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* Correspondence: robert.cep@vsb.cz (R.Č.); drkanakkalita@veltech.edu.in (K.K.)

Abstract: Due to the increase in the impact of different manufacturing processes on the environment,
green manufacturing processes are the prime focus of many current pieces of research. In the current
article, a green machining process for stainless steel and SS304 and AISI1045 steel has been optimized
using newly developed Fuzzy Measurement Alternatives and Ranking according to the COmpromise
Solution (F-MARCOS) method in the form of two case studies. In the first case study, nose radius,
cutting speed, depth of cut, and feed rate are selected as the process parameters whereas surface
roughness, consumption of electrical energy, and power factor are the outputs. In the second case
study width of cut, depth of cut, feed rate, and cutting speed were the process parameters and
material removal rate (MRR), active energy consumption (ACE), and surface roughness (Ra) are the
response variables. The MARCOS method ranks the alternatives based on the ideal and anti-ideal
solutions for the different criteria. The inclusion of fuzzy logic adds worth to the model by using
a linguistic scale to make the method more practical and flexible. Based on the detailed analysis,
it ranked the best alternative in case study one which results in a power factor of 0.862, 26.68 kJ of
electrical energy consumption, and surface roughness of 0.36 µm. In the second case study, the best
alternative selected by this method gave an MRR of 2400 mm3/min and Ra of 2.29 µm and utilizes
53.988 kJ ACE.

Keywords: process optimization; MCDM; fuzzy; decision making; machining

1. Introduction

Green manufacturing refers to the manufacturing of goods with lesser environmental
impacts and higher safety for workers [1]. During machining operations to improve the
quality of the product and the life of the tool, different lubricants are being used which
causes the generation of harmful gases and affects the health of workers as well as the
environment. To overcome this issue, minimum quantity lubrication and dry machining
processes have been applied [2–6], where much less or no lubricant is used which is eco-
friendly as well as cost-effective. As the awareness of environmental issues is increasing,
dry machining is becoming more crucial.

In the case of the milling process, removal of workpiece material takes place by pressing
the rotating cutter towards the workpiece material in the presence of lubricant (lubricated) or
in the absence of lubricant (dry). Environmental issues related to the use of lubricant have
been discussed already, so in this article, the work of the dry milling process is analyzed. Any
process is affected by operating conditions and different parameters. A lot of research has
been done to study the effect of these parameters on the machining process by considering
various outputs such as surface roughness, tool wear, cutting forces, etc. [7–10]. Therefore,
the selection of these parameters plays an important role in the machining process. There
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are various techniques which have been used by different researchers to obtain the best
combinations of these machining parameters such as Genetic Algorithm [11], Taguchi
optimization [12], various kinds of multicriteria decision methods (MCDMs) such as the
technique for order of preference by similarity to ideal solution (TOPSIS) [13], multi-
objective optimization based on ratio analysis (MOORA) [14], gray relational analysis
(GRA) [15], particle swarm optimization (PSO) [16], etc. With the development of these
mathematical techniques, these MCDMs are also being used along with fuzzy logic to get
more precise parametric combinations.

Stankovic et al. [17] used Fuzzy MARCOS for the road traffic risk analysis, Taş et al. [18]
used this for supply chain management, Ali [19] applied it in solid waste management, Bakir
and Atalik [20] used this method for evaluating the e-service quality in the airline industry,
Kovač et al. [21] studied it for assessment of drone-based city logistics concepts, etc., and
reached a conclusion that this method is significantly stable and reliable in the dynamic
situations as well as for larger datasets.

Generally, in conventional optimization, either equal importance to each response
is given or they are studied individually as single objective optimization. The different
optimal combinations for the desired output are then computed. However, in the actual
situation consumers or users have different types of expectations of the final product, some
of which may be contradictory. Therefore, this work is motivated by the same problem
and tries to solve this issue by amalgamating the concept of MCDMs and fuzzy theory.
Specifically, the article makes the following contributions—

• A newly developed MCDM technique Measurement Alternatives and Ranking ac-
cording to the COmpromise Solution (MARCOS) in conjunction with fuzzy theory is
used to obtain the optimum combination of green milling parameters for machining
of SS 304 and AISI 1045 steel. To the best of the authors’ knowledge, Fuzzy-MARCOS
has so far not been used for machining process optimization.

• A linguistic scale is developed using Triangular Fuzzy Numbers (TFNs) to consider
different expectations of the product by different users.

• The proposed Fuzzy MARCOS utilizes fuzzy ideal and anti-ideal solutions for refer-
encing, it also provides a more precise utility degree, and a large set of alternatives
and criteria is considered for the analysis as well as makes the problem more realistic
by defining the linguistic scale based on TFNs.

• This article considers cutting speed (v), depth of cut (a), feed rate ( f ), and nose
radius (r) as the input variables to optimize the ratio of active to apparent power
consumption (PF), active cutting energy (ACE), and surface roughness (Ra) as the
response variables.

2. Methodology

A machining process requires a large amount of energy to remove material from the
workpiece to obtain the desired shape. The amount of energy required depends upon
the combination of different machining parameters such as cutting speed, feed depth of
cut and method of lubrication etc. To rate the quality of the machining, we consider vari-
ous response variables such as surface roughness, cutting force, tool wear, vibration, etc.
When it comes to green machining, the manufacturer must consider manufacturing aspects
(e.g., rate of removal of material, surface finish, wear, tear of tool, etc.) as well as environ-
mental aspects (e.g., power consumed, scrap produced, temperature, etc.). In the current
work, dry two cases for dry milling are considered for decision-making using the Fuzzy
MARCOS method discussed in the subsequent part.

2.1. Fuzzification

Fuzzification is the process of assigning the numerical input of a system to fuzzy sets
with some degree of membership. This degree of membership may be anywhere within the
interval [0, 1]. If it is 0, the value does not belong to the given fuzzy set, and if it is 1, then
the value completely belongs within the fuzzy set. Any value between 0 and 1 represents
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the degree of uncertainty that the value belongs to the set. The fuzzy sets are typically
described by words, and so by assigning the system input to the fuzzy sets, we can reason
with them in a linguistically natural manner.

2.2. MARCOS

MARCOS is a novel methodology with a variety of applications. The methodology
was developed based on both the ideal and anti-ideal solutions. Afterwards, the utility of
the alternatives is measured and then different functions are calculated based on the value
of the alternative utilities to finally find the alternative weightings and their ranking. The
methodology is applied to this study based on the following steps:

Step 1: Formulation of initial decision matrix which consists of m alternatives and
n criteria shown in Equation (1).

