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Abstract: With the accelerated urbanization and rapid development of the industrial and agricultural
sectors, concern about the pollution of water environments is becoming more widespread. Algal
blooms of varying sizes are becoming increasingly frequent in lakes and reservoirs; temperatures,
nutrients, heavy metals, and dissolved oxygen are the factors that influence algal bloom occurrence.
However, knowledge of the combined effect of heavy metals and temperature on algal growth
remains limited. Thus, this study investigated how specific concentrations of heavy metals affect
algal growth at different temperatures; to this end, two heavy metals were used (0.01 mg/L Pb%* and
0.05 mg/L Cr®*) at three incubation temperatures (15, 25, and 30 °C) with the alga Chlorella sp. A
higher incubation temperature contributed to a rise in soluble proteins, which promoted algal growth.
The density of algal cells increased with temperature, and catalase (CAT) decreased with increasing
temperature. Chlorella sp. growth and catalase activity were optimal at 30 °C (algal cell density:
1.46 x 107 cell/L; CAT activity: 29.98 gprot/L). Pb>* and Cr®* significantly promoted Chlorella sp.
growth during incubation at 25 and 30 °C, respectively. At specific temperatures, 0.01 mg/L Pb?*
and 0.05 mg/L Cr®" promoted the production of soluble proteins and, hence, the growth of Chlorella
sp. The results provide a useful background for the mitigation and prevention of algal blooms.

Keywords: water pollution; temperature; heavy metals; Chlorella sp.

1. Introduction

After the construction of the Three Gorges reservoir in China, algal blooms have
become widespread in tributary backwaters [1], causing increased concern. Algae are
primary producers in water ecosystems, with microalgae contributing to at least 32% of
global photosynthesis [2]. However, high temperatures, excessive amount of nutrients,
and suitable amounts of dissolved oxygen in water can lead to algal blooms in lakes and
reservoirs. Of these three factors, water temperature is the main cause of seasonal changes
to eutrophication processes [3-5].

Wang et al. [6] demonstrated the toxicological effects of heavy metals on algae, show-
ing that Pb?* has a low-promoting and high-inhibiting effect on Microcystis aeruginosa.
Furthermore, Cr** and Cd?* positively affected the growth of Chlorella sp. at certain con-
centrations, and high concentrations negatively affected its normal growth [7]. Thus, low
concentrations of heavy metals in the water appear to promote algal growth. However,
the combined effect of heavy metals and temperature on algal growth remain unclear. The
presence of heavy metals in water ecosystems stimulates the production of reactive oxygen
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species (ROS) in algal cells, inducing higher antioxidant enzyme activity (e.g., superoxide
dismutase (SOD), catalase (CAT)). Soluble proteins reduce intracellular osmotic pressure to
maintain normal water supply and cellular physiological functions under the presence of
heavy metals. Therefore, it is necessary to establish how heavy metals impact algae [8].

Chlorella sp. is a dominant algae genus found in the Three Gorges reservoir area. It
has a typical growth cycle of approximately 12 d, and survives laboratory conditions easily
due to its good physiological tolerance. Therefore, Chlorella sp. represents a standard test
organism for ecotoxicological studies [9]. Most studies on the eutrophication of water bodies
focus on certain environmental factors, such as temperature, light, nutrients, and organic
matter [2,10,11]. Further, these studies have explored the effects of temperature and heavy
metals on algal growth as separate environmental factors, rather than combined [12-16].
For example, Staehr and Sand-Jensen [17] found that the interaction between nutrient
availability, time of the year and, thus, ambient temperature was responsible for most of
the observed variability in phytoplankton growth, photosynthesis, and respiration. Bestion
et al. [18] developed a theoretical model to understand that the changes in temperature
affect competitive interactions among phytoplankton. Carfagna et al. [19] found that both
heavy metals, Pb and Cd, could alter the ultrastructure of algal cells and their physiological
properties (growth, photosynthesis, respiration, and enzyme activity). Therefore, it is
necessary to explore the combined effects of heavy metals and temperature on algae.

