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Abstract: Fumaric acid is one of the most promising biorefinery platform chemicals, fruit residues
being a very suitable raw material for its production in second generation biorefineries. In particular,
apple pomace is a plentiful residue from the apple juice industry, with apple being the second largest
fruit crop in the world, with a production that increased from 46 to 86 Mtons in the 1994–2021 period.
With a global apple juice production of more than 4.5 Mtons, a similar amount of apple pomace is
produced yearly. In this work, apple pomace hydrolysate has been obtained by enzymatic hydrolysis
and further characterized for its content in sugars, phenolics and nitrogen using different analytic
methods, based on HPLC and colorimetric techniques. Previous to the use of this hydrolysate (APH),
we studied if the addition of fructose to the usual glucose-rich broth could lead to high fumaric acid
yields, titers and productivities. Afterwards, APH fermentation was performed and improved using
different nitrogen initial amounts, obtaining production yields (0.32 gFumaric acid/gconsumed sugar)
similar to those obtained with synthetic media (0.38 gFumaric acid/gconsumed sugar). Kinetic modelling
was employed to evaluate, explain, and understand the experimental values and trends of relevant
components in the fermentation broth as functions of the bioprocess time, proposing a suitable
reaction scheme and a non-structured, non-segregated kinetic model based on it.

Keywords: fumaric acid; Rhizopus arrhizus; kinetic modelling; biorefinery; apple pomace

1. Introduction

Sustainable development is a geopolitical target in most countries throughout the
world. It addresses key social, economic, and environmental indicators, with the aim to
create a lasting equilibrium between human needs and desires and the ultimate source of
most resources, both energetic and material, our Earth. Petroleum and, in general, fossil
resources depletion starts to be a reality, pushing the search and discovery of new materials
and energy sources [1–3].

Green chemistry and engineering are sustainability tools that have experienced a
great growth in recent years for the aforementioned reasons [4]. Additionally, biorefineries
appear as an integrated and integral process strategy based on the petrochemical industry
but focusing on the modification of biomass as the source for an almost unlimited array of
products, biomass being a global term encompassing all renewable and sustainable raw
materials created in the biosphere, that is, by living beings [5].

During the last decades, biorefineries have evolved and they can be classified in sev-
eral generations. First generation biorefineries are based on starch- and sucrose-rich crops,
also used in feeding. However, this involved an ethical dilemma, due to the competition
they create between the energy and food sectors [2,6]. Thus, and due also to the relative
scarceness of these raw materials, second generation biorefineries are based on lignocellu-
losic materials: energy crops and residues, which have little or no value as food or feed.
These biorefineries can use also sugar rich wastes, provided by agro-food industries, with
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no value as food ingredients. In this way, the raw material is plentiful and cost-efficient
and several problems due to waste management are solved [6]. This generation is widely
investigated by creating alternative industrial processes, with a focus on the increase of
the raw material reactivity, as it is usually recalcitrant to chemical or biochemical trans-
formation [7]. In this context, a third generation of biorefineries is coming, developed to
transform sea resources, and mainly focused on algae technology [2,8].

To increase yields and productivities of the biotechnological processes in biorefineries,
genetic edition has been introduced. For example, using genetically modified organisms
(GMOs), a wide variety of products can be obtained from very different raw materials, this
fact gives rise to the fourth generation of biorefineries, focused overall as a continuation of
previous generation, modifying algae and cyanobacteria [7].

The food industry is a very suitable source of raw materials for second generation
biorefineries, as food waste and loss need to be valorised instead of being disposed of. In
this context, fruit wastes from the beverage industry, which are rich in free sugars and
structural polysaccharides, are composed by cellulose, hemicellulose and pectin, which
can be hydrolysed to fermentable sugars [9]. Moreover, fruit wastes are a rich source of
high value substances such as essential oils (mostly terpenes), flavonoids, carotenoids, and
pectin, to name a few. These substances add value to overall process, rendering it more
efficient and cost-effective and also avoiding deleterious effect on upstream operations due
to catalysts and/or biocatalysts deactivation or inhibitions [10].

Apple manufacturing wastes, also known as apple pomace (AP), are mainly composed
by apple peel, flesh, and seeds, and even precipitated solids from juice clarification. In
countries such as Germany, apple is the fruit with the highest production. A huge amount
of AP (200–250 kt/year) is generated, making necessary its management, as wastes or as a
by-product. The main AP applications are focussed on composting or on animal feeding,
remarking its use as horse feed [11].