X =



x11 x12 . . . x1j . . . x1n
x21 x22 . . . x2j . . . x2n
. . . . . . . . . . . . . . . . . .
xi1 xi1 . . . xij . . . xin
. . . . . . . . . . . . . . . . . .
xm1 xm2 . . . xmj . . . xmn

 (1)

where x is a decision matrix.
Step 2: Now by combining anti-ideal (AAI) and ideal (AI) solutions which are defined

in Equations (2) and (3) with X , an extended decision matrix is formed. Represented by
X and shown in Equation (4). In Equations (2) and (3), B represents the beneficial criteria
while C represents the cost criteria.

AAI = minixij if j ∈ B and maxixij if j ∈ C (2)

AI = maxixij if j ∈ B and minixij if j ∈ C (3)

where AAI is the worst alternative and AI is the best alternative

X =

AAI
A1
. . .
Ai

Am
AI



xaa1 xaa2 . . . xaaj . . . xaan
x11 x12 . . . x1j . . . x1n
. . . . . . . . . . . . . . . . . .
xi1 xi1 . . . xi1 . . . xi1
xm1 xm2 . . . xmj . . . xmn
xa1 xa2 . . . xaj . . . xan

 (4)

Step 3: In the next step, normalization of the extended decision matrix is done using
Equations (5) and (6).

nij =
xai
xij

if j ∈ C (5)

nij =
xij

xαi
if j ∈ B (6)

where xij and xαi are elements of matrix X.
Step 4: Formulation of the weighted normalized matrix using Equation (7).

vij = wj × xij (7)

where wj is a row matrix shown in Equation (7) which consists of elements equal to the
number of criteria. Nij is the weighted normalized matrix which consists of

[
vij
]

m×n.
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Step 5: In the next step, the degree of utility is calculated using Equations (8) and (9)
based on ideal and anti-ideal solutions, respectively.

K−i =
Si

Saki
(8)

K+
i =

Si
Sai

(9)

where Si is calculated using Equation (10).

Si =
n

∑
i=1

vij (10)

where vij are the weighted normalized elements of the weighted normalized matrix (Nij)
obtained from Equation (7).

Step 6: Now, Equation (11) is used to obtain the utility function in which f
(
K−i
)

and
f
(
K+

i
)

shown in Equations (12) and (13) are the utility function in relation to AAI and AI,
respectively.

f (Ki) =
K+

i + K−i

1 +
1− f (K+

i )
f (K+

i )
+

1− f (K−i )
f (K−i )

(11)

f
(
K−i
)
=

K+
i

K+
i + K−i

(12)

f
(
K+

i
)
=

K−i
K+

i + K−i
(13)

Step 7: The ranking is given to the alternatives based on the utility function.

2.3. Fuzzy MARCOS

The introduction of fuzzy logic makes decision-making more precise as it considers
different factors as well as different perspectives. In the previous section, the methodology
of the MARCOS method was discussed. The steps involved in the Fuzzy MARCOS method
are described in this section. Just like the MARCOS method first, two steps of Fuzzy
MARCOS involve the formation of an initial decision matrix followed by the creation of an
extended decision matrix.

Step 3: After creating an extended decision matrix, normalization of the fuzzy matrix
is done by using Equations (14) and (15).

ñij =
(

nl
ij, nm

ij , nu
ij

)
=

(
xl

id
xu

ij
,

xl
id

xm
ij

,
xl

id

xl
ij

)
if j ∈ C (14)

ñij =
(

nl
ij, nm

ij , nu
ij

)
=

(
xl

ij

xu
id

,
xm

ij

xu
id

,
xu

ij

xu
id

)
if j ∈ B (15)

Step 4: In step 4, the weighted fuzzy matrix is computed with the help of Equation (16).

ṽij =
(

vl
ij, vm

ij , vu
ij

)
= ñij ⊗ w̃j =

(
nl

ij × wl
j, nm

ij × wm
j , nu

ij × wu
j

)
(16)

Step 5: In this step, the utility degree for each alternative is calculated using
Equations (17) and (18).

K̃−i =
S̃i

S̃ai
=

(
sl

i
su

ai
,

sm
i

sm
ai

,
su

i

sl
ai

)
(17)
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K̃+
i = S̃i

S̃id
=

(
sl

i
su

id
, sm

i
sm

id
, su

i
sl

id

)
(18)

Step 6: Now, fuzzy matrix T̃i is calculated from Equation (19).

T̃i = t̃i =
(

tl
i , tm

i , tu
i

)
= K̃−i ⊕ K̃+

i =
(

k−l
i + k+l

i , k−m
i + k+m

i , k−u
i + k+u

i

)
(19)

Step 7: Calculation of fuzzy matrix is followed by the determination of utility function
for the ideal and anti-ideal solution as shown in Equations (20) and (21), respectively.

f
(

K̃+
i

)
=

K̃−i
d fcrisp

=

(
k−l

i
d fcrisp

,
k−m

i
d fcrisp

,
k−u

i
d fcrisp

)
(20)

f
(

K̃−i
) K̃+

i
d fcrisp

=

(
k+l

i
d fcrisp

,
k+m

i
d fcrisp

,
k+u

i
d fcrisp

)
(21)

where
d fcrisp =

l + 4m + u
6

(22)

d fcrisp is obtained from a fuzzy number D̃, which is calculated using Equation (23),

D̃ =
(

dl , dm, du
)
= max

i
t̃ij (23)

A flowchart describing the process followed in the Fuzzy MARCOS is detailed in
Figure 1.
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Table 1 shows the fuzzy scale for the analysis, in which nine linguistic terms were
defined based on TFNs. This scale will be used for both case studies to analyze the results
and rank the alternatives. The worst priority is defined by the linguistic term ‘Extremely
poor (EP)’ given by (1,1,1) TFN, while the best priority set is defined by the term ‘Extremely
Good, i.e., EG’, and the TFN given to it is (7,9,9).
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Table 1. Fuzzy scale used in the study.