Here, we investigated how two heavy metals (Pb?* and Cd®*) impact the growth and
physiology of Chlorella sp. at different incubation temperatures. For different combinations
of heavy metals and temperature, we analyzed the correlation between the growth and
oxidative stress of Chlorella sp. by quantifying the protein, malondialdehyde (MDA),
SOD, and CAT enzyme activity. Our results are expected to provide a theoretical basis
for preventing and controlling eutrophication and water pollution in the Three Gorges
reservoir area of China, and provide a useful background for the mitigation and prevention
of algal blooms.

2. Materials and Methods
2.1. Materials and Instruments

Chlorella sp. was purchased from the Freshwater Algae Culture Collection at the
Institute of Hydrobiology (Wuhan, China). The algal cell culture medium was BG11 [20],
which is considered suitable for freshwater algae cultures. The algae were cultured under
aseptic conditions. The medium and containers used in the experiment were sterilized
in an autoclave prior to use. Pb(NO3), and Ky,Cr,O; were added to the BG11 medium
separately according to the experimental design.

The main instruments used in the experiments and analyses were: a thermostatic
climate incubator (ZRX, Qianjiang Instrument Equipment Co., Ltd., Hangzhou, China),
a vertical pressure steam sterilizer (LDZF-30KB-III, Shen’an Medical Instrument Factory,
Shanghai, China), a pH meter (IS128S, Yimai Instrument Technology Co., Ltd., Shanghai
China), a thermostatic water bath (HHW-4, Xinno Instrumentation Co., Ltd., Shanghai,
China), an ultra-clean workbench (BCM-1300, Boris Purification Technology Co., Ltd.,
Suzhou, China), an electronic microscope (LW40, Calvin Optoelectronic Technology Co.,
Ltd., Shanghai, China), an ultrasonic cell grinder (JX-1A, Jingxin Industrial Development
Co., Ltd., Shanghai, China), an ultraviolet—visible spectrophotometer (T6 New Century,
Seiko Scientific Instrument Co., Ltd., Shanghai, China), and a high-speed refrigeration
centrifuge (SF-TGL18R, Ficchal Analytical Instrument Co., Ltd., Shanghai, China).

2.2. Experimental Design

Table 1 presents information on the experimental setup. In a preliminary experiment,
0.01 mg/L Pb?* and 0.05 mg/L Cr®* significantly promoted the growth of Chlorella sp.
cells [21]. Therefore, the concentrations of Pb?* and Cr®* in the Chlorella sp. algae solution
were set at 0.01 and 0.05 mg/L, respectively, and were incubated at 15, 25, and 30 °C. The
control group contained no added metals. Three replicates of each concentration were used.
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The number, chlorophyll a content, and soluble protein and antioxidant enzyme activity
of the algal cells were measured daily. The mixture was shaken once in the morning and
once in the evening. The optimum temperature for Chlorella sp. growth was determined by
recording the daily biomass and chlorophyll a content in the control group, and measuring
the soluble protein, SOD, MDA, and CAT activity in the Chlorella sp. cells. The results
were used to investigate the physiological effects of the dual stress of temperature and
heavy metals.

Table 1. Experimental design.

Heavy Metal o
Heavy Metal pH Concentration (mg/L) Temperature (°C)
CK 7 0 15 25 30
Pb>* 7 0.01 15 25 30
Cré* 7 0.05 15 25 30

The number of algal cells was determined using the optical density method [22].
Chlorophyll a content was determined using the hot ethanol method [23]. Soluble protein
(A045-2-2), SOD (A001-1-1), MDA (A003-1-1), and CAT (A007-2-1) were determined using
kits purchased from Jiancheng Biological Engineering Research Institute in Nanjing, Jiangsu
Province, China.

