
Citation: Ahmed, A.A.; Barukab,

O.M. Unforgeable Digital Signature

Integrated into Lightweight

Encryption Based on Effective ECDH

for Cybersecurity Mechanism in

Internet of Things. Processes 2022, 10,

2631. https://doi.org/10.3390/

pr10122631

Academic Editors:

Fabricio Napoles-Rivera and

Yo-Ping Huang

Received: 3 November 2022

Accepted: 2 December 2022

Published: 7 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

Unforgeable Digital Signature Integrated into Lightweight
Encryption Based on Effective ECDH for Cybersecurity
Mechanism in Internet of Things
Adel A. Ahmed * and Omar M. Barukab

Information Technology Department, Faculty of Computing and Information Technology-Rabigh,
King Abdulaziz University, Jeddah 25729, Saudi Arabia
* Correspondence: aaaabdullah1@kau.edu.sa; Tel.: +966-563884738

Abstract: Cybersecurity protocols enable several levels of protection against cyberattacks (digital
attacks) that spread across network devices, platform programs, and network applications. On the
Internet of Things (IoT), cyberattacks are generally intended to access and change/destroy sensitive
information, which may reduce IoT benefits. Moreover, recent IoT systems are experiencing a critical
challenge in designing a lightweight and robust cybersecurity mechanism on resource-constrained
IoT devices. The cybersecurity challenges facing the IoT that should be taken into consideration are
identifying compromised devices, data/service protection, and identifying impacted IoT users. This
paper proposes an unforgeable digital signature integrated into an effective lightweight encryption
(ELCD) mechanism that utilizes the secure key distribution in an elliptic curve Diffie–Hellman
(ECDH) and resolves the weak bit problem in the shared secret key due to the Diffie–Hellman
exchange. The ELCD mechanism proposes a secure combination between the digital signature and
encryption, and it uses fast hash functions to confidentially transfer a shared secret key among IoT
devices over an insecure communication channel. Furthermore, the ELCD mechanism checks the
true identity of the sender with certainty through the proposed digital signature, which works based
on a hash function and three steps of curve-point inspection. Furthermore, the security of ELCD
was mathematically proven using the random oracle and IoT adversary models. The findings of the
emulation results show the effectiveness of ELCD in terms of CPU execution time, storage cost, and
power consumption that are less by 53.8%, 33–17%, and 68.7%, respectively, compared to the baseline
cryptographic algorithms.

Keywords: IoT; ECDH; digital signature; random oracle model

1. Introduction

The Internet of Things (IoT) facilitates communication capabilities to the electronic
devices and a variety of objects/things that can access the Internet. Working devices
can be configured with a unique IP address to implement numerous smart applications
without human intervention. Moreover, IoT devices are extremely heterogeneous, differ
in capabilities, and have very limited resources in terms of connectivity, source of energy,
processing and memory capabilities, and input/output hardware features [1]. The general
architecture of the IoT is illustrated in Figure 1. In this figure, the event area depends
on real applications that support civilian and military environments such as industrial,
medical, smart home, and transportation. Wireless sensor nodes are attached to electronic
devices or objects (called IoT devices) to collect measurement data from the environment
and transfer it to an IoT gateway or to actuators. Upon receiving a command from the
gateway or sensors, the actuators can intervene to change physical conditions such as by
controlling equipment, switching lights on/off, and increasing/decreasing engine rotation
speed. Moreover, a gateway provides connectivity between sensors/actuators and the
remote IoT device, and it also facilitates data compression, secure data transmission, and

Processes 2022, 10, 2631. https://doi.org/10.3390/pr10122631 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr10122631
https://doi.org/10.3390/pr10122631
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0003-1485-4851
https://orcid.org/0000-0002-5725-9430
https://doi.org/10.3390/pr10122631
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr10122631?type=check_update&version=3

Processes 2022, 10, 2631 2 of 27

compatibility communication between the event area sensors/actuators and the IoT remote
devices [2–6].

Processes 2022, 10, x FOR PEER REVIEW 2 of 28

speed. Moreover, a gateway provides connectivity between sensors/actuators and the re-

mote IoT device, and it also facilitates data compression, secure data transmission, and

compatibility communication between the event area sensors/actuators and the IoT re-

mote devices [2–6].

Figure 1. IoT general architecture.

The cybersecurity issue remains a significant barrier to IoT adoption and deployment

due to the vulnerability of software privacy and hardware cyberattacks. Generally,

cyberattacks use the internet for destroying, disrupting, disabling, and gaining unauthor-

ized access to critical IoT information. Regardless of network-structure layers, the IoT is

susceptible to numerous types of cyberattack at the sensing layer, the application layer,

and the network layer. For instance, cyberattacks cause numerous effects on the IoT,

which might include sensor capture, stolen-verifiers and controlled information, known

secure key, denial of service (DoS), link sniffing, man-in-the-middle, forced delay, session

hijacking, as well as brute force and dictionary attacks [7–10].

Encryption and digital signatures are the two essential solutions for cyberattacks on

the IoT. Recent IoT cryptographic tools use two types of encryptions: the symmetric (pri-

vate key) and the asymmetric (public key) encryption methods. Symmetric key algorithms

apply the same key at the source and at the destination of the cryptographic process. In-

deed, the strong-point of symmetric key encryption relies on distribution of the private

key among IoT devices. Nevertheless, asymmetric key algorithms use two unique keys

that are public and private. The private key is kept secret and never distributed while the

public key can be sent through a secure channel to valid entitled devices. The main ad-

vantage of asymmetric key cryptography is the construction of a digital signature, which

is used to verify the original sender, prevent the sender from disowning the message, and

prove the integrity of the message. However, the drawback of standard digital signatures

is the uncertainty in confirmation of the sender’s identity. This means the sender private

key could be counterfeited by an attacker private key, which can be used on the digital

signature to mimic the identity of the true sender. Moreover, the implementation of stand-

ard asymmetric key algorithms in resource-constrained devices (e.g., IoT) is more com-

plex and experiences more energy consumption and latency compared to symmetric key

algorithms. Therefore, symmetric key cryptography that uses an efficient key distribution

Figure 1. IoT general architecture.

The cybersecurity issue remains a significant barrier to IoT adoption and deployment
due to the vulnerability of software privacy and hardware cyberattacks. Generally, cyberat-
tacks use the internet for destroying, disrupting, disabling, and gaining unauthorized access
to critical IoT information. Regardless of network-structure layers, the IoT is susceptible to
numerous types of cyberattack at the sensing layer, the application layer, and the network
layer. For instance, cyberattacks cause numerous effects on the IoT, which might include
sensor capture, stolen-verifiers and controlled information, known secure key, denial of
service (DoS), link sniffing, man-in-the-middle, forced delay, session hijacking, as well as
brute force and dictionary attacks [7–10].

Encryption and digital signatures are the two essential solutions for cyberattacks
on the IoT. Recent IoT cryptographic tools use two types of encryptions: the symmetric
(private key) and the asymmetric (public key) encryption methods. Symmetric key algo-
rithms apply the same key at the source and at the destination of the cryptographic process.
Indeed, the strong-point of symmetric key encryption relies on distribution of the private
key among IoT devices. Nevertheless, asymmetric key algorithms use two unique keys that
are public and private. The private key is kept secret and never distributed while the public
key can be sent through a secure channel to valid entitled devices. The main advantage
of asymmetric key cryptography is the construction of a digital signature, which is used
to verify the original sender, prevent the sender from disowning the message, and prove
the integrity of the message. However, the drawback of standard digital signatures is the
uncertainty in confirmation of the sender’s identity. This means the sender private key
could be counterfeited by an attacker private key, which can be used on the digital signa-
ture to mimic the identity of the true sender. Moreover, the implementation of standard
asymmetric key algorithms in resource-constrained devices (e.g., IoT) is more complex and
experiences more energy consumption and latency compared to symmetric key algorithms.
Therefore, symmetric key cryptography that uses an efficient key distribution scheme can
provide a promising lightweight cybersecurity solution for IoT networks. Furthermore,
symmetric key cryptography uses the hash function to provide sender authenticity and
digital fingerprint (integrity) for the distributed keys and plaintexts.

Processes 2022, 10, 2631 3 of 27

Efficient key distribution is the dilemma of symmetric key cryptography, and it be-
comes the most significant challenge in resource-constrained devices such as in IoT systems.
One of the practical solutions is to use an elliptic curve Diffie–Hellman (ECDH) scheme,
which is considered an appropriate solution for resource-constrained devices. The ECDH
has a smaller key size, a more efficient source code and lower power consumption com-
pared with the Rivest–Shamir–Adleman (RSA) cryptosystem. The common key can be
directly derived from the shared secret key and used to encrypt subsequent data flow
between source and destination using a symmetric key cipher.

The cryptosystem’s standard solutions (e.g., RSA, AES, DES) require heavy computa-
tional overhead and cause longer processing latency. Hence, they cannot be applied directly
to most resource-constrained devices such as IoT devices or sensors. Thus, it is a challeng-
ing task to develop lightweight, fast, and efficient secure cryptographic mechanisms for
the IoT that can verify the identity of the sender and prevent the revelation of sensitive
information by unauthorized attackers [11–16].

1.1. Research Problem Statement

As IoT devices have limited power capacity and processing capability, they are not
capable of implementing complex mathematical operations. Therefore, the complicated
security approaches that rely on long key size and complex encryption and decryption
processing (e.g., RSA) are not a good solution for resource-constrained IoT devices [5]. The
main challenge of developing an unforgeable digital signature comprises the considera-
tion of resource-constrained of IoT devices, verification of the signer’s true identity, and
resolving the problems of key distribution and weak bits in the shared secret key.

1.2. Research Contribution

The following contributions are reported in this research:

• It proposes an efficacious digital signature, which confirms the true identity of the
sender with certainty using a hash function and the three steps of curve-point inspec-
tion based on the ECDH scheme.

• It proposes a secure combination between encryption and digital signature, and it
studies the weaknesses of other combinations.

• It proposes a lightweight encryption mechanism that can resolve the weak bit problems
in the shared secret key due to the Diffie–Hellman exchange.

• It proposes secure key distribution among a group of IoT devices that can confidentially
transfer a shared secret over an insecure communication channel. The shared group
secret key (SGSK) is an ephemeral (dynamic) entity and is calculated on the basis of
the ECDH scheme. Moreover, perfect forward secrecy, which is recommended by the
RFC8442 standard, can be achieved using the ephemeral shared key.

• A comprehensive probabilistic mathematical cryptanalysis using the random oracle
model (ROM) is employed to prove the security of the proposed digital signature and
the encryption in the IoT.

• Finally, several simulation experiments have been conducted to evaluate the perfor-
mance of the proposed mechanisms in terms of processing time, storage cost, and
energy consumption. Overall, the proposed system offers faster processing times, less
memory and energy consumption, and an effective method of key distribution.

The rest of this paper is arranged as follows: Section 2 presents the related works
on encryption and digital signature based on the IoT platform. Section 3 describes the
construction of system design for all models in the ELCD mechanism. Section 4 explains
cybersecurity analysis based on ROM for ELCD mechanisms. Section 5 explains the
emulation experiments and evaluation of the ELCD mechanism based on the IoT system.
Finally, the conclusion and future work are explained in Section 6. All the notation used in
the ELCD mechanism is summarized in Table 1.

Processes 2022, 10, 2631 4 of 27

Table 1. Frequently used notation.

Notation Meaning Notation Meaning

C Ciphertext M Plaintext message
CCA Chosen cipher attack m The integer number of M
CPA Chosen plaintext attack n Order of G
d Private key O An extra point at infinity of the curve
D Destination node P Modular prime
DS Digital signature Pb Random point in the curve
ECC Elliptic curve cryptography Pb.X1 X coordinate of Pb
ECDH Elliptic curve Diffie–Hellman Q Public key

ELCD Effective, lightweight cryptographic
and digital signature S Source node

G Base point generator SGSK Shared group secret key

2. Related Works on Encryption and Digital Signature

As the IoT is still a relatively new technology, so far only a limited number of algo-
rithms in the literature have been developed to fit resource-constrained devices such as
actuators, sensors, etc. In an earlier work presented by A. A. Ahmed called ESSC_DC [17],
a digital certificate authority was used to verify the true identity of the sender by linking a
public key to its owner. The advantages of the proposed algorithm in this paper compared
to the previous research in [17] can be described as follows:

• The new proposed combination between digital signature and encryption has the
ability to verify the true identity of the sender and receiver, which is considered the
main function of the digital certificate in [17].