Linguistic Term for Importance of Criteria Symbol Triangular Fuzzy Number

Extremely Poor EP (1,1,1)
Very Poor VP (1,1,3)

Poor P (1,3,3)
Medium Poor MP (3,3,5)

Medium M (3,5,5)
Medium Good MG (5,5,7)

Good G (5,7,7)
Very Good VG (7,7,9)

Extremely Good EG (7,9,9)

3. Case Study 1: Green Dry Milling of SS 304 Steel
3.1. Problem Description

The experimental data for the current work are taken from the previously pub-
lished work by Nguyen et al. [22]. They used a computer numerical control Spinner
U620 machining center for the milling of SS304 steel in dry conditions with dimensions
350 mm × 150 mm × 25 mm. The process parameters for the operations were feed rate ( f ),
node radius (r), depth of cut (a), and cutting speed (v). During the experiments, three levels
of each parameter were selected. For the planning of experiments, 25 combinations of these
parameters were obtained by using a Box–Behnken design. The response variables for the
experiments were PF (ratio of active power consumption to the apparent consumption
of power during experiments), EC (Electrical energy consumed in KJ), and Ra (Average
surface roughness in micro-meter). Out of all these three response variables, Ra and EC
were analyzed considering the smaller-the-better approach while in the case of PF, lager-
the-better was considered ideal. Table 2 shows the experimental plan for the current work
along with the output obtained after the experiments for each response.

Table 2. Experimental dataset on green dry milling of SS 304 steel (case study 1) [22].

Exp.no. v (m/min) a (mm) f (mm/s) r (mm) PF EC (kJ) Ra (µm)

1 110 0.2 0.04 0.4 0.518 50.33 0.45
2 110 0.6 0.12 0.8 0.867 25.46 1.08
3 110 0.6 0.08 0.4 0.652 31.56 0.85
4 60 0.6 0.08 0.2 0.611 53.66 1.34
5 160 0.6 0.12 0.4 0.851 18.42 0.95
6 60 0.6 0.12 0.4 0.736 42.6 1.47
7 110 0.2 0.12 0.4 0.69 21.99 1.14
8 60 0.6 0.08 0.8 0.685 59.13 0.78
9 60 1 0.08 0.4 0.703 61.68 1.31
10 110 1 0.12 0.4 0.868 26.72 1.49
11 110 1 0.08 0.2 0.732 35.41 1.42
12 160 0.6 0.08 0.2 0.719 22.84 0.89
13 160 1 0.08 0.4 0.835 27.26 0.79
14 60 0.2 0.08 0.4 0.547 48.96 0.82
15 160 0.6 0.04 0.4 0.69 44.62 0.47
16 110 0.6 0.04 0.2 0.566 54.03 0.98
17 60 0.6 0.04 0.4 0.529 94.95 0.82
18 110 1 0.04 0.4 0.659 63.82 1.06
19 160 0.2 0.08 0.4 0.671 22.07 0.41
20 110 0.6 0.12 0.2 0.752 23.74 1.55
21 110 0.6 0.04 0.8 0.648 62.35 0.52
22 160 0.6 0.08 0.8 0.862 26.68 0.36
23 110 0.2 0.08 0.2 0.576 28.23 0.91
24 110 0.2 0.08 0.8 0.681 32.95 0.48
25 110 1 0.08 0.8 0.843 39.02 0.89
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3.2. Discussion

To apply fuzzy MARCOS to the experiments, weightage for different criteria is given
according to four different experts. It should be noted here that the experts assign the
criteria importance based on their understanding and opinion on the problem. Thus, it
is often possible that all linguistic terms in the fuzzy scale may not be covered in their
assigned linguistic weights. For example, in Table 3, EP, VP, and EG linguistic terms do not
appear as no expert has assigned them to any of the criteria.

Table 3. Experimental dataset on green dry milling of SS 304 steel.

Decision
Maker

Linguistic Term Triangular Fuzzy Number

PF EC (kJ) Ra (µm) PF EC (kJ) Ra (µm)

Expert 1 VG M G (7,7,9) (3,5,5) (5,7,7)
Expert 2 MG G M (5,5,7) (5,7,7) (3,5,5)
Expert 3 G MG P (5,7,7) (5,5,7) (1,3,3)
Expert 4 VG MP MP (7,7,9) (3,3,5) (3,3,5)

These weights are shown in Table 3 based on the TFNs. Expert 1 gives the most
importance to PF and the least importance to EC. According to the 2nd expert, highest
priority is given to EC and lowest to Ra, while for the 3rd and 4th experts, PF is most
important but Ra is least important for the former while the latter has given the same
importance to EC and Ra.

Based on the aggregation of the TFNs for each of the criteria for all the experts,
the following fuzzy weights are obtained—(6,6.5,8), (4,5,6), and (3,4.5,5) for PF, EC, and
Ra, respectively.

The normalization of the extended fuzzy decision matrix is done using Equations (14) and (15).
However, in this case, since the initial decision matrix data in Table 2 is crisp data, the
normalization is done using Equations (5) and (6). A sample calculation of the normalized
values is shown below for the A1 alternative—

0.518
0.868

= 0.5968;
50.33
18.42

= 0.366;
0.45
0.36

= 0.8;

Next, the fuzzy weighted normalized decision matrix is constructed by using Equation (16).
A sample calculation of the fuzzy weighted normalized values is shown below for
A1 alternative—

ṽ11 =
(

vl
11, vm

11, vu
11

)
= 0.5968⊗ (6, 6.5, 8)

ṽ11 =
(

vl
11, vm

11, vu
11

)
= (0.5968× 6, 0.5968× 6.5, 0.5968× 8)

ṽ11 =
(

vl
11, vm

11, vu
11

)
= (3.5806, 3.8790, 4.7742)

Next, the value of S̃i was obtained by the summation of the TFNs for each alternative.

A sample calculation of S̃i value is shown below for the A1 alternative—

S̃1 = ((3.5806 + 1.4639 + 2.4), (3.879 + 1.8299 + 3.6), (4.772 + 2.1959 + 4))

S̃1 = (7.4446, 9.309, 10.9701)

Table 4 shows the normalized fuzzy matrix and the value of S̃i for each alternative.
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Table 4. Fuzzy weighted normalized decision matrix and S̃i values (case study 1).