2.3. Statistical Analysis

Origin 2021 and SPSS Statistics 25 were used for the data analysis. One-way analysis
of variance (ANOVA) was used, with significance set at 0.05 and high significance at 0.01.

3. Results and Discussion
3.1. Simultaneous Effect of Temperature and Heavy Metals on the Growth of Chlorella sp.
3.1.1. Algal Cell Growth

The biomass of Chlorella sp. improved with increasing temperature and changed in
the presence of the two heavy metals over the experimental period (Figure 1). During
the first 2 d of incubation, the Chlorella sp. biomass did not noticeably change under the
three temperatures (Figure 1A). However, from 3-7 d, while the biomass grew slowly at
15 °C, it increased at 25 °C, and was exponential at 30 °C. The algal cell density increased
with temperature (15 °C group < 25 °C group < 30 °C group), with 30 °C representing
the optimum temperature for cultivation. At 15 °C, Chiorella sp. growth was slow in both
heavy metal treatment groups (Figure 1B). In contrast, at 25 and 30 °C in the presence of
heavy metals, the Chlorella sp. biomass was consistent and exponential, respectively. For
the Pb?* treatment groups at 15 and 25 °C, the Chlorella sp. biomass was 1.7% and 10.48%
higher than that of the control, respectively. The highest Chlorella sp. biomass was recorded
for Crb* at 30 °C, and was 4.71% higher than that of the control. Thus, temperature and
heavy metals appeared to have positive synergistic effects on Chlorella sp. growth. Of note,
the synergistic effect of 0.01 mg/L of Pb?* on Chlorella sp. growth was cut off at 25-30 °C.
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Figure 1. Chlorella sp. growth curve. (A) Change to algal cell biomass at 15 °C, 25 °C, and 30 °C over
the 7-day incubation period in the absence of heavy metals. (B-D) Effect of the two heavy metals on
algal cell biomass at 15 °C, 25 °C, and 30 °C over the 7-day incubation period. Error bars represent
the three parallel relative standard deviations for each group of data.

3.1.2. Chiorella sp. Chlorophyll a

The chlorophyll a content in the Chlorella sp. cells generally increased under the dual
influence of heavy metals and temperature (Figure 2). The chlorophyll a synthesis in
Chlorella sp. differed significantly among the three temperatures (p < 0.05). The chlorophyll
a content in the Chlorella sp. cells increased with increasing incubation temperature, with
improved Chlorella sp. growth. The chlorophyll synthesis was at its lowest at 15 °C,
demonstrating that this temperature was not optimal for Chlorella sp. growth. The highest
chlorophyll a synthesis and best algal cell growth were recorded in the Pb?* treated group
at 25 °C. At 30 °C, the chlorophyll synthesis was significantly inhibited (p < 0.05) in the
Pb%*-treated group compared to that in the control group (inhibition rate: 26.7%). Thus,
temperature and Pb?* antagonistically affected chlorophyll synthesis in Chlorella sp. at
30 °C and negatively affected its growth. In contrast, the chlorophyll a was significantly
promoted (p < 0.05) under the Cr®* treatment, with concentrations being 1.42 times higher
than those in the control group. This scenario generated the best Chlorella sp. growth
among all of the treatment groups. The chlorophyll synthesis in Chlorella sp. was promoted
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at 25 °C for 0.01 mg/L Pb?* and at 30 °C for 0.05 mg/L Crbt, showing that temperature
and heavy metals synergistically affect the growth of Chlorella sp.
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Figure 2. Chlorophyll a content of Chlorella sp. under dual-phase stress at the three temperatures
and with the two heavy metals. Error bars represent the three parallel relative standard deviations
for each group of data. Upper- and lower—case letters (e.g., A, a) at the top of columns represent
significant differences within all groups and between groups, respectively, using Duncan’s Multiple
Test for Extreme Differences (p < 0.05).