• The verification process in the establishment the digital certificate necessitates tedious
work, consumes excessive power, and introduces extra processing delay if used in the
IoT platform.

• The QoS performance of the proposed algorithm outperforms the QoS performance of
the digital certificate in [17]. This is mainly due to the fact that the digital certificate
authority, which is responsible for verifying the digital certificate, consumes excessive
power and increases the end-to-end delay as will be explained in Section 5.

Thus, the works related to this paper emphasize the use of lightweight digital signature
and cryptographic algorithms in the IoT network.

2.1. Lightweight Digital Signatures on IoT

Elliptic curve cryptography (ECC) has been used in numerous encryption algorithms,
including public key algorithms such as the elliptic curve digital signature algorithm
(ECDSA) [18]. This latter algorithm was recognized as an ISO standard, an ANSI standard,
and as a combined IEEE and NIST standard in 1998, 1999, and 2000, respectively. How-
ever, the ECDSA has technical problems summarized in its slowness, design flaws and
insufficiently defensive implementations of the random number generator. Arif et al. [19]
proposed the shortened complex digital signature algorithm (SCDSA), which secures the
transmission channel between the sender and the receiver in a human-centered IoT. More-
over, Park et al. [20] proposed an enhanced version of the elliptic-curve Qu–Vanstone
(ECQV) protocol, which uses the idea of a certificate-issuing protocol to resolve the prob-
lems of an implicit certificate for establishing lightweight security association on IoT
systems. However, this requires protecting the certificate request between the sensor
device and the certificate authority. Furthermore, Atefeh et al. [21] proposed a secure data-
sharing mechanism for device-to-device communication on 5G mobile systems. In their
research, the virtual check concept was applied as an encouragement system to stimulate
manipulator participation in the development of data sharing. Moreover, Adeel et al. [22]
proposed a secure authentication mechanism that relies on elliptic ElGamal encryption.
In [22], researchers integrated the elliptic curve cryptosystem (ECC) with a public key
infrastructure (PKI) to produce a shared key pair that is exchanged between IoT devices.

Processes 2022, 10, 2631 5 of 27

Moreover, the research offered by Yasir et al. [23] integrated the ECC and ElGamal schemes
over a public key infrastructure (EEoP). Furthermore, Adel et al. [24] proposed an effective
multifactor authentication (CMA) system that utilizes the idea of the combination of several
hash functions and geolocation authentication over IoT. Likewise, Scincalepore et al. [25]
developed a key management protocol (KMP), which combines the ECDH scheme with
digital certificates to authenticate the key generation.

2.2. Lightweight Encryption Algorithms on IoT

V. Shoup proposed the elliptic curve integrated encryption (ECIES) mechanism, which
is integrated with an advanced standard encryption scheme of called ECIES_AES. Moreover,
ECIES is integrated with rabbit encryption as described in the RFC4503 standard, which is
called ECIES_Ra. A lightweight authenticated encryption with associated data (AEAD) has
been suggested by NIST, which was proposed to work with a resource-constrained device
(e.g., IoT system) [26]. The AEAD scheme offers a cipher and a tag, which can be considered
a message authentication code (MAC). Hence, AEAD offers data authentication, confiden-
tiality, and data integrity. For example, Seok et al. [27] developed secure device-to-device
communication using the idea of AEAD and ECC to fit an IoT resource-constrained system.
Khan et al. [28] developed a secure ECC-based authentication and encryption method
that utilizes user credentials and biometric parameters to improve user authentication.
Muhammad et al. [29] proposed secure IoT (SIT), which uses the idea of combining a Feistel
64-bit key cipher and a uniform substitution permutation. The integration of authentication
and cryptography based on the Diffie–Hellman scheme was presented in Shah et al. [30].
The authentication uses multifactor authentication to share a secret key over the IoT system.
Hammi et al. [31] proposed a one-time password (OTP) that relies on ECC and isogeny to
guarantee IoT security. However, the randomness of the OTP based on ECC is not ensured.
Rangwani et al. [32] proposed a secure system with privacy and authentication based on a
three-factor authentication protocol for the industrial IoT (IIoT).

The limitations of the previous literature studies [18–32] are summarized in Table 2.
In this table, the main limitations can be classified into three facts: Firstly, most of the
research studies did not consider the combination of encryption and a digital signature,
resource-constrained hardware, and the outstanding architecture of the IoT. Secondly,
the vulnerabilities of ECDH (i.e., weak bits and chosen ciphertext attack) have not been
investigated. Finally, the resource-constrained hardware issue has not been carefully taken
into consideration in the context of digital signature and encryption mechanism design.

Table 2. Summary of related works.

Approaches Year of Publication Methodology and Features Limitations

ECDSA [18] 2001 Proposed an elliptic curve-based digital
signature algorithm.

Slowness, design flaws, and
insufficiently defensive.

SCDSA and
MPS-SCDSA [19] 2018 Secured communication between smart

devices in IoT.
Needs high processing resource and
consumes extra energy.

C.S. Park et al. [20] 2018
Proposed an enhanced version of the
elliptic curve Qu–Vanstone (ECQV)
certificate issuance protocol.

Consumes more power and latency
due to verification of certificate at the
certificate authority.

Adeel et al. [22] 2019
Merged two algorithms: ECC to manage
public key infrastructure (PKI), and
ElGamal to implement encryption.

Lacks adversary mode analysis.

Yasir et al. [23] 2017 Developed a tiny cryptographic system
that depends on ECC and ElGamal. The cryptanalysis was not studied.

Processes 2022, 10, 2631 6 of 27

Table 2. Cont.

Approaches Year of Publication Methodology and Features Limitations

KMP [25] 2017
Integrated the ECDH exchange with a
digital certificate to authenticate the key
generation.

Does not fit IoT resource-constrained
limitations due to power
consumption of implied certificate.

B. Seok et al. [27] 2020

Proposed a secure device-to-device
communication using the idea of AEAD
and ECC to fit an IoT
resource-constrained system.

The cryptanalysis was not studied.

M. Ayoub et al. [28] 2020

Developed a secure ECC based
authentication and encryption that
utilizes user credentials and biometric
parameters to improve user
authentication.

Does not fit IoT resource-constrained
limitations due to vulnerability to
error of biometric parameters.

SIT [29] 2017
Used the idea of combining Feistel 64-bit
key and a uniform substitution
permutation.

Does not fit IoT resource-constrained
limitations due to power
consumption.

Shah et al. [30] 2017
Combined the authentication and the
cryptography based on Diffie–Hellman to
distribute a secret key among IoT devices.

Does not prove the security of the
combination.

B. Hammi et al. [31] 2020 Proposed OTP that relies on elliptic curve
cryptography and isogeny.

The randomness of the OTP based on
ECC is not ensured.

3. System Design of the ELCD Algorithm

The proposed ELCD mechanism mainly contains three functions: key management
based on the ECDH scheme, encryption algorithms with a random padding scheme, and
digital signatures based on the multifactor of a hash function. The former two functions
have been combined to guarantee a high degree of security strength against cyberattacks
on IoT systems. The following assumptions have been used to design the three proposed
functions throughout this paper:

• The IoT gateway has a strong security protection system, and it is extremely hard to
compromise.

• Each IoT device (sensor, actuator, remote IoT user, etc.) has two secure keys: a public
key, which is available to all involved IoT devices, and a private key, which is not
known publicly.

• The domain parameters of the ECDH are embedded and uploaded into all IoT devices
during the programming session, which means that the ELCD mechanism is very
suitable in industrial IoT (IIoT) applications.

The following sections explain the details of the proposed ELCD and how it functions
on IoT networks.

3.1. The Key Management Algorithm

The main problem in traditional symmetric key cryptography is the exchange of the
common key between the IoT devices over an insecure communication channel, which
makes IoT devices susceptible to many attacks. Thus, the proposed key management
algorithm uses the ECDH scheme with a dynamic shared key calculation to securely come
to agreement with a fresh new secret key for each session between IoT devices (i.e., forward
secrecy). Both ECC and ECDH schemes have been utilized to generate a shorter, secure
shared key that is more appropriate for IoT devices. The elliptic curve is a set of points that
are identified by solving the following equation:

E =
{
(x, y)

∣∣y2 = x3 + ax + b
}
∪ {O},

where a, b ∈ K(Z/pZ) satisfy (4a3 + 27b2) 6= 0
(1)

Processes 2022, 10, 2631 7 of 27

where K defines a finite field of integer numbers over a modular prime P. In order to
perform a mathematical operation such as adding a point to itself, an extra point at infinity
(e.g., O) has been added to the curve. Let us consider S and D as a source and a destination
that could be a sensor, an actuator, or remote IoT user. Primarily, the domain parameters
are p (the prime of the base finite field), a, b, G (the base point generator), n (the order of
G), and h (the subgroup cofactor usually is 1), which demonstrate the agreed information
upon S and D to utilize the ECDH key exchange protocol. The S and D should obtain the
private key d, which is determined using the random generator function between 1, and
n − 1. Figure 2 illustrates the ECDH key’s establishment and the process of exchanging
the public key between two IoT devices in order to compute a shared secret key over an
insecure communication channel. For the public key, a point Q is calculated as a scalar
multiplication of d and G (e.g., Q = d × G). Let the S key-pair be (dS, QS) and the D key-pair
be (dD, QD). Each party of connection has to receive the other party’s public key prior to
the implementation of the ECDH protocol. Hence, S computes point K(XK, YK) = dS ×
QD and D computes point K(XK, YK) = dD × QS. As a result, the shared secret key is XK,
which represents the x coordinate of the point K. The shared secret key that is calculated
by both parties is equal because dS × QD = dS × dD × G = dD × dS × G = dD × QS. It is
interesting to note that “× ” is used to denote elliptic curve scalar multiplication. Moreover,
the public key Q, the private key d, and shared secret key (XK) in the proposed algorithm
are ephemeral (dynamic), which means that they change with every new session between
S and D.

Processes 2022, 10, x FOR PEER REVIEW 7 of 28

to agreement with a fresh new secret key for each session between IoT devices (i.e., for-

ward secrecy). Both ECC and ECDH schemes have been utilized to generate a shorter,

secure shared key that is more appropriate for IoT devices. The elliptic curve is a set of

points that are identified by solving the following equation:

3 2

2 3

4 27() () 0

(,) |

satisfy

O ,

 where , a bK p

E x y y x ax b

a b

=

+

= + +

(1)

where K defines a finite field of integer numbers over a modular prime P. In order to

perform a mathematical operation such as adding a point to itself, an extra point at infinity

(e.g., O) has been added to the curve. Let us consider S and D as a source and a destination

that could be a sensor, an actuator, or remote IoT user. Primarily, the domain parameters

are p (the prime of the base finite field), a, b, G (the base point generator), n (the order of

G), and h (the subgroup cofactor usually is 1), which demonstrate the agreed information

upon S and D to utilize the ECDH key exchange protocol. The S and D should obtain the

private key d, which is determined using the random generator function between 1, and

n − 1. Figure 2 illustrates the ECDH key’s establishment and the process of exchanging the

public key between two IoT devices in order to compute a shared secret key over an inse-

cure communication channel. For the public key, a point Q is calculated as a scalar multi-

plication of d and G (e.g., Q = d × G). Let the S key-pair be (dS, QS) and the D key-pair be

(dD, QD). Each party of connection has to receive the other party’s public key prior to the

implementation of the ECDH protocol. Hence, S computes point K(XK, YK) = dS × QD and

D computes point K(XK, YK) = dD × QS. As a result, the shared secret key is XK, which rep-

resents the x coordinate of the point K. The shared secret key that is calculated by both

parties is equal because dS × QD = dS × dD × G = dD × dS × G = dD × QS. It is interesting

to note that “ × ” is used to denote elliptic curve scalar multiplication. Moreover, the pub-

lic key Q, the private key d, and shared secret key (XK) in the proposed algorithm are

ephemeral (dynamic), which means that they change with every new session between S

and D.