Alternative PF EC (kJ) Ra (µm) S̃i

AAI (3.5806, 3.879, 4.7742) (0.776, 0.97, 1.164) (0.6968, 1.0452, 1.1613) (5.0534, 5.8942, 7.0995)
A1 (3.5806, 3.879, 4.7742) (1.4639, 1.8299, 2.1959) (2.4, 3.6, 4) (7.4446, 9.309, 10.9701)
A2 (5.9931, 6.4925, 7.9908) (2.894, 3.6174, 4.3409) (1, 1.5, 1.6667) (9.887, 11.61, 13.9984)
A3 (4.5069, 4.8825, 6.0092) (2.3346, 2.9183, 3.5019) (1.2706, 1.9059, 2.1176) (8.1121, 9.7066, 11.6288)
A4 (4.2235, 4.5755, 5.6313) (1.3731, 1.7164, 2.0596) (0.806, 1.209, 1.3433) (6.4026, 7.5008, 9.0343)
A5 (5.8825, 6.3727, 7.8433) (4, 5, 6) (1.1368, 1.7053, 1.8947) (11.0193, 13.078, 15.7381)
A6 (5.0876, 5.5115, 6.7834) (1.7296, 2.162, 2.5944) (0.7347, 1.102, 1.2245) (7.5518, 8.7755, 10.6023)
A7 (4.7696, 5.1671, 6.3594) (3.3506, 4.1883, 5.0259) (0.9474, 1.4211, 1.5789) (9.0676, 10.7764, 12.9643)
A8 (4.735, 5.1296, 6.3134) (1.2461, 1.5576, 1.8691) (1.3846, 2.0769, 2.3077) (7.3657, 8.7641, 10.4902)
A9 (4.8594, 5.2644, 6.4793) (1.1946, 1.4932, 1.7918) (0.8244, 1.2366, 1.374) (6.8784, 7.9942, 9.6451)
A10 (6, 6.5, 8) (2.7575, 3.4469, 4.1362) (0.7248, 1.0872, 1.2081) (9.4823, 11.0341, 13.3443)
A11 (5.0599, 5.4816, 6.7465) (2.0808, 2.601, 3.1212) (0.7606, 1.1408, 1.2676) (7.9012, 9.2234, 11.1353)
A12 (4.97, 5.3842, 6.6267) (3.2259, 4.0324, 4.8389) (1.2135, 1.8202, 2.0225) (9.4094, 11.2368, 13.4881)
A13 (5.7719, 6.2529, 7.6959) (2.7029, 3.3786, 4.0543) (1.3671, 2.0506, 2.2785) (9.8418, 11.6821, 14.0286)
A14 (3.7811, 4.0962, 5.0415) (1.5049, 1.8811, 2.2574) (1.3171, 1.9756, 2.1951) (6.6031, 7.9529, 9.4939)
A15 (4.7696, 5.1671, 6.3594) (1.6513, 2.0641, 2.4769) (2.2979, 3.4468, 3.8298) (8.7187, 10.678, 12.6662)
A16 (3.9124, 4.2385, 5.2166) (1.3637, 1.7046, 2.0455) (1.102, 1.6531, 1.8367) (6.3782, 7.5961, 9.0989)
A17 (3.6567, 3.9614, 4.8756) (0.776, 0.97, 1.164) (1.3171, 1.9756, 2.1951) (5.7497, 6.907, 8.2347)
A18 (4.5553, 4.9349, 6.0737) (1.1545, 1.4431, 1.7317) (1.0189, 1.5283, 1.6981) (6.7287, 7.9063, 9.5036)
A19 (4.6382, 5.0248, 6.1843) (3.3385, 4.1731, 5.0077) (2.6341, 3.9512, 4.3902) (10.6109, 13.1491, 15.5823)
A20 (5.1982, 5.6313, 6.9309) (3.1036, 3.8795, 4.6554) (0.6968, 1.0452, 1.1613) (8.9986, 10.556, 12.7476)
A21 (4.4793, 4.8525, 5.9724) (1.1817, 1.4771, 1.7726) (2.0769, 3.1154, 3.4615) (7.7379, 9.4451, 11.2065)
A22 (5.9585, 6.4551, 7.9447) (2.7616, 3.452, 4.1424) (3, 4.5, 5) (11.7201, 14.4071, 17.0871)
A23 (3.9816, 4.3134, 5.3088) (2.61, 3.2625, 3.915) (1.1868, 1.7802, 1.978) (7.7784, 9.3561, 11.2018)
A24 (4.7074, 5.0997, 6.2765) (2.2361, 2.7951, 3.3542) (2.25, 3.375, 3.75) (9.1935, 11.2698, 13.3807)
A25 (5.8272, 6.3128, 7.7696) (1.8883, 2.3603, 2.8324) (1.2135, 1.8202, 2.0225) (8.9289, 10.4933, 12.6245)
AI (6, 6.5, 8) (4, 5, 6) (3, 4.5, 5) (13, 16, 19)

Similarly, for the value of S̃i of AI, the following calculation is shown,

S̃AI = ((6 + 4 + 3), (6.5 + 5 + 4.5), (8 + 6 + 5))

S̃AI = (13, 16, 19)

In Table 5, utility degrees and utility functions are calculated for each alternative using
Equations (17)–(21). Sample calculations for the A1 alternative are shown below—

K̃−1 =
S̃1

S̃ai
=

(
7.4446
7.0995

,
9.3090
5.8942

,
10.9701
5.0534

)
= (1.0486, 1.5793, 2.1708)

K̃+
1 =

S̃1

S̃id
=

(
7.4446

19
,

9.3090
16

,
10.9701

13

)
= (0.3918, 0.5818, 0.8439)

Next, the T̃i fuzzy matrix is computed as

T̃1 = K̃−1 ⊕ K̃+
1 = (1.0486 + 0.3918, 1.5793 + 0.5818, 2.1708 + 0.8439) = (1.4404, 2.1612, 3.0147)

Following this, the fuzzy number D̃ is computed from
>˜
T i fuzzy matrix and subse-

quently the d fcrisp is computed.

D̃ =
(

dl , dm, du
)
= (2.2677, 3.3447, 4.6957)

d fcrisp =

(
2.2677 + (4× 3.3447) + 4.6957

6

)
= 3.3904
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Sample calculation for A1 alternative for f
(

K̃−i
)

and f
(

K̃+
i

)
are as follows,

f
(

K̃+
1

)
=

K̃−1
d fcrisp

=

(
1.0486
3.3904

,
1.5793
3.3904

,
2.1708
3.3904

)
= (0.3093, 0.4658, 0.6403)

f
(

K̃−i
) K̃+

i
d fcrisp

=

(
0.3918
3.3904

,
0.5818
3.3904

,
0.8439
3.3904

)
= (0.1156, 0.1716, 0.2489)

Table 5. Utility degree of alternatives and utility functions (case study 1).