3.2. Growth Mechanism of Chlorella sp.
3.2.1. Soluble Protein Content of Chlorella sp.

The soluble protein content in Chlorella sp. generally increased under the three temper-
atures and in the presence of the two heavy metals (Figure 3). The soluble protein content
was the highest at 30 °C in the Cr®" group (0.215 g/L), with soluble protein synthesis
being promoted at higher incubation temperatures. The effect of temperature and heavy
metals on the soluble protein content in Chlorella sp. was consistent with the observed effect
on biomass and chlorophyll synthesis. This phenomenon was attributed to the protein
content being closely correlated to photosynthesis. The increase in incubation temperature
(Figure 2) promoted the synthesis of chlorophyll a, and increased the photosynthetic rate
of the algal cells, which led to a significant increase in the amount of protein produced
by photosynthesis in the algal cells. At 25 °C, 0.01 mg/L of Pb?* significantly promoted
the synthesis of soluble proteins in the algal cells (p < 0.05). At 30 °C, 0.05 mg/L of Cr®*
promoted the synthesis of soluble proteins in the algal cells. Low concentrations of heavy
metals inhibited the synthesis of soluble proteins, and reduced the growth of Chiorella sp.
at a certain temperature. Specifically, 0.01 mg/L Pb?* significantly inhibited the synthesis
of soluble proteins in algal cells at 30 °C (p < 0.05). This phenomenon might be attributed
to the increased toxicity of Pb?* to algal cells at 30 °C, and causing acute oxidative stress
that impairs chlorophyll a synthesis and inhibits photosynthesis in Chlorella sp.
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Figure 3. Soluble protein content in Chlorella sp. under the dual stress of temperature and heavy
metals. See Figure 2 for details on statistics. Error bars represent the three parallel relative standard
deviations for each group of data. Upper— and lower—case letters (e.g., A, a) at the top of columns
represent significant differences within all groups and between groups, respectively, using Duncan’s
Multiple Test for Extreme Differences (p < 0.05).

3.2.2. Chlorella sp. MDA Content

The MDA content of Chlorella sp. generally increased under the dual stress of tempera-
ture and heavy metals (Figure 4). The oxidative damage to the algal cells was significant at
30 °C (p < 0.05) in the Pb?*- and Cr®* groups compared to that in the control. The degree
of oxidative damage to the algal cells was highest in the Cr®*- group at 30 °C, which also
exhibited the highest soluble protein content (Figure 3). The faster growth of Chlorella sp.
in this group might be attributed to the higher soluble protein content, which is required to
repair oxidative damage to algal cells. Furthermore, Cr®* produced less membrane lipid
peroxidation damage than did Pb?*, thus improving Chlorella sp. growth.

3.2.3. Chiorella sp. Antioxidant Enzymes

While the enzyme activity of the SOD of Chlorella sp. was variable for the two heavy
metals at three temperatures, that of CAT clearly declined with increasing temperature
(Figure 5). The SOD activity was significantly different at 30 °C (p < 0.05) compared to
that at the other two incubation temperatures. This indicates that the raised temperature
enhanced SOD activity in Chlorella sp. At 25 °C, the heavy metals did not stimulate the
algal cells to produce large amounts of ROS, resulting in lower SOD activity compared
to the control. Thus, temperature and heavy metals antagonistically affected damage to
Chlorella sp. cells. The CAT activity in the control and heavy metal-treated groups clearly
declined with increasing temperature. The CAT activity was the highest (91.08, 96.49, and
84.59 U/mgprot) at 15 °C. The CAT significantly differed (p < 0.05) between the two heavy
metals at the same temperature, similar to that recorded for the SOD activity (Figure 5).
For example, at 15 and 30 °C, Pb?* caused the activity of both antioxidant enzymes to
noticeably increase compared to that of the other experimental groups. Thus, the algal cells
were likely more severely damaged in this group, leading to lower chlorophyll a content
(Figure 2) and poorer growth.
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lower—case letters (e.g., A, a) at the top of columns represent significant differences within all groups
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4. Discussion
4.1. Effects of Temperature and Heavy Metals on Chlorella sp. Growth