Figure 2. The ECDH key establishment process. Figure 2. The ECDH key establishment process.

• Shared Group Secret Key (SGSK)

The proposed key distribution mechanism between a pair of IoT devices was modified
to be applicable to a group of IoT devices. This eventually provides an advantage for the
ELCD scheme compared to ECDH. For instance, the shared secret key can be calculated for
five IoT devices (IoT_Ds) as shown in Figure 3 as follows:

Processes 2022, 10, 2631 8 of 27

Processes 2022, 10, x FOR PEER REVIEW 8 of 28

• Shared Group Secret Key (SGSK)

The proposed key distribution mechanism between a pair of IoT devices was modi-

fied to be applicable to a group of IoT devices. This eventually provides an advantage for

the ELCD scheme compared to ECDH. For instance, the shared secret key can be calcu-

lated for five IoT devices (IoT_Ds) as shown in Figure 3 as follows:

• IoT_D1 creates the first part of the group public key as Q1 = d1 × G.

• IoT_D1 sends Q1 to the next IoT_D (e.g., IoT_D2), which creates the second part of the

group public key as Q12 = d2 × Q1.

• This scenario continues until the last IoT_D (e.g., IoT_D5) receives the previous parts

of the group public key (Q1234), which is considered as the total group public key cre-

ated at IoT_D5 (QT5 = Q1234). The total group public key at IoT_D number v can be gen-

eralized for any number of nodes in the group as:

()
1

|
N

Tv i v

i

Q G d d
=

=

(2)

where N represents the total number of IoT_D in the group. For example, we can calculate

QT3 based on five IoT_Ds as d1 × d2 × d4 × d5 × G.

▪ Finally, the SGSK can be calculated at the IoT_D number v as (XK, YK) = dv × QTv. For

example, the SGSK at IoT_D number 3 can be calculated as d3 × QT3 while the SGSK

at IoT_D number 4 can be calculated as d4 × QT4. It is interesting to note that d3 × QT3

= d4 × QT4, because d3 × QT3 = d3 × d1 × d2 × d4 × d5 × G = d4 × d1 × d2 × d3 × d5

× G = d4 × QT4. Each IoT_D should verify the received QTv before performing any

calculation. Therefore, if a malicious node exists during the key distribution phase, it

does not know the domain parameters (i.e., n and G) and then it cannot calculate the

appropriate QTv. Therefore, each IoT device must receive QTv before creating the

SGSK and performing the digital signature and cryptographic algorithms.

Figure 3. Shared group secret key.

3.2. The Lightweight Encryption Algorithm

An important function that prevents the disclosure and unauthorized reading of the

digital signature is encryption. Therefore, confidentiality of sent messages including the

IoT data and digital signature should be designed as a complete system. The first stage in

the proposed system is performing the encryption algorithm at the source node using the

following steps:

• Calculate a hash function for the shared secret key XK such as E = StrToInt(Hash(XK)),

where the hash function represents a cryptographic hash function such as CMA [24]

Figure 3. Shared group secret key.

• IoT_D1 creates the first part of the group public key as Q1 = d1 × G.
• IoT_D1 sends Q1 to the next IoT_D (e.g., IoT_D2), which creates the second part of the

group public key as Q12 = d2 × Q1.
• This scenario continues until the last IoT_D (e.g., IoT_D5) receives the previous parts

of the group public key (Q1234), which is considered as the total group public key
created at IoT_D5 (QT5 = Q1234). The total group public key at IoT_D number v can be
generalized for any number of nodes in the group as:

QTv = G
N

∏
i=1

(di|dv) (2)

where N represents the total number of IoT_D in the group. For example, we can
calculate QT3 based on five IoT_Ds as d1 × d2 × d4 × d5 × G.

� Finally, the SGSK can be calculated at the IoT_D number v as (XK, YK) = dv × QTv. For
example, the SGSK at IoT_D number 3 can be calculated as d3 × QT3 while the SGSK
at IoT_D number 4 can be calculated as d4 × QT4. It is interesting to note that d3 × QT3
= d4 × QT4, because d3 × QT3 = d3 × d1 × d2 × d4 × d5 × G = d4 × d1 × d2 × d3 × d5
× G = d4 × QT4. Each IoT_D should verify the received QTv before performing any
calculation. Therefore, if a malicious node exists during the key distribution phase,
it does not know the domain parameters (i.e., n and G) and then it cannot calculate
the appropriate QTv. Therefore, each IoT device must receive QTv before creating the
SGSK and performing the digital signature and cryptographic algorithms.

3.2. The Lightweight Encryption Algorithm

An important function that prevents the disclosure and unauthorized reading of the
digital signature is encryption. Therefore, confidentiality of sent messages including the
IoT data and digital signature should be designed as a complete system. The first stage in
the proposed system is performing the encryption algorithm at the source node using the
following steps:

• Calculate a hash function for the shared secret key XK such as E = StrToInt(Hash(XK)),
where the hash function represents a cryptographic hash function such as CMA [24]
or SHA-256 [33].

• Calculate the curve point Pb(X1, Y1) = E × G, which is hard to reverse because the
scalar multiplication in the ECC has a one-way function property.

• Calculate the ciphertext C = (m × X1) mod n, where m is obtained by converting
M to an integer number using a padding scheme, which should be an agreed-upon
reversible protocol. In this paper, each M has been parsed to multiple chunks based

Processes 2022, 10, 2631 9 of 27

on the message size in an elliptic curve (e.g., Secp192r1) [34]. This means that the
maximum length of each chunk is 127 bytes, and the minimum length is 24 bytes.

The decryption steps of ELCD at the destination node upon receiving C is performed
as follows:

• Calculate E = StrToInt(Hash(XK)), where Hash represents the corresponding crypto-
graphic hash used in the authentication code calculation.

• Calculate the curve point Pb(X1, Y1) = E × G.
• Calculate the integer number of the chunk m = (C × X1

−1) mod n, where X1
−1 mod n

can be resolved using a modular multiplicative inverse.
• Convert the integer number m to the parse (i) of plaintext (M), where i is the parse

number. The concatenation of all parses should recreate the original message M.

3.3. The Proposed Digital Signature Algorithm

The traditional digital signature has a serious drawback in verifying the true identity of
the sender. For instance, an adversary could intercept the transmitted message along with
the digital signature and she/he could create her/his own set of public and private keys
using the sender’s identity. After that, the adversary would pretend to be a legitimate IoT
sender and create a fictitious message with a different digital signature. Upon receiving the
message and the digital signature, the receiver would unknowingly retrieve the imposter
public key (thinking it belonged to the sender) and decrypt it. This problem can be solved
using the digital certificate system, which can verify the true identity of the sender with
certainty; however, a digital certificate requires more power consumption and causes
more latency due to third party verification (digital certificate authority). In contrast, the
proposed system resolves this problem using the three steps of curve-point inspection
and the integration idea between the encryption and the digital signature as described in
Figure 4. The proposed digital signature consists of six phases, three at the source IoT node
and three at the destination IoT device.

The source node implements the following steps:

• Phase 1, Create Digest.

(1) Convert the plaintext message (M) to an integer number m using an agreed-
upon reversible protocol identified as a padding scheme.

(2) Calculate the digest for m as Z = StrToInt(Hash(m)) mod n, where the Hash
represents a cryptographic hash such as CMA [24] or SHA-256 [33].

• Phase 2, Create DS.

(1) Encrypt the digest with the sender private key dS to calculate the digital signa-
ture as DS = (dS

−1 × YK × Z) mod n, where YK represents the y-coordinate of
the shared secret key.

(2) Since dS is a random number (ephemeral) that changes every session, DS also
changes in each session.

• Phase 3, Encrypt Message with DS.

(1) Encrypt the concatenation of m and DS with the shared secret key XK. The
proposed lightweight encryption algorithm is used to encrypt (m + DS), and
the final output is the ciphertext (C).

(2) Calculate E = StrToInt(Hash(XK)).
(3) Calculate the curve point Pb(X1, Y1) = E × G.
(4) Calculate C = ((m + DS) × X1) mod n.

Processes 2022, 10, 2631 10 of 27Processes 2022, 10, x FOR PEER REVIEW 10 of 28

Figure 4. The six phases in the proposed digital signature.

The source node implements the following steps:

• Phase 1, Create Digest.

(1) Convert the plaintext message (M) to an integer number m using an agreed-

upon reversible protocol identified as a padding scheme.

(2) Calculate the digest for m as Z = StrToInt(Hash(m)) mod n, where the Hash rep-

resents a cryptographic hash such as CMA [24] or SHA-256 [33].

• Phase 2, Create DS.

(1) Encrypt the digest with the sender private key dS to calculate the digital signa-

ture as DS = (dS−1 × YK × Z) mod n, where YK represents the y-coordinate of the

shared secret key.

(2) Since dS is a random number (ephemeral) that changes every session, DS also

changes in each session.

• Phase 3, Encrypt Message with DS.

(1) Encrypt the concatenation of m and DS with the shared secret key XK. The pro-

posed lightweight encryption algorithm is used to encrypt (m + DS), and the

final output is the ciphertext (C).

(2) Calculate E = StrToInt(Hash(XK)).

(3) Calculate the curve point Pb(X1, Y1) = E × G.

(4) Calculate C = ((m + DS) × X1) mod n.

Figure 4. The six phases in the proposed digital signature.

In order to authenticate the digital signature, the following steps are implemented at
the destination:

• Phase 4, Decrypt Cyphertext.

(1) Calculate E = StrToInt(Hash(XK)).
(2) Calculate the curve point Pb(X1, Y1) = E × G.
(3) Calculate the concatenation of m and DS: (m + DS) = (C × X1

−1) mod n.

• Phases 5 and 6, DS Verification and Obtaining the Message.

(1) Verify the true identity of the sender that is used in signing the plaintext (YK)
using three steps of curve-point inspection: 1. Check that QS is not equal to the
identity element O, 2. Check that QS lies on the curve 3. Check that n × QS = O.

(2) Retrieve the digest from the received DS as U1 = (DS × YK
−1 × QS) = Z × G.

This works because (DS × YK
−1) × QS = ((dS

−1 × YK × Z) × YK
−1 × (dS × G)

= Z × G, since the product of an element’s inverse and the element itself is the
identity.

(3) Create the digest for the received m as Z- = StrToInt(Hash(m)) mod n.
(4) If the created Z- × G = the received Z × G, the received DS is valid, otherwise

the received DS is invalid.
(5) If the received DS is valid, accept the received message m and covert it back

to M.

Processes 2022, 10, 2631 11 of 27

The advantages of the proposed lightweight digital signature can be summarized
as follows:

(a) Domain parameters are not publicly exchanged between IoT devices; rather, they
are uploaded into all devices during the programming session. This means that the
attacker cannot create a valid public key Q.

(b) The verification of DS in the proposed method can verify the true identity with
certainty. This means that the attacker needs to solve the elliptic curve discrete
logarithm problem (ECDLP), which makes it extremally hard to reverse DS and obtain
the private key for making a fake private key.

(c) The padded message m is hashed and digitally signed using the ECC and inverse
modular multiplication of the sender private key, which is considered extremely hard
to reverse and obtain the original message from.

(d) More importantly, the CMA hash function [24] creates a random digest for any two
similar input messages. This is mainly due to the fact that the CMA is designed based
on a time-enhanced-based one-time password (TEOTP) and it includes a salt random
string to create the random digest for similar inputs.

Table 3 shows the proposed pseudocode. After the public key is calculated in each
party of the IoT system, it is sent to all involved IoT devices that can calculate the shared
secret key. The digital signature scheme is used in the first message of each communication
session to verify the authenticity and the genuineness of those devices. If the first message
with the digital signature is verified by any device, the rest of the received messages are
decrypted to obtain the original plaintext. Otherwise, the received messages are discarded.

Table 3. The ELCD pseudocode.