Alternative
Utility Degree Utility Functions

~
K
−
i

~
K

+
i f

(
~
K
−
i

)
f
(

~
K

+
i

)
A1 (1.0486, 1.5793, 2.1708) (0.3918, 0.5818, 0.8439) (0.1156, 0.1716, 0.2489) (0.3093, 0.4658, 0.6403)
A2 (1.3926, 1.9697, 2.7701) (0.5204, 0.7256, 1.0768) (0.1535, 0.214, 0.3176) (0.4108, 0.581, 0.817)
A3 (1.1426, 1.6468, 2.3012) (0.427, 0.6067, 0.8945) (0.1259, 0.1789, 0.2638) (0.337, 0.4857, 0.6787)
A4 (0.9018, 1.2726, 1.7878) (0.337, 0.4688, 0.6949) (0.0994, 0.1383, 0.205) (0.266, 0.3753, 0.5273)
A5 (1.5521, 2.2188, 3.1143) (0.58, 0.8174, 1.2106) (0.1711, 0.2411, 0.3571) (0.4578, 0.6544, 0.9186)
A6 (1.0637, 1.4888, 2.098) (0.3975, 0.5485, 0.8156) (0.1172, 0.1618, 0.2406) (0.3137, 0.4391, 0.6188)
A7 (1.2772, 1.8283, 2.5655) (0.4772, 0.6735, 0.9973) (0.1408, 0.1987, 0.2941) (0.3767, 0.5393, 0.7567)
A8 (1.0375, 1.4869, 2.0759) (0.3877, 0.5478, 0.8069) (0.1143, 0.1616, 0.238) (0.306, 0.4386, 0.6123)
A9 (0.9689, 1.3563, 1.9086) (0.362, 0.4996, 0.7419) (0.1068, 0.1474, 0.2188) (0.2858, 0.4, 0.563)
A10 (1.3356, 1.872, 2.6407) (0.4991, 0.6896, 1.0265) (0.1472, 0.2034, 0.3028) (0.3939, 0.5522, 0.7789)
A11 (1.1129, 1.5648, 2.2035) (0.4159, 0.5765, 0.8566) (0.1227, 0.17, 0.2526) (0.3283, 0.4615, 0.6499)
A12 (1.3254, 1.9064, 2.6691) (0.4952, 0.7023, 1.0375) (0.1461, 0.2071, 0.306) (0.3909, 0.5623, 0.7873)
A13 (1.3863, 1.982, 2.7761) (0.518, 0.7301, 1.0791) (0.1528, 0.2154, 0.3183) (0.4089, 0.5846, 0.8188)
A14 (0.9301, 1.3493, 1.8787) (0.3475, 0.4971, 0.7303) (0.1025, 0.1466, 0.2154) (0.2743, 0.398, 0.5541)
A15 (1.2281, 1.8116, 2.5065) (0.4589, 0.6674, 0.9743) (0.1353, 0.1968, 0.2874) (0.3622, 0.5343, 0.7393)
A16 (0.8984, 1.2888, 1.8005) (0.3357, 0.4748, 0.6999) (0.099, 0.14, 0.2064) (0.265, 0.3801, 0.5311)
A17 (0.8099, 1.1718, 1.6295) (0.3026, 0.4317, 0.6334) (0.0893, 0.1273, 0.1868) (0.2389, 0.3456, 0.4806)
A18 (0.9478, 1.3414, 1.8806) (0.3541, 0.4941, 0.731) (0.1045, 0.1457, 0.2156) (0.2795, 0.3956, 0.5547)
A19 (1.4946, 2.2309, 3.0835) (0.5585, 0.8218, 1.1986) (0.1647, 0.2424, 0.3535) (0.4408, 0.658, 0.9095)
A20 (1.2675, 1.7909, 2.5226) (0.4736, 0.6598, 0.9806) (0.1397, 0.1946, 0.2892) (0.3738, 0.5282, 0.744)
A21 (1.0899, 1.6024, 2.2176) (0.4073, 0.5903, 0.862) (0.1201, 0.1741, 0.2543) (0.3215, 0.4726, 0.6541)
A22 (1.6508, 2.4443, 3.3813) (0.6168, 0.9004, 1.3144) (0.1819, 0.2656, 0.3877) (0.4869, 0.7209, 0.9973)
A23 (1.0956, 1.5873, 2.2167) (0.4094, 0.5848, 0.8617) (0.1207, 0.1725, 0.2542) (0.3232, 0.4682, 0.6538)
A24 (1.295, 1.912, 2.6479) (0.4839, 0.7044, 1.0293) (0.1427, 0.2078, 0.3036) (0.3819, 0.564, 0.781)
A25 (1.2577, 1.7803, 2.4982) (0.4699, 0.6558, 0.9711) (0.1386, 0.1934, 0.2864) (0.371, 0.5251, 0.7368)

After obtaining the utility degree and the utility function for each alternative defuzzi-
fication of the utility function, the utility degree for the ideal as well as the anti-ideal
solution is done. The defuzzified value of utility degree and function along with the final
ranking of the alternatives is given in Table 6. Sample calculations for the A1 alternative
are shown below,

K−1 =

(
1.0486 + (4× 1.5793) + 2.1708

6

)
= 1.5895

K+
1 =

(
0.3918 + (4× 0.5818) + 0.8439

6

)
= 0.5938

f
(
K−1
)
=

(
0.1156 + (4× 0.1716) + 0.2489

6

)
= 0.1751

f
(
K+

1
)
=

(
(0.3093 + ( 4× 0.4658) + 0.6403)

6

)
= 0.4688
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(
1− f

(
K−1
))

f
(
K−1
) =

(1− 0.1751)
0.1751

= 4.7095

(
1− f

(
K+

1
))

f
(
K+

1
) =

(1− 0.4688 )

0.4688
= 1.1330

f (K1) =
K+

1 + K−1

1 +
(

1− f (K+
1 )

f (K+
1 )

)
+

(
1− f (K−1 )

f (K−1 )

) =
0.5938 + 1.5895

1 + 1.1330 + 4.7095
= 0.3191

Table 6. Defuzzied utility degree, utility functions, and ranks of the alternatives (case study 1).

