additionally, to fulfill the priceless explanation of
every physical phenomenon that results from the flow and mass transfer of non-Newtonian
Carreau nanofluid. The following table is designed to outline the anticipated behaviour
that may arise from the influence of controlling factors on the local skin-friction coefficient

Re
1
2
x C fx, the local Nusselt number Re

−1
2

x Nux, and the local Sherwood number Re
−1
2

x Shx. The
local skin-friction coefficient, the local Nusselt number, and the local Sherwood number
all rise naturally as the power law index improves, but they all decrease as the local Weis-
senberg number rises. It should be noted that higher values of the thermal conductivity
and radiation parameters both lead to increases in the local Nusselt number and local
Sherwood number findings. Further, it is observed that whereas increasing values of the
thermophoresis parameter exhibit the opposite tendency, both the local Nusselt number
and the local Sherwood number rise with the superior growth in the Prandtl number.
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Furthermore, the Lewis number greatly improved the local Sherwood number, whereas the
local Nusselt number behaved in the opposite manner.

Table 2. Values of Re
1
2
x C fx, Re

−1
2

x Nux and Re
−1
2

x Shx for various values of n, ε, We, Ec, R, Nb, Pr, Le and
Nt with m = 1

3 and r = 1
3 .

n We R ε Ec Nt Nb Pr Le Re
1
2
x C fx Re

−1
2

x Nux Re
−1
2

x Shx

0.5 3.0 0.5 0.2 0.2 0.1 0.5 2.0 1.0 1.05719 0.986153 1.15776
0.8 3.0 0.5 0.2 0.2 0.1 0.5 2.0 1.0 1.24664 1.023721 1.20708
1.2 3.0 0.5 0.2 0.2 0.1 0.5 2.0 1.0 1.45421 1.053810 1.24654
1.5 3.0 0.5 0.2 0.2 0.1 0.5 2.0 1.0 1.58807 1.068621 1.26604

0.8 0.0 0.5 0.2 0.2 0.1 0.5 2.0 1.0 1.35541 1.040711 1.22935
0.8 3.0 0.5 0.2 0.2 0.1 0.5 2.0 1.0 1.24664 1.023721 1.20708
0.8 9.0 0.5 0.2 0.2 0.1 0.5 2.0 1.0 1.11824 1.003390 1.17883

0.8 3.0 0.0 0.2 0.2 0.1 0.5 2.0 1.0 1.24664 0.828419 1.19063
0.8 3.0 0.5 0.2 0.2 0.1 0.5 2.0 1.0 1.24664 1.023721 1.20708
0.8 3.0 1.0 0.2 0.2 0.1 0.5 2.0 1.0 1.24664 1.181901 1.21687

0.8 3.0 0.5 0.0 0.2 0.1 0.5 2.0 1.0 1.24664 0.977921 1.20122
0.8 3.0 0.5 1.0 0.2 0.1 0.5 2.0 1.0 1.24664 1.161371 1.21987
0.8 3.0 0.5 2.0 0.2 0.1 0.5 2.0 1.0 1.24664 1.282780 1.22721

0.8 3.0 0.5 0.2 0.0 0.1 0.5 2.0 1.0 1.24664 1.121350 1.20399
0.8 3.0 0.5 0.2 0.5 0.1 0.5 2.0 1.0 1.24664 0.905632 1.21163
0.8 3.0 0.5 0.2 1.0 0.1 0.5 2.0 1.0 1.24664 0.759915 1.21905

0.8 3.0 0.5 0.2 0.2 0.0 0.5 2.0 1.0 1.24664 1.044761 1.24855
0.8 3.0 0.5 0.2 0.2 0.3 0.5 2.0 1.0 1.24664 0.982011 1.12713
0.8 3.0 0.5 0.2 0.2 0.5 0.5 2.0 1.0 1.24664 0.941321 1.05104

0.8 3.0 0.5 0.2 0.2 0.1 0.1 2.0 1.0 1.24664 1.256421 1.00359
0.8 3.0 0.5 0.2 0.2 0.1 0.3 2.0 1.0 1.24664 1.133360 1.17306
0.8 3.0 0.5 0.2 0.2 0.1 0.6 2.0 1.0 1.24664 0.973615 1.21561

0.8 3.0 0.5 0.2 0.2 0.1 0.5 1.5 1.0 1.24664 0.939186 1.00666
0.8 3.0 0.5 0.2 0.2 0.1 0.5 2.0 1.0 1.24664 1.023721 1.20708
0.8 3.0 0.5 0.2 0.2 0.1 0.5 3.0 1.0 1.24664 1.097102 1.54359

0.8 3.0 0.5 0.2 0.2 0.1 0.5 2.0 0.5 1.24664 1.089631 0.76433
0.8 3.0 0.5 0.2 0.2 0.1 0.5 2.0 1.0 1.24664 1.023721 1.20708
0.8 3.0 0.5 0.2 0.2 0.1 0.5 2.0 2.0 1.24664 0.965694 1.82509

6. Main Points

In this article, we looked into the problem of boundary layer Carreau nanofluid
flow across an impermeable nonlinearly stretching sheet. Analysis of heat and mass
transport is modelled under the conditions of thermal radiation, variable heat flux, and
viscous dissipation. We employ the shooting approach to address the problem because the
emergent system regulating the suggested model was highly nonlinear, forcing us to use
numerical technique. Comparison of the skin friction values taken into account shows that
the results show good accuracy. Below is a list of the main findings of this analysis:

1. Skin friction coefficient, heat transfer rate, and mass transfer rate are all improved
by raising the values of the power law index, while higher values of Weissenberg
number behave the reverse tendency.

2. By raising the Lewis number and the Brownian motion parameter, the temperature
profile grows and the concentration profile declines.

3. The enhancement of heat transfer and nanoparticle diffusion is caused by the presence
of thermal radiation and the variable conductivity of the nanofluid.

4. The local Nusselt and Sherwood numbers are suppressed by raising Prandtl number
values.
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5. Through the flow of nanofluids, the thermal conductivity parameter acts as a control-
ling factor of the cooling process.

6. A higher Eckert number along with heat flux greatly raises the temperature and only
slightly raises the concentration level.

7. Thermal radiation causes the temperature of the nanofluid to rise away from the sheet,
whereas the opposite tendency is seen along the sheet.

8. The Brownian motion parameter and the thermophoresis parameter have qualitatively
reciprocal effects on the concentration profile.

9. Future work will build on this research by examining mass flux and how it influences
flow through porous medium.
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