ELCD at IoT Sender (S)

Input: Secp192r1 domain parameters p, a, b, G, n, h;
Output: QS, DS, C;//QS: public key of S, DS: digital signature; C: ciphertext
Start Algorithm (ELCD)

1 | While (new session start) do
2 | Pick private key (dS);//1 ≤ dS ≤ n
3 | QS = (dS × G);
4 | Send_Public_key (QS);//Send the public key to destination
5 | Receive_Public_key(QD);//Receive the public key of D
6 | K(XK,YK) = dS × QD;//calculate the shared key

Phase 1, Create Digest
7 | m = StrToInt(M);//convert the plaintext to an integer.
8 | Z = StrToInt(Hash(m)) mod n;//hash fun. for integer m

Phase 2, Create DS
9 | if (m is the first message) //first message of the session
10 | DS = (dS

−1 × YK × Z) mod n;//DS: digital signature
Phase3, Encrypt (m + DS)

11 | E = StrToInt(Hash(XK)) mod n;//E: the hash fun. of key XK
12 | Pb(X1,Y1) = E × G;
13 | C = ((m + DS) × X1) mod n;//C: the ciphertext
14 | Send(“C”);//The source sends “C” only to D
15 | End;//if Statement
16 | End;//While loop
17 End;//Algorithm

ELCD at IoT Receiver (D)
Input: Secp192r1 domain parameters p, a, b, G, n, h;
Output: QD, DS, C;//QD: Public key of D

Processes 2022, 10, 2631 12 of 27

Table 3. Cont.

ELCD at IoT Sender (S)

18 Start Algorithm (ELCD)
19 | While (new session start) do
20 | Pick private key (dD);//1 ≤ dD ≤ n
21 | QD = (dD× G);
22 | Send_Public_key (QD);//Send the public key to source node
23 | Receive_Public_key(QS);//Receive the public key from S
24 | K(XK,YK) = dD × QS; //if QS is a valid curve point, the shared key will be calculated
25 | Foreach (C received and Flag == true) do
26 | if (first message received) //Receive the first message

Phase 4, Decrypt C
27 | Get(C);//Receive the ciphertext (C)
28 | E = StrToInt(Hash(XK)) mod n;
29 | Pb(X1,Y1) = E × G;
30 | m + DS = (C × X1

−1) mod n;
Phase 5 and 6, DS Verification & Obtain Message

31 | Verify_Public_key(QS);//Receiver will verify QS
32 | U1 = (DS × YK

−1× QS) = Z × G mod n;
33 | Z- = StrToInt(Hash(m)) mod n;//Z- is digest for rec. m
34 | if (U1 == Z- × G)
35 | The signature is valid, and the source is legitimate;
36 | Get(m);//Obtain the m and
37 | else
38 | The signature is invalid, and the source is illegitimate;
39 | Flag = false;
40 | End;// if Statement
41 | else
42 | E = Hash(XK) mod n;
43 | Pb(X1,Y1) = E × G;
44 | m = (C × X1

−1) mod n;
45 | End;// if Statement
46 | M = Convert_IntToStr(m);//convert m to M.
47 | End;// for loop
48 | End;//While loop
49 End;//Algorithm

4. Cybersecurity Analysis

An adversary model was developed to measure the security performance of ELCD as
explained in this section.

4.1. Adversary Model for ELCD on the IoT

The detriment of adversary cyberattack on the IoT is mainly focused on disrupting
the control function of the IoT using one or more vulnerabilities that can be exploited by a
malicious adversary to compromise the security system of the IoT environment [35–37].
The adversary is assumed to have the capability to read, transmit and forge IoT network
traffic, which might dispute the sensed data, the privacy of IoT devices, and the control
management of the gateway. The most crucial adversary attacks on ELCD are described
as follows:

• Spoofing attack: The adversary intercepts or eavesdrops on IoT network traffic to ob-
tain an IoT device’s credential, which is used to gain access to the sensed information.

• A man-in-the-middle attack: The malicious adversary has the ability to listen to all
traffic on a network and initiate a connection with any IoT devices. Furthermore, if the
adversary acts as an active man-in-the-middle, it can modify the content of captured
messages and resend them to the recipient.

Processes 2022, 10, 2631 13 of 27

• A replay attack: Instead of sending a message directly to the recipient, a replay attack
makes a copy of that message and then uses it later. This is carried out by an adversary
who intercepts the messages and delays, replays, or retransmits those messages.

• A brute force attack: The malicious adversary tries every possible mixture of letters,
numbers, and characters to crack the shared secret key even if the domain parameters
that are used in the ECDH scheme by both parties are extremely hard to obtain.

• A sensor capture attack: The impostor adversary captures a sensor node and steals
the domain parameters and shared secret key to implement illegal actions on the IoT
network.

• A stolen-verifier attack: The impostor adversary who has stolen the shared secret key
from an IoT device can pretend to be an authorized device in order to launch attacks
against other IoT devices, steal data, or bypass access controls.

4.2. Cryptoanalysis of ELCD

The random oracle model was developed to study the impact of the most common
cryptanalysis attacks described as follows:

• Chosen plaintext attack (CPA): The adversary is assumed to obtain the ciphertexts
for any plaintexts of their choice. Moreover, the adaptive CPA (CPA2) means that the
adversary has the ability to choose the new input to the encryption of ELCD (ELCDE)
based on the analysis of her/his previously selected plaintext queries and their corre-
sponding ciphertexts [38]. The definition of CPA can be represented mathematically
by assuming that an adversary A gains access to an encryption oracle with any pair of
equal-length messages (m1, m2) as input. The oracle returns a ciphertext as output.

Definition 1. Let ELCDE = (K , E, D) be an encryption mechanism in ELCD, E is encryption, D
is decryption, and K is the space of all keys. The advantage of indistinguishability chosen-plaintext
attack (IND-CPA) of A is defined as:

Advin-cpa
ELCDE

(A) = Pr[k← K; C ← Ek(m1) : A(C) = 1]
−Pr[k← K; C ← Ek(m2) : A(C) = 1]

(3)

The above equation shows that ELCD is secure if the advantage of IND-CPA is
negligible, which means that A is not doing well. In contrast, ELCDE is not secure if
the advantage of IND-CPA is non-negligible, which means that A is doing well.

• Chosen ciphertext attack (CCA): The adversary is assumed to obtain the decryption
of any ciphertext(s) of their choice. Moreover, the adaptive CCA (CCA2) means that
the adversary has the ability to choose the new input to the decryption of ELCD based
on the analysis of her/his previously selected queries [39].

Definition 2. Let ELCDE = (K , E, D) be an encryption mechanism in ELCD, and A is an
adversary who has the ability to access the encryption (E) and decryption (D) oracle. The advantage
of IND-CCA of A is defined as:

Advin-cca
ELCDE

(A) = Pr[k← K; C ← Ek(mb); b← {0, 1};
b′ ← A(Ek(.), Dk(.)) : b′ = b]

(4)

The above definition shows that the adversary has the right to unlimited access of
the decryption oracle using any ciphertext C except one restriction, which is the previous
returned query of their encryption oracle. Consequently, ELCDE can be considered secure
against IND-CCP if the adversary who given access to the oracles can find negligible
advantage in distinguishing the two events of b (0/1).

Processes 2022, 10, 2631 14 of 27

4.3. The ELCD Cybersecurity Analysis

The ELCD scheme can offer significant security properties such as perfect forward
secrecy (PFS), and it has impersonation resilience against key compromise. Since the hash
function can be considered a random oracle function, ELCD uses a hash function to create
a pseudorandom function (PRF). As explained in Section 3, the hash function in ELCD
(i.e., CMA) utilizes the shared secret key (XK) as an input and produces a secure random
parameter (H(XK)), which goes through scalar multiplication with the base point (G) to
produce a random point Pb. This means Pb.X1 (i.e., the x coordinate of Pb) is a random
value that is periodically changed to defend against IND-CPA and replay attacks.

4.3.1. Proven Security for ELCD in the Random Oracle Model

The length of the shared secret key (XK ∈ {0, 1}L) can be represented as L =
|XK| = |n| = |p|, which equals the length of used elliptic curve Secp192r1 (e.g.,
192 bits). The proven security of ELCD uses ROM to instantiate the hash function
as H(.) : {0, 1}∗ → {0, 1}L.

Theorem 1. If Pb is a (t, ε)-pseudorandom function (PRF), then the ELCDE is secure against
IND-CPA.

• Methodology of Proof: The contradiction methodology is used to prove Theorem
1. Let us assume an adversary A that runs in PPT exists, who breaks the security
of ELCDE. The algorithm A constructs a PPT distinguisher B that distinguishes the
output of Pb from a random number with non-negligible cost. Since Pb is PRF; this
contradicts the previous conclusion that Pb is a random function. Therefore, the
original assumption is false and the ELCDE must be secure.

Proof. Let us assume A attacks ELCDE in the sense of IND-CPA and two messages M0, M1
are used as follows:∣∣∣∣ Pr[H(XK)← Z∗n ; Pb← H(XK)× G; C ← M0 × Pb.X1 : A(C) = 0]

−Pr[H(XK)← Z∗n ; Pb← H(XK)× G; C ← M1 × Pb.X1 : A(C) = 0]

∣∣∣∣ = γ(L) (5)

where γ(L) is non-negligible. The algorithm B was constructed to distinguish Pb from the
random function. This can be performed using the ability of B to call Pb to distinguish
whether it is PRF or a completely random function. B works as follows: (1) pick a random
b ∈ {0, 1}; (2) B computes C = Pb.X1 × Mb mod n; (3) run the experiment A(C) to obtain b′,
which denotes A’s guess of which the message encrypted. A guessed correctly (If b = b′)
means B guesses PRF and thus can be represented by the B result “1”. However, A does not
guess correctly (If b 6= b′) if B guesses a random function and this can be represented by the
B result “0”. The algorithm B distinguishes the output of Pb.X1 as:∣∣∣∣ Pr[H(XK)← Z∗n ; Pb← (H(XK)× G); y← Pb.X1 : B(y) = 1]

− Pr[y← Z∗n : B(y) = 1]

∣∣∣∣ (6)

We study each of these terms separately as: P1
def
= Pr[H(XK)← Z∗n; Pb← (H(XK)×

G); y← Pb.X1 : B(y) = 1], and P2
def
= Pr[y← Z∗n : B(y) = 1]. In Step 3, the algorithm B

does the following:

P1 = Pr[H(XK)← Z∗n ; Pb← (H(XK)× G); y← Pb.X1 :
b ∈ {0, 1}; b′ ← A(Pb.X1×Mb) : b′ = b]

(7)

Processes 2022, 10, 2631 15 of 27

By using the condition of b we obtain:

P1 = Pr[H(XK)← Z∗n ; y← Pb.X1 : A(Pb.X1×M0) = 0]× Pr[b = 0]
+Pr[H(XK)← Z∗n ; y← Pb.X1 : A(Pb.X1×M1) = 0]× Pr[b = 1]

(8)

with applying the fact:
Pr[b = 0] = Pr[b = 1] = 1

2 and

Pr[H(XK)← Z∗n ; y← Pb.X1 : A(Pb.X1×M1) = 1] =
1− Pr[H(XK)← Z∗n ; y← Pb.X1 : A(Pb.X1×M1) = 0]

(9)

we obtain:

P1 =
1
2
+

[
1
2
×

(
Pr[H(XK)← Z∗n ; y← Pb.X1 : A(Pb.X1×M0) = 0]
−Pr[H(XK)← Z∗n ; y← Pb.X1 : A(Pb.X1×M1) = 0]

)]
=

1
2
+

(
1
2
× γ(L)

)
(10)

P2 is calculated as:

P2 = Pr[y← Z∗n : b ∈ {0, 1}; b′ ← A(Pb.X1×Mb) : b′ = b] (11)

As before, we eventually obtain:

P2 =
1
2
+

[
1
2
×

(
Pr[y← Z∗n : A(Pb.X1×M0) = 0]
−Pr[y← Z∗n : A(Pb.X1×M1) = 0]

)]
(12)

Since y is completely random and Pb = H(XK)× G, the probability of A winning
when breaking the one-time pad is 0. Therefore, P2 is 1/2. The final result after using all
parameters together provides:∣∣∣∣ Pr[H(XK)← Z∗n ; Pb← (H(XK)× G);

y← Pb.X1 : B(y) = 1]− Pr[y← Z∗n : B(y) = 1]

∣∣∣∣ = |P1 − P2|

=
∣∣∣ 1

2 + γ(L)
2 −

1
2

∣∣∣ = γ(L)
2

(13)

Since γ(L) was non-negligible, the term γ(L)
2 is also non-negligible. This leads to the

fact that A has a non-negligible advantage in breaking ELCDE and hence B has a non-
negligible advantage in distinguishing the Pb from the random result. Nevertheless, this
contradicts the fact that Pb is a (t, ε)-PRF and such A does not exist. Hence, ELCDE is secure
against IND-CPA. �

Theorem 2. For all PPT adversaries, the IND-CCA advantage when attacking ELCDE is negligible.