Chlorophyll a is crucial for photosynthesis in Chlorella sp. algal cells, and is an
important indicator of algal growth [24,25]. This study showed that Chlorella sp. grows
slowly at 15 °C, with a low chlorophyll content. However, the number of Chlorella sp.
cells increased with increasing temperature, demonstrating that temperature enhances
the growth of Chlorella sp. cells. The density of the algal cells was organized as: 30 °C
group > 25 °C group > 15 °C group, with 30 °C representing the optimum temperature for
Chlorella sp. growth (Figure 1). Our results were generally consistent with those of previous
studies. For instance, Zeng et al. also reported that Chlorella sp. growth was the fastest and
chlorophyll a content was the highest at 3040 °C, after incubating Chlorella sp. at 15, 20, 25,
30, 35, and 40 °C, with the slowest growth occurring at 15-20 °C. Zhang et al. also reported
that Chlorella sp. growth increased from 15 to 35 °C, but that it was inhibited at 40 °C.

Of the common heavy metals, Cu and Zn are essential for the growth of many organ-
isms, while Cr and Pb are not [22,24]. However, this study demonstrated that the growth
pattern of Chlorella sp. was affected by the addition of Cr®* and Pb?*, which synergistically
promoted Chlorella sp. growth at certain incubation temperatures. This phenomenon was
attributed to the production of soluble proteases by algal cells under certain conditions. In
particular, Chlorella sp. growth was enhanced by Pb?* at 30 °C, being significantly higher
compared to that in the control (Figure 1). This difference was attributed to chlorophyll
organelles in the algal cells being damaged through the severe peroxidation of membrane
lipids, inhibiting photosynthesis. Consequently, the produced protein enzymes were insuf-
ficient to counteract the damage caused by Pb?* to algal cells, negatively impacting cell
growth [26].

4.2. Physiological Characteristics of Chlorella sp. under Dual Stress of Temperature and
Heavy Metals

Soluble proteins are crucial for maintaining normal physiological functions. Most
soluble proteins in algal cells are enzymes involved in various types of algal metabolism.
This process ensures normal water supply when plants are subjected to heavy metal
stress, allowing normal cellular physiological functions to be maintained [27]. The soluble
protein content in algal cells increased with increasing incubation temperature in our study,
reflecting the growth trend of algal cells. Therefore, the content of soluble proteins is a
good indicator of the physiological and biochemical responses of algae or plants [28,29].
However, both the growth and soluble protein content in Chlorella sp. of the Pb?*-treated
group at 25 °C and the Cr®*-treated group at 30 °C was the highest compared to that in
the other experimental groups (Figure 4). Du et al. [30] reported that Nitzschia hantzschia
adapted to stressful environments by using its own soluble proteins and other organic
matter; thus, soluble proteins likely enhanced the growth of Chlorella sp.