Alternative K−i K+
i f

(
K−i
)

f
(
K+

i
) (1−f(K−i ))

f(K−i )
(1−f(K+

i ))
f(K+

i )
f(Ki) Rank

A1 1.5895 0.5938 0.1751 0.4688 4.7095 1.1330 0.3191 17
A2 2.0069 0.7499 0.2212 0.5920 3.5209 0.6893 0.5291 5
A3 1.6718 0.6247 0.1843 0.4931 4.4273 1.0279 0.3558 13
A4 1.2966 0.4845 0.1429 0.3824 5.9974 1.6147 0.2068 24
A5 2.2569 0.8433 0.2487 0.6657 3.0202 0.5022 0.6855 2
A6 1.5195 0.5678 0.1675 0.4482 4.9709 1.2312 0.2898 18
A7 1.8593 0.6948 0.2049 0.5484 3.8799 0.8235 0.4478 9
A8 1.5102 0.5643 0.1664 0.4454 5.0084 1.2450 0.2860 19
A9 1.3838 0.5171 0.1525 0.4081 5.5567 1.4501 0.2374 20

A10 1.9107 0.7140 0.2106 0.5636 3.7484 0.7744 0.4753 8
A11 1.5960 0.5964 0.1759 0.4707 4.6850 1.1244 0.3220 16
A12 1.9367 0.7237 0.2134 0.5712 3.6850 0.7506 0.4894 6
A13 2.0150 0.7529 0.2221 0.5943 3.5029 0.6825 0.5338 4
A14 1.3677 0.5110 0.1507 0.4034 5.6347 1.4790 0.2315 21
A15 1.8302 0.6838 0.2017 0.5398 3.9583 0.8525 0.4326 10
A16 1.3090 0.4891 0.1443 0.3861 5.9318 1.5901 0.2110 23
A17 1.1878 0.4438 0.1309 0.3503 6.6394 1.8544 0.1719 25
A18 1.3657 0.5103 0.1505 0.4028 5.6440 1.4826 0.2308 22
A19 2.2503 0.8407 0.2480 0.6637 3.0327 0.5067 0.6809 3
A20 1.8256 0.6822 0.2012 0.5385 3.9698 0.8571 0.4304 11
A21 1.6195 0.6051 0.1785 0.4777 4.6031 1.0934 0.3322 14
A22 2.4682 0.9222 0.2720 0.7280 2.6765 0.3736 0.8371 1
A23 1.6103 0.6017 0.1775 0.4750 4.6349 1.1055 0.3282 15
A24 1.9318 0.7218 0.2129 0.5698 3.6974 0.7550 0.4867 7
A25 1.8128 0.6774 0.1998 0.5347 4.0050 0.8702 0.4239 12

After applying the complete fuzzy MARCOS methodology, the given data for green
machining of SS 304 alternative 22 were the best alternative for the experiments. This
suggests that a cutting speed of 160 m/min, 0.6 mm depth of cut, 0.08 mm/s feed, and
nose radius of 0.8 mm was the best combination for the operation. This combination had
0.862 PF, 26.68 kJ of the utilization of electrical energy, and produced a surface roughness of
0.36 µm. Alternative 17 was provided with the least rank by the complete analysis. From
the analysis, we can say that a combination of v = 60 m/min, a = 0.6 mm, f = 0.04 mm/s,
and r = 0.4 mm which have a PF ratio of 0.529, consumes 94.95 kJ of electrical energy and
produces 0.82 µm surface roughness.

Level-wise aggregation is applied for each of the four process parameters and the
corresponding f (Ki) is computed. As shown in Figure 2, this helps in identifying the
most suitable level for each process parameter. For Figure 2, it can be summarized that
on an aggregated level, v = 160 m/min, a = 0.2 mm, f = 0.12 mm/s, and r = 0.8 mm is
most suitable.



Processes 2022, 10, 2645 11 of 16Processes 2022, 10, x FOR PEER REVIEW 11 of 16 
 

 

 
Figure 2. Level-wise aggregated f (K_i) score for each process parameter. 

The obtained results are compared with existing solutions from the literature and 
reported in Table 7. Since for the obtained parametric combination, the experimental val-
ues are not available, the corresponding response values are calculated by using the math-
ematical equations presented by Das and Chakraborty [23]. It should be noted that the 
response values reported by Das and Chakraborty [23] are calculated by the same mathe-
matical equations. From Table 7, it is observed that the current solutions are better than 
those in the literature, especially for PF response. 

Table 7. Comparison with results from literature. 

Source 𝒗 (m/min) 𝒂 (mm) 𝒇 (mm/s) 𝒓 (mm) PF EC(kJ) Ra (𝛍𝐦) Average 
Current 160 0.2 0.12 0.8 0.9908 23.2264 0.2949 - 

Nguyen et al. [22] 160 0.42 0.09 0.8 0.8360 20.6300 0.3500 - 
% Improvement - - - - 18.52% −12.59% 15.74% 7.22% 

Das and Chakraborty [23] 160 1 0.08 0.8 0.9830 19.9288 0.3921 - 
% Improvement - - - - 0.79% −16.55% 24.79% 3.01% 

Das and Chakraborty [23] 160 0.2 0.08 0.8 0.8695 19.9288 0.2947 - 
% Improvement - - - - 13.95% −16.55% −0.07% −0.89% 

4. Case Study 2: Green Face Milling of AISI 1045 Steel 
4.1. Problem Description 

The experimental data for the current work are taken from the previously published 
work by Khan et al. [24]. They used a computer numerical control Spinner U620 machin-
ing center for the milling of AISI 1045 steel in dry condition. The process parameters for 
the operations were feed rate (𝑓), width of cut (𝑤), depth of cut (𝑎), and cutting speed (𝑣). 
during the experiments, three levels of each parameter were selected as shown in Table 8. 
For the planning of experiments, 27 combinations of these parameters were obtained by 
using Taguchi’s orthogonal design. The response variables for the experiments were 
MRR, ACE, and Ra. Out of all these three response variables, Ra and EC were analyzed 
considering smaller-the-better approach while for MRR lager-the-better was considered 
ideal. Table 8 shows the experimental plan for the current work along with the output 
obtained after the experiments for each response. 

  

Figure 2. Level-wise aggregated f (K_i) score for each process parameter.