• Methodology of Proof: The adversary guessing methodology is used to prove The-
orem 2. Let us assume A is a PPT adversary algorithm that breaks ELCDE in the
sense of IND-CCA for which Advin-cca

ELCDE
(A) = 1. To break ELCDE, A gains access to

an encryption oracle with any pair of equal-length messages (m0, m1) as input. The
encryption oracle EK (mb) takes this input, and returns an encryption of either (m0, m1).
The goal of A is to determine the value of b. If A guesses correctly, then ELCDE is not
secure, otherwise ELCDE is secure against IND-CCA.

Proof. Let us assume that A queries EK (mb) with pair of messages (m0, m1) and the output
of EK (mb) will be Cb. The challenge of A is to determine the value of b ∈ {0, 1}. Therefore,
A can solve this challenge using the following mechanism. Firstly, A flips the bits of Cb to
get C−b and inputs the valid query C−b to the decryption oracle to obtain the message M.
Finally, A can flip the bits of M at the same position that flipped in Cb to obtain M-. As a
result, if M- is equal to either one of the queried messages (m0, m1), A guesses correctly

Processes 2022, 10, 2631 16 of 27

and ELCDE is not secure. Otherwise, A guesses incorrectly and ELCDE is secure against
IND-CCA. The procedure that A uses to break ELCDE can be described as follows:

A(E(mb), D (·)) {
m0 ←− 0n; m1 ←− 1n; Cb ←− EK((m0, m1), b)
C−b ←− C⊕ 1n; M←− DK

(
C−b

)
; M←− M⊕ 1n;

If M− = m0 then return 1 else return 0}

Let us study the advantage of A in attacking ELCDE with IND-CCA in more detail as
follows:

Advin-cca
ELCDE

(A) = Pr[Expind-ccp-1
ELCDE

(A)]− Pr[Expind-ccp-0
ELCDE

(A)] (14)

We will study each part of Equation (14) individually. The first part is Expind-ccp-1
ELCDE

(A)

(b = 1) as: C1 = EK(m1, b) = Pb.X1×m1 mod n. If the ith bit of C1 has been flipped, resulting
in a new ciphertext C−1 and the decryption oracle with C−1 is queried as:

M =
(
C−1

)
= ×[(Pb.X1 ×m1 mod n)⊕ 1n] mod n. = ×[(Pb.X1 × 1n mod n)⊕ 1n] mod n. (15)

The modular multiplication cannot be distributed over XOR (e.g., (5× (2⊕ 9)) 6= (5×
2) ⊕ (5 × 9)), and it also cannot be associated over XOR (e.g., (5 × (2 ⊕ 9)) 6= (5 × 2) ⊕
9)). Hence, if A flips the ith bit of M to obtain M-, they cannot guess correctly with (m1)
and the returned value is 0, which means Pr[Expind-ccp-1

ELCDE
(A)] is 0. Similarly, the other part

of Equation (14) can be proven as before in which Pr[Expind-ccp-0
ELCDE

(A) is 0. Putting the two
parts of Equation (14) together results in Advin-cca

ELCDE
(A) = 0. Thus, the advantage of A in

attacking ELCDE with IND-CCA is negligible. �

4.3.2. Proven Security for Proposed Digital Signature in ROM

The security advantage of the proposed digital signature consists of two levels: un-
forgeable digital signature integrated into lightweight encryption. The popular methods
to implement combination between the digital signature and encryption can be described
as follows:

• Method 1: Encrypt-and-Sign (EAS), which means that data should be encrypted using
K1 as C = Ek1(M) and the digital signature should be calculated using K2 as D =
DSk2(M). The sending message is the pair (C, D) that should be sent separately.

• Method 2: Sign-then-encrypt (STE), which means that D is first calculated, and then
the original data and D are concatenated and encrypted together. The sending message
is C = Ek1(M + D), where D = DSk2(M).

• Method 3: Encrypt-then-Sign (ETS), which means the original data M is first encrypted
using K1 as C = Ek1(M), and then the D is calculated over C. The sending message is
the pair (C, D), where D = MACk2(C).

Method 1 and Method 3 are not secure because the adversary can eavesdrop on the
communication channel between the sender and the receiver, capture all messages, strip
off the sender’s signature, sign the ciphertext with the adversary’s own key, and send it
to the receiver to gain access to IoT devices even though the adversary does not know the
content of the messages. The following description shows that Method 2 is the more secure
combination of digital signature and encryption.

Let us assume that the digital signature function is σ = Sign(d, M), where d ∈ {0, 1}n

is the private key, M is the plaintext that should be signed, and σ ∈ {0, 1}n is the output
of the digital signature function. The verifying function is VerfySign(Q, M, σ), which
outputs 1 if the signature is valid or 0 if it is invalid. Let the symbol Q ∈ Ea,b(Zn) denote
the public key and let H(M) : {0, 1}n←DQ (recall DQ is the domain of ELCDDS(Q)) be
a hash function that is modeled as a random oracle function. Therefore, to generate a

Processes 2022, 10, 2631 17 of 27

digital signature for M, σ = Sign(d, H(M)) is output. Correspondingly, to verify the digital
signature σ on M, the Sign−1(Q, σ)

?
= H(Ms) should be checked.

Theorem 3. Let ELCDE = (K, E, D) be the encryption of ELCD that is secure under IND-CPA,
and if ELCDDS = (K, D, V) is (t, qε)-secure (unforgeable against adaptive CPA). Then, ELCD = (K,
E, D, V) created by the DS-then-encrypt is a secure combination between ELCDE and ELCADS.
(Where t is the upper bound for the adversary’s running time, q is the maximum number of queries
to the random oracle H, and ε is the maximum probability that the adversary does the experiment).

• Methodology of Proof: The proof of Theorem 3 is divided into two parts: the proof
that ELCDDS is (t, qε)-secure against adaptive CPA, and the proof ELCD = (K , E , D , V)
created using DS-then-encrypt is a secure combination between ELCDE and ELCADS.
The contradiction methodology is used to prove the two parts of Theorem 3. The
methodology of the first proof part of Theorem 3 can be described as follows:

1. Assume an adversary A that runs in PPT exists, who has the ability to generate a
forgery digital signature for the original message M with a probability δ.

2. If the probability δ is proven not negligible, this means that A is doing well and
ELCDDS is not secure.

3. However, if the probability δ is proven negligible, this means A is not doing well
and ELCDDS should be secure.

Proof of the First Part: Assume that A is used to construct an algorithm B that has the ability
to reverse the trapdoor permutation. B receives Q and a random digital signature σ = y,
and tries to obtain the digest of a signed message x = H(M) such that Sign−1(Q, x) = y.
We assume that before A ever asks for a signature on message m, it has already queried
H(M). B(Q, y) works as follows:

• B chooses a random index i* ∈ {1, . . . , q}.
• B can only have one query for the random oracle H.
• B receives the ith query from A to H and responses as follows:

Let mi represent the ith query from A to H: if i = i*, this means mi = m and H
will return y; otherwise, H chooses a random ri←DQ.

Calculate Outi = Sign−1(Q, ri), return Outi.

� If A sends a signature request query on message m, B chooses i such that mi = m; if
i = i*, abort; otherwise, return ri as the signature.

� When A generates its forgery (m, σ), if m = mi* then B outputs σ; otherwise, abort.

It is interesting to note that every response to signature queries from B is certainly a
correct signature. B is able to respond to all signature queries except if A asks for a signature
on mi*. Therefore, the forgery output (m, σ) is valid if A never queried a signature on m.
In that case, m should be equaled to mj for query j, and it must be the case that there is at
least one index j for which A never requests a signature on mj. Subsequently, because i* is
randomly chosen, this means the probability that j = i* is at least 1/q. Hence, if A outputs a
valid forgery (j = i*), then σ is definitely the inverse of y, which means that B succeeds in
reversing the Sign function. Nevertheless, this contradicts the fact that the Sign function
is a (t, ε)-secure and our assumption must be wrong. With this we can conclude that the
proposed digital signature should be secure, and no such A can exist. Since the probability
of success to invert the Sign function is at least 1/q times the probability of generating
a valid forgery by A (δ), we deduce that the probability of success for inverting the Sign
function is at least δ/q. Nevertheless, the Sign function is assumed to be a (t, ε)-secure, the
probability of successfully inverting it is δ/q ≤ ε or δ ≤ qε), which means it is negligible.
This ends the proof of the first part of Theorem 3. �

Processes 2022, 10, 2631 18 of 27

• Methodology of Second Part Proof: The methodology of proof the second part of
Theorem 3 can be described as follows:

1. Assume the existence of adversary A that gains access to three random oracle
functions: sign oracle function (SOF), encryption oracle function (EOF) and
decryption oracle function (DOF). The three functions simulate ELCADS and
ELCDE.

2. First, A queries SOF with any pair of equal-length messages (m0, m1) as input.
The output of SOF is a pair of bits (σ0, σ1).

3. Second, A flips a single bit in either (σ0, σ1). Let us assume that the single bit of
σ0 has been flipped to be σ0.

4. Third, A queries EOF with a pair of equal-length digital signatures (σ0, σ1). The
output of EOF is a pair of (C0, C1) = Cb.

5. Fourth, A flips a single bit in Cb at the same position that was flipped in σ0 to
obtain C−b . After that, A queries DOF with C−b .

6. The goal of A is to determine the value of b. If A guesses correctly, then combina-
tion between ELCDE and ELCADS in ELCD is not secure, otherwise it is secure
against IND-CCA.

Proof of the Second Part. The procedure that A uses to break the combination between
ELCDE and ELCADS in ELCD can be described as follows:

A(SOF, EOF, DOF {
m0 ← 0n; m1 ← 1n; σb ← DSK2((m0, m1), b);
σb ← σb ⊕ 1n; Cb ← EK1((σ0, σ1), b)
C−b ← Cb ⊕ 1n; σb ← DK1(C−b).
If σb = m0 then return 1 else return 0}

Let us study the advantage of A in attacking ELCDE with IND-CCA in more detail
as follows:

Advin-cca
ELCD

(A) = Pr[Expind-ccp-1
ELCD (A)]− Pr[Expind-ccp-0

ELCD (A)] (16)

We will study each part of Equation (16) individually. The first part is Expind-ccp-1
ELCD (A)

(b = 1) as: σ1 = DSK2(m1, b) = (dS
−1 × YK × H(m1)) mod n. If the ith bit of σ1 has been

flipped, this result in a new digital signature σ b. Furthermore, if A queries EOF with a
pair of equal-length digital signatures (σ0, σ1). The output of EOF is a pair of (C0, C1) = Cb
as follows:

Cb = Pb.X1 × σb mod n . A flips a single bit in Cb at the same position that was flipped
in σ1 to obtain C−b . After that, A queries DOF with C−b as:

σb = DK1
(
C−b

)
= Pb.X1

−1 × [(Pb.X1 × σb mod n)⊕ 1n] mod n. = ×[(Pb.X1 × 1n mod n)⊕ 1n] mod n (17)

Similar to Theorem 2, the modular multiplication cannot be distributed over XOR.
Hence, if A flips the ith bit of σ1 to obtain σ b, they cannot guess correctly with (σ1) and
the returned value is 0, which means Pr[Expind-ccp-1

ELCD (A)] is 0. Similarly, the other part of

Equation (16) can be proven as before, in which case Pr[Expind-ccp-0
ELCD (A) is 0. Putting the

two parts of Equation (16) together results in Advin-cca
ELCD

(A) = 0. Thus, the advantage of A in
attacking the ELCD scheme with IND-CCA is negligible. �

Theorem 4. The weak bits problem (weak bits are certain bits of information that can be correctly
predicted with non-negligible advantage.) in the shared secret key due to the Diffie–Hellman
exchange has been solved by ELCD.