The current study showed that the MDA content and SOD activity increased with
increasing temperature, whereas CAT activity decreased. Thus, damage to algal cell mem-
branes likely increases with increasing temperature, with membrane lipid peroxidation in
algal cells being weaker at 15 °C. This is likely because 15 °C is within the temperature
range for the growth of Chlorella sp., with soluble sugars in algal cells exhibiting a protective
role in low-temperature stress [31]. The CAT activity decreased significantly (p < 0.05)
with increasing temperature, possibly because it accelerated the decomposition of HyOj;
however, further confirmation is required on this aspect. The ROS produced by plants
exposed to heavy metal stress trigger or exacerbate lipid peroxidation in membranes. MDA
is a product of membrane lipid peroxidation in plants, and is often used as an indicator
of oxidative damage, degree of membrane lipid peroxidation in cells, and the strength of
the plant’s response to adverse conditions [32]. A higher MDA content indicates a higher
degree of oxidation in Chlorella sp. cell membranes, and poorer growth. Plants exposed to
heavy metal stress develop several physiological defense mechanisms to mitigate damage
(Figure 6). Antioxidant enzymes are crucial for the scavenging of ROS produced in response
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to the presence of heavy metals. SOD catalyzes the decomposition of superoxide anions
to produce H,O and H,O,, whereas CAT synergistically scavenges H,O, and other per-
oxides [33,34]. To counteract this effect, plants produce antioxidants (e.g., SOD, CAT) and
non-enzymatic antioxidants. When Chlorella sp. was incubated at 25 °C, the Pb?*-treated
group exhibited a lower MDA content and, therefore, lower antioxidant enzyme activity
in algal cells than that in the control and Cr®*-treated groups. Thus, this temperature and
Pb?* likely had an antagonistic effect on the MDA synthesis of Chlorella sp., thus promoting
growth. Our study showed that the Pb?*-treated group exhibited the best growth at 25 °C
(Figure 1). When Chlorella sp. was incubated at 30 °C, the MDA content significantly in-
creased in the Pb?* and Cr® treatments compared to that in the control. Thus, temperature
and heavy metals appear to synergistically affect the MDA synthesis of Chlorella sp. under
this condition, with a certain degree of membrane lipid peroxidation occurring in cells,
which compromised Chlorella sp. growth. In contrast, Cr®* promoted the production of a
large amount of soluble protein, which alleviated the damage to the algal cells, promoting
the growth of Chlorella sp. at 30 °C (Figure 3). Therefore, Chlorella sp. growth was optimal
in the presence of Cr%* at 30 °C.

®
ve

Cell walls

Cell membranes

Chloroplasts

Vacuole

Nucleus

Figure 6. Map of heavy metal tolerance mechanisms in Chlorella sp. e.g., 1: Reduction of metal influx
across the plasma membrane. 2: Metal chelation in the cytosol by ligands such as phytochelatins,
metallothionein, organic acids, and amino acids. 3: Transport of metal—ligand complexes through the
tonoplast and accumulation in the vacuole. 4: Sequestration in the vacuole by tonoplast transporters.
5: ROS defense mechanisms. Black dots: metal ions.

5. Conclusions

This study demonstrated the combined effects of three incubation temperatures (15,
25, and 30 °C) and two heavy metals at low concentrations (0.01 mg/L Pb2* and 0.05 mg/L
Cr%") on the growth of Chlorella sp. The results indicated 30 °C to be the optimum temper-
ature for Chlorella sp. growth. Further, Chlorella sp. growth significantly improved with
increasing temperature (p < 0.05). This correlation was attributed to the increased synthesis
of soluble proteins at high temperatures, which protected Chlorella sp. and promoted the
growth. The higher temperature might have also caused the decomposition of H,O, and
other hydroperoxides, reducing the risk of oxidation in Chiorella sp. cells; however, this
suggestion needs further evaluation for confirmation. Both the heavy metals synergistically
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affected the growth of Chlorella sp. at certain incubation temperatures (25 °C for 0.01 mg/L
Pb?* and 30 °C for 0.05 mg/L Cr®*), with 25-30 and 30 °C being optimal temperatures for
Chlorella sp. growth in the presence of Pb?* and Cr®*, respectively. This relationship was
attributed to the antagonistic effect of temperature and Pb on MDA synthesis in Chlorella sp.,
and the effect of Cr at 30 °C. Specifically, Cr stimulated algal cells to produce large amounts
of soluble protein to protect the organism, thus promoting growth. Thus, temperature and
heavy metals have the potential to aggravate the eutrophication of water bodies. This study
provides an evidence base towards mitigating and preventing algal bloom. It also provides
a theoretical basis for preventing and controlling eutrophication and water pollution in the
Three Gorges reservoir area, and other similar regions globally.
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