The obtained results are compared with existing solutions from the literature and
reported in Table 7. Since for the obtained parametric combination, the experimental
values are not available, the corresponding response values are calculated by using the
mathematical equations presented by Das and Chakraborty [23]. It should be noted that
the response values reported by Das and Chakraborty [23] are calculated by the same
mathematical equations. From Table 7, it is observed that the current solutions are better
than those in the literature, especially for PF response.

Table 7. Comparison with results from literature.

Source v (m/min) a (mm) f (mm/s) r (mm) PF EC (kJ) Ra (µm) Average

Current 160 0.2 0.12 0.8 0.9908 23.2264 0.2949 -
Nguyen et al. [22] 160 0.42 0.09 0.8 0.8360 20.6300 0.3500 -
% Improvement - - - - 18.52% −12.59% 15.74% 7.22%

Das and Chakraborty [23] 160 1 0.08 0.8 0.9830 19.9288 0.3921 -
% Improvement - - - - 0.79% −16.55% 24.79% 3.01%

Das and Chakraborty [23] 160 0.2 0.08 0.8 0.8695 19.9288 0.2947 -
% Improvement - - - - 13.95% −16.55% −0.07% −0.89%

4. Case Study 2: Green Face Milling of AISI 1045 Steel
4.1. Problem Description

The experimental data for the current work are taken from the previously published
work by Khan et al. [24]. They used a computer numerical control Spinner U620 machining
center for the milling of AISI 1045 steel in dry condition. The process parameters for the
operations were feed rate ( f ), width of cut (w), depth of cut (a), and cutting speed (v).
during the experiments, three levels of each parameter were selected as shown in Table 8.
For the planning of experiments, 27 combinations of these parameters were obtained
by using Taguchi’s orthogonal design. The response variables for the experiments were
MRR, ACE, and Ra. Out of all these three response variables, Ra and EC were analyzed
considering smaller-the-better approach while for MRR lager-the-better was considered
ideal. Table 8 shows the experimental plan for the current work along with the output
obtained after the experiments for each response.
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Table 8. Experimental dataset on green dry milling of AISI 1045 steel (case study 2) [24].

Exp.no. v (rev/min) f (mm/min) a (mm) w (mm) MRR (mm3/min) Ra (µm) ACE (kJ)

1 1200 220 0.3 5 330 3.3 535.802
2 1200 220 0.4 10 880 2.95 184.929
3 1200 220 0.5 15 1650 1.41 88.519
4 1200 270 0.3 5 405 3.83 426.109
5 1200 270 0.4 10 1080 3.87 146.05
6 1200 270 0.5 15 2025 1.68 69.823
7 1200 320 0.3 5 480 3.97 361.832
8 1200 320 0.4 10 1280 3.53 122.976
9 1200 320 0.5 15 2400 2.29 53.988
10 1700 220 0.3 10 660 1.81 337.042
11 1700 220 0.4 15 1320 1.13 142.727
12 1700 220 0.5 5 550 3.47 299.031
13 1700 270 0.3 10 810 2.85 269.604
14 1700 270 0.4 15 1620 1.41 113.648
15 1700 270 0.5 5 675 3.91 238.476
16 1700 320 0.3 10 960 2.55 213.559
17 1700 320 0.4 15 1920 1.39 92.551
18 1700 320 0.5 5 800 4.12 193.109
19 2200 220 0.3 15 990 1.76 244.303
20 2200 220 0.4 5 440 3.33 425.797
21 2200 220 0.5 10 1100 2.36 165.62
22 2200 270 0.3 15 1215 1.17 193.939
23 2200 270 0.4 5 540 3.72 338.579
24 2200 270 0.5 10 1350 2.58 131.343
25 2200 320 0.3 15 1440 1.41 160.886
26 2200 320 0.4 5 640 3.86 286.85
27 2200 320 0.5 10 1600 2.76 108.147

4.2. Discussion

To apply fuzzy MARCOS to experiments weightage for different criteria is given
according to four different experts. These weights are shown in Table 9 based on the TFNs.
According to 1st and 2nd experts, MRR (EG and VG, respectively) is the most important
but the former gives the least importance which is the same for Ra and ACE (MP) while
the latter gives the least to ACE (MG). According to expert 3, most important is MRR and
ACE (G) and the least important is Ra (MG). According to the 4th expert, highest priority is
allocated to MRR (G) and the lowest to ACE (P).

Table 9. Experimental dataset on green dry milling of AISI 1045 steel (case study 2).

Decision
Maker

Linguistic Term Triangular Fuzzy Number

MRR (mm3/min) Ra (µm) ACE (kJ) MRR (mm3/min) Ra (µm) ACE (kJ)

Expert 1 EG MP MP (7,9,9) (3,3,5) (3,3,5)
Expert 2 VG G MG (7,7,9) (5,7,7) (5,5,7)
Expert 3 G MG G (5,7,7) (5,5,7) (5,7,7)
Expert 4 G MG P (5,7,7) (5,5,7) (1,3,3)

After assigning the weightage according to the fuzzy scale to each criterion, a fuzzy
normalized matrix is created, which is followed by the calculation of the utility degree
and the utility function for each alternative along with the S̃i values based on ideal and
anti-ideal solutions using Equations (14)–(21). After obtaining the utility degree and the
utility function for each alternative defuzzification of the utility function, the utility degree
for the ideal as well as the anti-ideal solution is done. The defuzzified value of utility
degree and function along with the final ranking of the alternatives is given in Table 10.
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Table 10. Defuzzied utility degree, utility functions, and ranks of the alternatives (case study 2).