Proof. Let us assume that an adversary exposes the vulnerability of the communication
channel to implement sniffing (eavesdropping) or a man-in-the-middle attack on an IoT

Processes 2022, 10, 2631 19 of 27

network. Furthermore, let us assume that the parties of IoT devices select easier domain
parameters. Thus, an adversary who uses brute force and sensor capture attacks can collect
enough residue of the public keys (QS, QD), digital signatures DS, and ciphertexts C to
derive the private keys (dS, dD) and shared secret keys (XK, YK) of the IoT parties. This is a
well-known problem, and it is called the weak bits problem. Let us assume that XK has
been calculated, which contains a weak bit problem, ELCD uses CMA (SHA-256 can be
used), which combines three levels of hash function and random string (Salt) as:

H(H1, H2, Salt) = (H1(K1⊕ XK)||H2(K2⊕ L))⊕ Salt (18)

where H1(K1, Ci) = (K 1⊕Ci)mod (2 31−1); H2(K2, Ci) = (Geo_loc⊕K2) mod (2 31−1). More-
over, the variable Salt is a combination of random characters that are appended to the digest
to make the dictionary and brute force attacks very much slower and limit the impact of
a rainbow table attack. Three levels of hash function and random string guarantee the
unpredictability of XK and ensure strong, robust properties (preserve the collision resistance
(CR), pseudo-randomness (PRF), message authentication code (MAC), and one-wayness
(OW)). Hence, ELCD uses multihash functions (e.g., Hash(m) and Hash(XK)) to remove the
weak bits caused by the Diffie–Hellman exchange even if the communication protocol is
vulnerable to sniffing attacks. �

4.4. Countermeasures against Replay and Man-in-the-Middle Attacks

The secure combination in ELCD has the ability to prevent man-in-the-middle and
replay attacks from gaining access or replicating the digital signature. This is primarily due
to the fact that the digital signature is protected by encryption (sign-then-encrypt), and the
shared secret key YK that is used in the digital signature represents the true identity of the
signer. Moreover, ELCD rejects the received message from the replay attacker due to the
following reasons:

• The sender authentication based on YK in the digital signature should be checked
before processing a message from a man-in-the-middle attacker.

• The digital signature is calculated based on the private key of the sender, which is
protected by a hash function and encryption after a digital signature is applied to
the plaintext.

• Replay attacks need to implement three steps before resending the intercepted mes-
sage. These steps are shared secret key calculation, digital signature, and message
encryption, which are very difficult to gain access to without breaching the hash
function and the shared secret key.

4.5. Countermeasures against Brute Force Attacks

Since the shared secret key is ephemeral and must change every communication
session, the ELCD resolves the weak bits problem and provides perfect forward secrecy.
Furthermore, a brute force attacker needs to resolve the elliptic curve discrete logarithm
problem (ECDLP) that requires 0.886 ×

√
k steps. This means that the security strength is

96, which is likely to be quite computationally intensive [34,40].

4.6. Countermeasures against Session Hijacking and Spoofing Attacks

The shared secret key in ELCD is encrypted using a secure hash function such as
SHA-2 and CMA. This process leads to the generation of a random number (e.g., a digest
of shared secret key after using the hash function), which can be utilized in the creation
of session identity. Thus, if the attacker succeeds in breaking the session ID, they need to
calculate the digital signature to gain access to the communication channel between the
IoT parties. This is essentially due to the digital signature between the IoT sender and
the receiver of the session required in the verification process. Furthermore, The ELCD
mechanism can defend against key spoof attacks using the shared secret key calculation,

Processes 2022, 10, 2631 20 of 27

which means it will not be sent through the channel between the parties of the IoT system.
Therefore, the intruders have no chance to spoof the key.

4.7. Countermeasures against Device Capture and Stolen-Verifier Attacks

The ELCD cryptographic scheme can defend against IoT device capture and stolen-
verifier attacks using built-in multifactor hash functions (e.g., CMA) that are built inside
all IoT devices during the programming session. The multifactor hash functions that are
used in ELCD are flashed and converted into low level source code language as explained
in the assumption. Accordingly, a stolen key will not work without breaking the hash
functions, which means that the intruder will not gain access to any of the captured IoT
device’s secure information.

5. Implementation and Performance Evaluation of ELCD on the IoT

The security software in the IoT platform should be evaluated based on resource
constraints in terms of computational cost, storage usage, and power consumption. Conse-
quently, ELCD uses the idea of ECDH for sharing the secret key, which is recommended
by SECG/NIST, namely Secp192r1 [34]. The advantages of using the Secp192r1 standard
elliptic curve in ELCD can be described as follows:

• The size of encryption and authentication keys is 24 bytes (192 bits) and the experimen-
tal processing latency that has been estimated for the ECDH to create and exchange
the secret key is 0.576 s [28].

• The optimally recognized algorithm for resolving the k-size of ECDLP requires 0.886 ∗√
k steps. Generally, a k-bit security strength can be achieved if the security system

practices at least 2 × k-bit key size. Therefore, ELCD prefers to use the Secp192r1
curve, which can provide 96-bit security strength [34,40].

• The maximum message size of the IoT device is 127 bytes and it can be implemented
based on the 6LowPAN protocol (40 bytes header), which is used to create a connection
association between the IoT device and the sensor nodes [41].

The evaluation scenarios use the Mininet-IoT emulation software to implement and
test the performance of ELCD because it has the ability to simulate the IoT hardware and
communication description [42]. The experimental IoT network topology consists of one
IoT gateway (BaseST1), eight static IoT sensors (sensor1 to sensor8), two intruders (Intrudr6
and Intrudr7), and one mobile IoT device (IoTDev5) as can be seen in Figure 5. The role
of the intruders is mainly to implement the adversary model that has been discussed in
the previous section. All IoT hardware boards contain pairs of network interface cards:
communication with the IoT base station using IPv4 and IPv6 (i.e., 6LowPAN). More-
over, the proposed ELCD software is uploaded into all sensors, IoTDev5, and BaseST1.
Moreover, the exchange of public keys and secure packets between all valid IoT devices
is executed using client–server socket programming that combines with the ELCD’s code.
BaseST1 implements the server code while the client code is executed in all sensors and
IoTDev5. Table 4 illustrates the experiment’s parameters and configuration. In Mininet-IoT,
802.15.4_hwsim and 802.11_hwsim wireless models are used to perform the 6LowPAN
protocol on the TCP/IP model. Moreover, the propagation model of the wireless signal is
configured based on the shadowing model, which reflects the actual signal degradation
due to impairments of the signal such as attenuation, noise, and interference. The mobility
model of the mobile devices in the experiment is established using random movement on a
grid network area of 1000 m × 900 m. All experimental running time has been set to 1000 s
to study the impact of ELCD against the intruders when they implement dictionary and
brute force attacks.

Processes 2022, 10, 2631 21 of 27Processes 2022, 10, x FOR PEER REVIEW 22 of 28

Figure 5. The IoT mesh topology.

Table 4. Experiment configuration.

Parameter Values

MAC and PHY 802.15.14_hmsim and 802.11_hmsim

Propagation model Shadowing

Path loss exponent 3.0

Shadowing deviation (dB) 3.0

Event area (1000 m × 900 m)

Cover of IoT device 150 m

Cover range of BaseST1 250 m

Traffic emulator TCP Socket client/server; 1000 messages.

Performance metrics CPU execution time, storage cost, and energy consumption

ECDH curve Secp192r1

Message size 127 bytes

Key size 192 Bits

Emulation duration 1000 s

5.1. Performance Evaluation and Results Discussion

The performance evaluation of the proposed integration of encryption and authenti-

cation (e.g., ELCD) was analyzed in terms of the CPU execution time, memory usage, and

power consumption cost. The comparison of performance analysis was investigated for

the three methods of combination between authentication and encryption as presented in

Figure 2. Furthermore, the performance of ELCD was compared with three benchmark

security algorithms, namely ECIES_AES, ESSC_DC, and ECIES_Ra [RFC4503]). All of the

source code is written in the Python programming language and implemented in the

Mininet-IoT emulator. Moreover, the main source code of each of the baseline algorithms

was downloaded from the security website [43]. Many scenarios were simulated, all sub-

sequent testbeds were recured 10 times, and for each testbed 1000 packets were ex-

changed. Finally, the average results were calculated with the confidence interval reach-

ing 95% based on a mean value and a standard deviation, as 5% of variation errors in the

Figure 5. The IoT mesh topology.

Table 4. Experiment configuration.

Parameter Values

MAC and PHY 802.15.14_hmsim and 802.11_hmsim
Propagation model Shadowing
Path loss exponent 3.0
Shadowing deviation (dB) 3.0
Event area (1000 m × 900 m)
Cover of IoT device 150 m
Cover range of BaseST1 250 m
Traffic emulator TCP Socket client/server; 1000 messages.
Performance metrics CPU execution time, storage cost, and energy consumption
ECDH curve Secp192r1
Message size 127 bytes
Key size 192 Bits
Emulation duration 1000 s

5.1. Performance Evaluation and Results Discussion

The performance evaluation of the proposed integration of encryption and authentica-
tion (e.g., ELCD) was analyzed in terms of the CPU execution time, memory usage, and
power consumption cost. The comparison of performance analysis was investigated for
the three methods of combination between authentication and encryption as presented in
Figure 2. Furthermore, the performance of ELCD was compared with three benchmark
security algorithms, namely ECIES_AES, ESSC_DC, and ECIES_Ra [RFC4503]). All of
the source code is written in the Python programming language and implemented in the
Mininet-IoT emulator. Moreover, the main source code of each of the baseline algorithms
was downloaded from the security website [43]. Many scenarios were simulated, all subse-
quent testbeds were recured 10 times, and for each testbed 1000 packets were exchanged.
Finally, the average results were calculated with the confidence interval reaching 95% based
on a mean value and a standard deviation, as 5% of variation errors in the sample were
accepted. Furthermore, the cProfile and memory_profiler program provided deterministic
cost profiling of ELCD and the baseline mechanisms. The memory_profiler program can

Processes 2022, 10, 2631 22 of 27

be used to measure the execution time of an algorithm, its storage cost, and its energy
consumption. The total cost of the CPU’s execution time can be estimated as the multipli-
cation of the CPU execution time and the number of steps per execution (s/e). Moreover,
the storage cost in each IoT device can be calculated as the total cost of communication
(sent/received message) data, sensed information, and the cost of the source code in a time
unit. Furthermore, the total energy consumption (mJ) in the IoT devices can be estimated
as the total energy consumption for packet overhead that is used to execute the source code
of the security algorithm [44].

5.1.1. Performance Comparison between ELCD Digital Signature and Baseline Algorithms

The performance of using an ELCD digital signature (ELCD_DS) has been evaluated
and compared with ECDSA, ESSC_DC, and ElGamal_DS. As can be shown in Figure 6a, the
ELCD_DS experiences on average 88.9% less execution time compared to ESSC_DC, 53.8%
less execution time compared to ECDSA, and it experiences on average 33.5% less execution
time compared to ElGamal_DS. Moreover, Figure 6b illustrates that ELCD_DS experiences
on average 37.02% less memory usage compared to ESSC_DC, 17.1% less memory usage
compared to ECDSA, and it experiences on average 29.8% less memory usage compared to
ElGamal_DS. Additionally, Figure 6c shows that ELCD_DS consumes on average twofold
less energy compared to ESSC_DC, 68.7% less energy consumption compared to ECDSA,
and it consumes on average 44.4% less energy compared to ElGamal_DS. The results
presented in Figure 6 show the superiority of the ELCD_DS algorithm, which is mainly
achieved due to the following reasons: Firstly, ELCD_DS uses a lightweight and secure
calculation based on ECDH and a hash function to create a random digest based on the
private key. In contrast, ESSC_DC uses a certificate authority to verify all digital certification
processes, which requires extra resource in terms of energy, memory, and processing delay.
Furthermore, ECDSA consumes more resources in terms of energy consumption, storage
cost, and execution time due to the higher execution and communication overhead in
the frequent use of scalar multiplication and inverse modular multiplication. Moreover,
ElGamal_DS does not provide a certain solution; however, it provides four solutions, which
is not suitable in IoT network. Finally, the lightweight hash (one-way direction) functions
in ELCD_DS require less energy consumption, storage cost, and CPU time.

Processes 2022, 10, x FOR PEER REVIEW 23 of 28

sample were accepted. Furthermore, the cProfile and memory_profiler program provided

deterministic cost profiling of ELCD and the baseline mechanisms. The memory_profiler

program can be used to measure the execution time of an algorithm, its storage cost, and

its energy consumption. The total cost of the CPU’s execution time can be estimated as the

multiplication of the CPU execution time and the number of steps per execution (s/e).

Moreover, the storage cost in each IoT device can be calculated as the total cost of com-

munication (sent/received message) data, sensed information, and the cost of the source

code in a time unit. Furthermore, the total energy consumption (mJ) in the IoT devices can

be estimated as the total energy consumption for packet overhead that is used to execute

the source code of the security algorithm [44].

5.1.1. Performance Comparison between ELCD Digital Signature and Baseline

Algorithms

The performance of using an ELCD digital signature (ELCD_DS) has been evaluated

and compared with ECDSA, ESSC_DC, and ElGamal_DS. As can be shown in Figure 6a,

the ELCD_DS experiences on average 88.9% less execution time compared to ESSC_DC,

53.8% less execution time compared to ECDSA, and it experiences on average 33.5% less

execution time compared to ElGamal_DS. Moreover, Figure 6b illustrates that ELCD_DS

experiences on average 37.02% less memory usage compared to ESSC_DC, 17.1% less

memory usage compared to ECDSA, and it experiences on average 29.8% less memory

usage compared to ElGamal_DS. Additionally, Figure 6c shows that ELCD_DS consumes

on average twofold less energy compared to ESSC_DC, 68.7% less energy consumption

compared to ECDSA, and it consumes on average 44.4% less energy compared to El-

Gamal_DS. The results presented in Figure 6 show the superiority of the ELCD_DS algo-

rithm, which is mainly achieved due to the following reasons: Firstly, ELCD_DS uses a

lightweight and secure calculation based on ECDH and a hash function to create a random

digest based on the private key. In contrast, ESSC_DC uses a certificate authority to verify

all digital certification processes, which requires extra resource in terms of energy,

memory, and processing delay. Furthermore, ECDSA consumes more resources in terms

of energy consumption, storage cost, and execution time due to the higher execution and

communication overhead in the frequent use of scalar multiplication and inverse modular

multiplication. Moreover, ElGamal_DS does not provide a certain solution; however, it

provides four solutions, which is not suitable in IoT network. Finally, the lightweight hash

(one-way direction) functions in ELCD_DS require less energy consumption, storage cost,

and CPU time.

(a)

Figure 6. Cont.

Processes 2022, 10, 2631 23 of 27Processes 2022, 10, x FOR PEER REVIEW 24 of 28

(b)

(c)

Figure 6. Performance comparison between ELCD digital signature and baseline algorithms on IoT

(a) execution time; (b) storage cost; (c) energy consumption.

5.1.2. Performance Comparison between ELCD Cryptographic and Baseline Algorithms

The performance of ELCD encryption (ELCD_E) was evaluated and compared with

ECIES_Ra and ECIES_AES. As shown in Figure 7a, the ELCD_E experiences on average

50% less execution time compared to EDIDS_AES and on average 39.4% less execution

time compared to ECIES_Ra. Furthermore, Figure 7b depicts that the ELCD_E experiences

on average 19.6% and 32% less memory usage compared to ECIES_AES and ECIES_Ra,

respectively. Moreover, Figure 7c shows that ELCD_E consumes on average 41.2% less

energy compared to the energy consumption in ECIES_AES, and it consumes on average

32.6% less energy compared to ECIES_Ra. The above results show that the ELCD_E out-

performs ECIES_AES and ECIES_Ra in terms of CPU-time execution, storage cost, and

energy consumption. This is primarily due to the following reasons: Firstly, ELCD_E con-

sumes less energy and processing time in the encryption and decryption process, which

Figure 6. Performance comparison between ELCD digital signature and baseline algorithms on IoT
(a) execution time; (b) storage cost; (c) energy consumption.

5.1.2. Performance Comparison between ELCD Cryptographic and Baseline Algorithms

The performance of ELCD encryption (ELCD_E) was evaluated and compared with
ECIES_Ra and ECIES_AES. As shown in Figure 7a, the ELCD_E experiences on average
50% less execution time compared to EDIDS_AES and on average 39.4% less execution
time compared to ECIES_Ra. Furthermore, Figure 7b depicts that the ELCD_E experiences
on average 19.6% and 32% less memory usage compared to ECIES_AES and ECIES_Ra,
respectively. Moreover, Figure 7c shows that ELCD_E consumes on average 41.2% less
energy compared to the energy consumption in ECIES_AES, and it consumes on average
32.6% less energy compared to ECIES_Ra. The above results show that the ELCD_E
outperforms ECIES_AES and ECIES_Ra in terms of CPU-time execution, storage cost, and
energy consumption. This is primarily due to the following reasons: Firstly, ELCD_E
consumes less energy and processing time in the encryption and decryption process, which

Processes 2022, 10, 2631 24 of 27

is implemented based on an efficient mathematical random function. ELCD_E creates
an ephemeral shared secret key for each session between IoT devices, which guarantees
perfect forward secrecy of the encrypted message. Secondly, the ELCD_E consumes less
storage cost due to the small number of functions called and the fewer execution steps per
function. Finally, ECIES_AES and ECIES_Ra use complex and less effective encryption and
decryption methods compared to ELCD_E. Overall, the findings of the experimental results
show that the proposed integration of authentication and encryption in ELCD is effective,
lightweight, and provides outstanding performance in terms of the CPU execution time,
the storage cost, and energy consumption. More importantly, it resolves the problem of key
distribution in symmetric key cryptography, and it resolves the problem of verifying the
sender’s identity in the digital signature.

Processes 2022, 10, x FOR PEER REVIEW 25 of 28

is implemented based on an efficient mathematical random function. ELCD_E creates an

ephemeral shared secret key for each session between IoT devices, which guarantees per-

fect forward secrecy of the encrypted message. Secondly, the ELCD_E consumes less stor-

age cost due to the small number of functions called and the fewer execution steps per

function. Finally, ECIES_AES and ECIES_Ra use complex and less effective encryption

and decryption methods compared to ELCD_E. Overall, the findings of the experimental

results show that the proposed integration of authentication and encryption in ELCD is

effective, lightweight, and provides outstanding performance in terms of the CPU execu-

tion time, the storage cost, and energy consumption. More importantly, it resolves the

problem of key distribution in symmetric key cryptography, and it resolves the problem

of verifying the sender’s identity in the digital signature.

(a)

(b)

Figure 7. Cont.

Processes 2022, 10, 2631 25 of 27Processes 2022, 10, x FOR PEER REVIEW 26 of 28

(c)

Figure 7. Comparison between ELCD encryption (ELCD_E) and baseline cryptographic algorithms

on IoT (a) execution cost; (b) storage cost; (c) energy consumption.

6. Conclusions and Future Work

The proposed ELCD algorithm was presented and compared with standard light-

weight cryptographic and digital signature schemes. The ELCD mechanism utilized

ECDH to develop a pair and a group of shared secret keys on an IoT network. The ELCD

mechanism integrates a digital signature with secure encryption, which confirms the true

identity of the sender with certainty and provides perfect forward secrecy. Furthermore,

the security of the ELCD was proven mathematically and cyberattacks were investigated

using the random oracle model. The performance of the ELCD outperforms the baseline

digital signature in terms of CPU execution time, which is less by 53.8%; storage cost,

which is less by 32–17%; and energy consumption, which is less by 68.7%. Future work

regarding this research will focus on enhanced the performance a tiny digital certificate

based on the ECDH in IoT networks.

Author Contributions: Conceptualization, O.M.B.; methodology, O.M.B.; software, A.A.A.; valida-

tion, A.A.A. and O.M.B.; formal analysis, A.A.A.; investigation, A.A.A. and O.M.B.; resources,

A.A.A.; data curation, A.A.A.; writing—original draft preparation, A.A.A.; writing—review and

editing, A.A.A.; visualization, A.A.A.; supervision, A.A.A.; project administration, A.A.A.; funding

acquisition, A.A.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz

University (KAU), Jeddah, Saudi Arabia, grant number G-39-830-1443 And The APC was funded

by G:039-830-1443.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The Deanship of Scientific Research (DSR) at King Abdulaziz University

(KAU), Jeddah, Saudi Arabia has funded this Project under grant no. (G:039-830-1443).

Conflicts of Interest: The authors declare no conflict of interest.

Figure 7. Comparison between ELCD encryption (ELCD_E) and baseline cryptographic algorithms
on IoT (a) execution cost; (b) storage cost; (c) energy consumption.

6. Conclusions and Future Work

The proposed ELCD algorithm was presented and compared with standard lightweight
cryptographic and digital signature schemes. The ELCD mechanism utilized ECDH to
develop a pair and a group of shared secret keys on an IoT network. The ELCD mechanism
integrates a digital signature with secure encryption, which confirms the true identity of
the sender with certainty and provides perfect forward secrecy. Furthermore, the security
of the ELCD was proven mathematically and cyberattacks were investigated using the
random oracle model. The performance of the ELCD outperforms the baseline digital
signature in terms of CPU execution time, which is less by 53.8%; storage cost, which is
less by 32–17%; and energy consumption, which is less by 68.7%. Future work regarding
this research will focus on enhanced the performance a tiny digital certificate based on the
ECDH in IoT networks.

Author Contributions: Conceptualization, O.M.B.; methodology, O.M.B.; software, A.A.A.; vali-
dation, A.A.A. and O.M.B.; formal analysis, A.A.A.; investigation, A.A.A. and O.M.B.; resources,
A.A.A.; data curation, A.A.A.; writing—original draft preparation, A.A.A.; writing—review and
editing, A.A.A.; visualization, A.A.A.; supervision, A.A.A.; project administration, A.A.A.; funding
acquisition, A.A.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz
University (KAU), Jeddah, Saudi Arabia, grant number G-039-830-1443 And The APC was funded by
G:039-830-1443.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The Deanship of Scientific Research (DSR) at King Abdulaziz University (KAU),
Jeddah, Saudi Arabia has funded this Project under grant no. (G:039-830-1443).

Conflicts of Interest: The authors declare no conflict of interest.

Processes 2022, 10, 2631 26 of 27

References
1. Sarker, I.H.; Khan, A.I.; Abushark, Y.B.; Alsolami, F. Internet of Things (IoT) Security Intelligence: A Comprehensive Overview,

Machine Learning Solutions and Research Directions. Mob. Netw. Appl. 2022, 1–17. [CrossRef]
2. Sciancalepore, S.; Piro, G.; Vogli, E.; Boggia, G.; Grieco, L.; Cavone, G. LICITUS: A lightweight and standard compatible

framework for securing layer-2 communications in the IoT. Comput. Netw. 2016, 108, 66–77. [CrossRef]
3. Kittur, A.S.; Pais, A.R. A trust model based batch verification of digital signatures in IoT. J. Ambient. Intell. Humaniz. Comput. 2019,

11, 313–327. [CrossRef]
4. Li, S.; Zhang, T.; Yu, B.; He, K. A Provably Secure and Practical PUF-Based End-to-End Mutual Authentication and Key Exchange

Protocol for IoT. IEEE Sens. J. 2021, 21, 5487–5501. [CrossRef]
5. Arne, B.; Le, N.; Dominik, S.; Stephan, S.; Lars, C.W. Security Properties of Gait for Mobile Device Pairing. IEEE Trans. Mob.