Alternative K−i K+
i f

(
K−i
)

f
(
K+

i
) (1−f(K−i ))

f(K−i )
(1−f(K+

i ))
f(K+

i )
f(Ki) K−i

A1 1.1462 0.1942 0.0326 0.1922 29.7081 4.2033 0.0384 27
A2 2.1212 0.3594 0.0603 0.3557 15.5956 1.8116 0.1348 16
A3 4.2299 0.7166 0.1202 0.7093 7.3221 0.4099 0.5665 4
A4 1.1818 0.2002 0.0336 0.1982 28.7837 4.0463 0.0409 26
A5 2.2947 0.3887 0.0652 0.3848 14.3419 1.5990 0.1584 14
A6 4.6603 0.7895 0.1324 0.7814 6.5540 0.2797 0.6957 2
A7 1.2798 0.2168 0.0364 0.2146 26.5041 3.6599 0.0480 25
A8 2.6735 0.4529 0.0759 0.4483 12.1684 1.2307 0.2171 11
A9 5.0999 0.8639 0.1449 0.8551 5.9032 0.1694 0.8432 1

A10 2.1151 0.3584 0.0601 0.3547 15.6407 1.8196 0.1340 17
A11 3.8667 0.6552 0.1099 0.6484 8.1028 0.5423 0.4688 6
A12 1.4809 0.2509 0.0421 0.2483 22.7699 3.0272 0.0646 22
A13 1.9234 0.3259 0.0546 0.3225 17.3014 2.1006 0.1102 18
A14 3.9816 0.6746 0.1131 0.6676 7.8409 0.4978 0.4986 5
A15 1.6221 0.2748 0.0461 0.2720 20.7012 2.6765 0.0778 20
A16 2.2552 0.3821 0.0641 0.3782 14.6088 1.6444 0.1529 15
A17 4.5004 0.7624 0.1278 0.7546 6.8221 0.3252 0.6460 3
A18 1.8153 0.3075 0.0516 0.3044 18.3922 2.2852 0.0979 19
A19 2.6017 0.4408 0.0739 0.4362 12.5296 1.2923 0.2053 12
A20 1.3011 0.2204 0.0370 0.2182 26.0535 3.5838 0.0497 24
A21 2.5891 0.4386 0.0736 0.4341 12.5961 1.3034 0.2032 13
A22 3.5307 0.5982 0.1003 0.5920 8.9692 0.6891 0.3874 8
A23 1.3962 0.2365 0.0397 0.2341 24.2122 3.2716 0.0573 23
A24 2.9206 0.4948 0.0830 0.4897 11.0536 1.0420 0.2608 10
A25 3.5638 0.6038 0.1012 0.5976 8.8771 0.6734 0.3950 7
A26 1.5301 0.2592 0.0435 0.2566 22.0067 2.8977 0.0691 21
A27 3.2795 0.5556 0.0932 0.5499 9.7348 0.8185 0.3320 9

After applying the complete fuzzy MARCOS methodology, the given data for green
machining of AISI 1045 alternative 9 was the best alternative for the experiments. This
suggests that a cutting speed (v) of 1200 rev/min, 0.5 mm depth of cut (a), 320 mm/min
feed rate ( f ), and width of cut (w) of 15 mm was the best combination for the operation.
This combination has MRR of 2400 mm3/min, produces the surface roughness (Ra) of
2.29 µm, and utilizes 53.988 kJ active cutting energy (ACE). Alternative 1 was given the
lowest rank by the complete analysis. From the analysis, we can say that combination of
v = 1200 rev/min, a = 0.3 mm, f = 220 mm/min, and w = 5 mm which have a MRR of
330 mm3/min, consumes 535.802 kJ of active cutting energy (ACE) and produces 3.3 µm
surface roughness (Ra).

Level-wise aggregation is applied for each of the four process parameters and the
corresponding f (Ki) is computed. From Figure 3, it is seen that on an aggregated level,
v = 1200 rev/min, f = 320 mm/min, a = 0.5 mm, and w = 15 mm is most suitable.

The obtained results are compared with existing solutions from the literature. It should
be noted that the optimal combination suggested by the current Fuzzy MARCOS is in
exact sync with the results presented by Khan et al. [24]. Thus, a low cutting speed is
accompanied by a high feed rate. In terms of the mechanics of the milling process, it is
already understood from various works [23,24] that lower cutting speed generally provides
better surface quality and consumes minimum active energy.
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5. Conclusions

The current work shows the application of the Fuzzy MARCOS method for the
optimization of process parameters for the green machining of two different materials,
i.e., SS 304 and AISI 1045 at different machining parameters and different responses. After
analyzing the process, the following conclusions were drawn:

• The application of the Fuzzy MARCOS method does not follow a rigid weight al-
location. The inclusion of fuzzy provides a linguistic scale to provide the weight
for the criterion based on different fuzzy numbers; here we used triangular fuzzy
numbers, which divided the scale into 9 parts. This allowed us to analyze the problem
more practically.

• From the analysis, it is found that for the machining of SS 304 in case study 1 alterna-
tive 22 was the best alternative for the experiments. This suggests that a cutting speed
of 160 m/min, 0.6 mm depth of cut, 0.08 mm/s feed, and nose radius of 0.8 mm was the
best combination for the operation. This combination has a power factor (PF) of 0.862,
26.68 kJ of utilization of electrical energy, and produces a surface roughness of 0.36 µm.

• If we consider the worst alternative for the 1st case study, alternative 17 was given the
lowest rank by the complete analysis. From the analysis, we can say that a combination
of v = 60 m/min, a = 0.6 mm, f = 0.04 mm/s, and r = 0.4 mm which have a PF ratio of
0.529, consumes 94.95 kJ of electrical energy, and produces 0.82 µm surface roughness.

• In the case of the second case study for the green machining of AISI 1045, alternative 9
was the best alternative for the experiments. This suggests that a cutting speed (v) of
1200 rev/min, 0.5 mm depth of cut (a), 320 mm/min feed rate ( f ), and width of cut (w)
of 15 mm was the best combination for the operation. This combination has MRR of
2400 mm3/min, produces the surface roughness (Ra) of 2.29 µm, and utilizes 53.988 kJ
active cutting energy (ACE).

• Alternative 1 was provided with the lowest rank by the complete analysis for the
green machining of AISI 1045. From the analysis, we can say that combination of
v = 1200 rev/min, a = 0.3 mm, f = 220 mm/min, and w = 5 mm has a MRR of
330 mm3/min, consumes 535.802 kJ of active cutting energy (ACE), and produces
3.3 µm surface roughness (Ra).

• Thus, Fuzzy MARCOS is seen to be a powerful technique that combines the uncertainty
analysis component and group decision-making ability of fuzzification with the superb
selection capability of MARCOS. The method is however limited by its complexity as
compared to vanilla MARCOS. Moreover, the fuzzy MARCOS needs several additional
calculations which makes it relatively more time intensive. Nevertheless, it is expected
that fuzzy MARCOS will become a preferred tool among MCDM specialists, especially
due to the remarkable success vanilla MARCOS has had in recent times. This study
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can be further extended to incorporate various other fuzzy numbers and theories such
as interval fuzzy, intuitionistic fuzzy, etc.
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