Comput. 2019, 19, 697–710.
6. Diro, A.A.; Chilamkurti, N.; Kumar, N. Lightweight Cybersecurity Schemes Using Elliptic Curve Cryptography in Publish-

Subscribe fog Computing. Mob. Netw. Appl. 2017, 22, 848–858. [CrossRef]
7. Khasawneh, S.; Kadoch, M. Hybrid Cryptography Algorithm with Precomputation for Advanced Metering Infrastructure

Networks. Mob. Netw. Appl. 2018, 23, 982–993. [CrossRef]
8. Bu, L.; Isakov, M.; Kinsy, M.A. A secure and robust scheme for sharing confidential information in IoT systems. Ad Hoc Netw.

2019, 92, 101762. [CrossRef]
9. Hendaoui, F.; Eltaief, H.; Youssef, H. UAP: A unified authentication platform for IoT environment. Comput. Netw. 2021, 188,

107811. [CrossRef]
10. Vidya, R.; Prema, K.V. Lightweight hashing method for user authentication in Internet-of-Things. Ad Hoc Netw. 2019, 89, 97–106.
11. Chuang, Y.-H.; Lo, N.-W.; Yang, C.-Y.; Tang, S.-W. A Lightweight Continuous Authentication Protocol for the Internet of Things.

Sensors 2018, 18, 1104. [CrossRef] [PubMed]
12. de Fuentes, J.M.; Gonzalez-Manzano, L.; Lopez, J.; Peris-Lopez, P.; Choo, K.-K.R. Editorial: Security and Privacy in Internet of

Things. Mob. Netw. Appl. 2019, 24, 878–880. [CrossRef]
13. Riad, K.; Huang, T.; Ke, L. A dynamic and hierarchical access control for IoT in multi-authority cloud storage. J. Netw. Comput.

Appl. 2020, 160, 102633. [CrossRef]
14. Alexander, J.M.; Kueffer, C.; Daehler, C.; Edwards, P.J.; Pauchard, A.; Seipel, T.; Arévalo, R.J.; Cavieres, L.A.; Dietz, H.; Jakobs, G.;

et al. NETRA: Enhancing IoT Security Using NFV-Based Edge Traffic Analysis. IEEE Sens. J. 2019, 19, 4660–4671. [CrossRef]
15. Zhou, M.; Han, L.; Lu, H.; Fu, C. Intrusion Detection System for IoT Heterogeneous Perceptual Network. Mob. Netw. Appl. 2021,

26, 1461–1474. [CrossRef]
16. Alamer, A. An efficient group signcryption scheme supporting batch verification for securing transmitted data in the Internet of

Things. J. Ambient. Intell. Humaniz. Comput. 2020, 1–18. [CrossRef]
17. Ahmed, A.A. Lightweight Digital Certificate Management and Efficacious Symmetric Cryptographic Mechanism over Industrial

Internet of Things. Sensors 2021, 21, 2810. [CrossRef]
18. Johnson, D.; Menezes, A.; Vanstone, S. The elliptic curve digital signature algorithm (ECDSA). Int. J. Inf. Secur. 2001, 1, 36–63.

[CrossRef]
19. Mughal, M.A.; Luo, X.; Ullah, A.; Ullah, S.; Mahmood, Z. A lightweight digital signature based security scheme for human-

centered Internet of Things. IEEE Access 2018, 6, 31630–31643. [CrossRef]
20. Park, C. A Secure and Efficient ECQV Implicit Certificate Issuance Protocol for the Internet of Things Applications. IEEE Sens. J.

2017, 17, 2215–2223. [CrossRef]
21. Mohseni-Ejiyeh, A.; Ashouri-Talouki, M.; Mahdavi, M. An Incentive-Aware Lightweight Secure Data Sharing Scheme for D2D

Communication in 5G Cellular Networks. ISeCure 2018, 10, 15–27.
22. Abro, A.; Deng, Z.; Memon, K.A. A Lightweight Elliptic-Elgamal-Based Authentication Scheme for Secure Device-to-Device

Communication. Future Internet 2019, 11, 108. [CrossRef]
23. Javed, Y.; Khan, A.S.; Qahar, A.; Abdullah, J. EEoP: A lightweight security scheme over PKI in D2D cellular networks. J.

Telecommun. Electron. Comput. Eng. 2017, 9, 99–105.
24. Ahmed, A.A.; Ahmed, W.A. An Effective Multifactor Authentication Mechanism Based on Combiners of Hash Function over

Internet of Things. Sensors 2019, 19, 3663. [CrossRef]
25. Sciancalepore, S.; Piro, G.; Boggia, G.; Bianchi, G. Public Key Authentication and Key Agreement in IoT Devices with Minimal

Airtime Consumption. IEEE Embed. Syst. Lett. 2017, 9, 1–4. [CrossRef]
26. NIST Computer Security Resource Center. Lightweight Cryptography Project. Available online: https://csrc.nist.gov/projects/

lightweight-cryptography (accessed on 27 November 2022).
27. Seok, B.; Sicato, J.C.S.; Erzhena, T.; Xuan, C.; Pan, Y.; Park, J.H. Secure D2D Communication for 5G IoT Network Based on

Lightweight Cryptography. Appl. Sci. 2020, 10, 217. [CrossRef]
28. Khan, M.A.; Quasim, M.T.; Alghamdi, N.S.; Khan, M.Y. A Secure Framework for Authentication and Encryption Using Improved

ECC for IoT-based Medical Sensor Data. IEEE Access 2020, 8, 52018–52027. [CrossRef]
29. Muhammad, U.; Ahmed, I.; Imran, M.A.; Shujaat, K.; Usman, A.S. SIT: A lightweight encryption algorithm for secure internet of

things. Int. J. Adv. Comput. Sci. Appl. 2017, 8, 402–411.

http://doi.org/10.1007/s11036-022-01937-3
http://doi.org/10.1016/j.comnet.2016.08.003
http://doi.org/10.1007/s12652-019-01289-z
http://doi.org/10.1109/JSEN.2020.3028872
http://doi.org/10.1007/s11036-017-0851-8
http://doi.org/10.1007/s11036-017-0956-0
http://doi.org/10.1016/j.adhoc.2018.09.007
http://doi.org/10.1016/j.comnet.2021.107811
http://doi.org/10.3390/s18041104
http://www.ncbi.nlm.nih.gov/pubmed/29621168
http://doi.org/10.1007/s11036-018-1150-8
http://doi.org/10.1016/j.jnca.2020.102633
http://doi.org/10.1109/JSEN.2019.2900097
http://doi.org/10.1007/s11036-019-01483-5
http://doi.org/10.1007/s12652-020-02076-x
http://doi.org/10.3390/s21082810
http://doi.org/10.1007/s102070100002
http://doi.org/10.1109/ACCESS.2018.2844406
http://doi.org/10.1109/JSEN.2016.2625821
http://doi.org/10.3390/fi11050108
http://doi.org/10.3390/s19173663
http://doi.org/10.1109/LES.2016.2630729
https://csrc.nist.gov/projects/lightweight-cryptography
https://csrc.nist.gov/projects/lightweight-cryptography
http://doi.org/10.3390/app10010217
http://doi.org/10.1109/ACCESS.2020.2980739

Processes 2022, 10, 2631 27 of 27

30. Shah, R.H.; Salapurkar, D.P. A multifactor authentication system using secret splitting in the perspective of Cloud of Things. In
Proceedings of the International Conference on Emerging Trends & Innovation in ICT (ICEI), Pune, India, 3–5 February 2017; pp.
1–4.

31. Hammi, B.; Fayad, A.; Khatoun, R.; Zeadally, S.; Begriche, Y. A Lightweight ECC-Based Authentication Scheme for Internet of
Things (IoT). IEEE Syst. J. 2020, 14, 3440–3450. [CrossRef]

32. Rangwani, D.; Sadhukhan, D.; Ray, S.; Khan, M.K.; Dasgupta, M. A robust provable-secure privacy-preserving authentication
protocol for Industrial Internet of Things. Peer-to-Peer Netw. Appl. 2021, 14, 1548–1571. [CrossRef]

33. NIST. Fips Publication 180-2: Secure Hash Standard; Technical Report; National Institute of Standards and Technology (NIST):
Gaithersburg, MD, USA, 2003.

34. Lochter, M.; Merkle, J. RFC 5639: Elliptic Curve Cryptography (ECC) Brainpool Standard Curves and Curve Generation; IETF: Fremont,
CA, USA, 2010.

35. Li, X.; Niu, J.W.; Ma, J.; Wang, W.D.; Liu, C.L. Cryptanalysis and improvement of a biometrics-based remote user authentication
scheme using smart cards. J. Netw. Comput. Appl. 2011, 34, 73–79. [CrossRef]

36. Wang, J.; Han, K.; Alexandridis, A.; Zilic, Z.; Pang, Y.; Wu, W.; Jeon, G. A novel security scheme for Body Area Networks
compatible with smart vehicles. Comput. Netw. 2018, 143, 74–81. [CrossRef]

37. Wang, Y.; Yang, G.; Li, T.; Li, F.; Tian, Y.; Yu, X. Belief and fairness: A secure two-party protocol toward the view of entropy for IoT
devices. J. Netw. Comput. Appl. 2020, 161, 102641. [CrossRef]

38. Biryukov, A. Adaptive Chosen Plaintext Attack. In Encyclopedia of Cryptography and Security; Van Tilborg, H.C.A., Jajodia, S., Eds.;
Springer: Boston, MA, USA, 2011.

39. Biryukov, A. Related Key Attack. In Encyclopedia of Cryptography and Security; Van Tilborg, H.C.A., Jajodia, S., Eds.; Springer:
Boston, MA., USA, 2011.

40. Silverma, J.H. An Introduction to the Theory of Elliptic Curves, Summer School on Computational Number Theory and Applications to
Cryptography; Brown University: Providence, RI, USA, 2006.

41. IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs): Overview, Assumptions, Problem Statement, and Goals.
Available online: http://www.ietf.org/rfc/rfc4919.txt (accessed on 27 November 2022).

42. Mininet-IoT Emulator of Internet of Things. Available online: https://github.com/ramonfontes/mininet-iot (accessed on 27
November 2022).

43. A Security Site. Available online: https://asecuritysite.com/encryption (accessed on 27 November 2022).
44. Ahmed, A.A. An optimal complexity H. 264/AVC encoding for video streaming over next generation of wireless multimedia

sensor networks. Signal Image Video Process. 2016, 10, 1143–1150. [CrossRef]

http://doi.org/10.1109/JSYST.2020.2970167
http://doi.org/10.1007/s12083-020-01063-5
http://doi.org/10.1016/j.jnca.2010.09.003
http://doi.org/10.1016/j.comnet.2018.07.005
http://doi.org/10.1016/j.jnca.2020.102641
http://www.ietf.org/rfc/rfc4919.txt
https://github.com/ramonfontes/mininet-iot
https://asecuritysite.com/encryption
http://doi.org/10.1007/s11760-016-0870-0

	Introduction
	Research Problem Statement
	Research Contribution

	Related Works on Encryption and Digital Signature
	Lightweight Digital Signatures on IoT
	Lightweight Encryption Algorithms on IoT

	System Design of the ELCD Algorithm
	The Key Management Algorithm
	The Lightweight Encryption Algorithm
	The Proposed Digital Signature Algorithm

	Cybersecurity Analysis
	Adversary Model for ELCD on the IoT
	Cryptoanalysis of ELCD
	The ELCD Cybersecurity Analysis
	Proven Security for ELCD in the Random Oracle Model
	Proven Security for Proposed Digital Signature in ROM

	Countermeasures against Replay and Man-in-the-Middle Attacks
	Countermeasures against Brute Force Attacks
	Countermeasures against Session Hijacking and Spoofing Attacks
	Countermeasures against Device Capture and Stolen-Verifier Attacks

	Implementation and Performance Evaluation of ELCD on the IoT
	Performance Evaluation and Results Discussion
	Performance Comparison between ELCD Digital Signature and Baseline Algorithms
	Performance Comparison between ELCD Cryptographic and Baseline Algorithms

	Conclusions and Future Work
	References