Fumaric acid was designated as one of the top 12 building blocks to be produced in
biorefineries, by the U.S. Department of Energy [12]. It is a dicarboxylic acid with a double
bond, which confers very interesting properties as monomer and as rising crosslinker in
material industry. As a chemical building block, it is co-polymerized to several polyamides
or resins. Its main use lies, however, in the food industry, where it is used as a non-
flavouring acidulant. This compound has also several applications in the health and
pharma industries. As an ingredient of cattle feed, it reduces 70% of methane emissions, a
greenhouse gas with a heating potential 21 times higher than CO2 [13,14].

The acid is produced nowadays by catalytic isomerization from maleic anhydride, a
process that involves very intensive pressure and temperature, being energy-intensive. In
addition, the use of maleic anhydride is dangerous for the environment, as this compound
is petroleum-based [13,15].

Rhizopus spp. is a genus of filamentous fungi, known to be the best natural producers
of fumaric acid. However, these microorganisms present some disadvantages due to low
productivity and lack of process reliability. This last feature is due to their growth as hyphae,
having different morphologies with diverse productivities [16]. Fungal morphology and
its control have been widely discussed [17,18]. Pellet morphology is generally recognised
as the most suitable morphology due to its high productivity and low effect on medium
rheology. The control of the size and the development of pellets on inoculum stages
optimizes the fungal metabolism for fumaric acid production [19].

Fumaric acid is present in the metabolism of Rhizopus in two different pathways: the
tricarboxylic acid (TCA) cycle and the TCA reductive pathway. The first route is only
present inside the mitochondria and fumaric acid is within a metabolic cycle, not being a
product of the route [13,20]. This is, however, the situation in the TCA reductive pathway:
the acid is the final product. This metabolic route starts from pyruvate which, through CO2
fixation, ends in fumarate. Enzyme fumarase is responsible from the last step of the route;
its activity is known to increase nitrogen limiting conditions [21,22].
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With the objective of implementing this fermentative process on a biorefinery model,
this work is focused on the obtention of fumaric acid from an enzymatic hydrolysate of
AP (APH), as carbon source on fermentation medium. This hydrolysate was characterized
to know its composition. As a comparative counterpart, the fungal fermentation with
synthetic media with identical composition to APH and also with glucose as only carbon
source has been studied. The kinetic modelling was employed as a tool for a further
comparison and to simulate the bioprocess based on APH, looking for a future scale up.

2. Materials and Methods
2.1. Wastes

AP employed on the present work have been kindly supplied by a beverage factory,
having real industrial wastes for an accurate implementation. It was supplied by Con-
centrados Villaviciosa S.A. (La Almunia de Doña Godina, Aragon, Spain), an apple juice
factory for cider elaboration. The waste is produced in the first part of the process, when
apples are washed and peeled and after shredding and pressing [23,24].

2.2. Enzymes and Reagents

The enzymes employed on the present study were supplied by ASA Spezialenzyme
GmbH (Wolfenbüttel, Germany). These enzymes are: Biogazyme 2x, Xylanase 2x, β-
glucosidase 1000 and Pektinase L40.

Several chemical reagents were employed for media elaboration and analysis protocols.
Glucose and fructose EPR (Labchem. Premia de Dalt, Spain) were employed as a carbon
source on synthetic media; at the same time, fermentation media are composed by any other
salts such as ammonium sulphate or magnesium sulphate. All these salts and inorganic
compounds, as well as DPPH for antioxidant activity determination, were supplied by
Panreac (Castellar del Vallés, Spain). On the other hand, certain specific reagents were
supplied by Sigma-Aldrich (Saint Louise, MO, USA.), such as Corn Step Liquor (CSL) and
the ion exchange resin Dowex® 50WX8. Other reagent employed was Folin–Ciocalteu’s
phenol reagent in analytical grade (Chemical Lab, Zedelgem, Belgium). Active carbon
for detoxification process was supplied by ACROS Organics (Waltman, MA, USA.) with
4–12 mesh.

Finally, different kinds of CaCO3 tested, with diverse specifications, were provided
by Alfa-Aesar (Averhill, MA, USA) and VWR chemicals (Radnor, PA, USA), both with
≥99% purity.

2.3. Enzymatic Hydrolysis

Enzymatic hydrolysis was carried out using fresh apple pomace, with no further
pre-treatment. The process regime selected was fed-batch. Final total solid load was 15%
(w/v), distributed on 5 different loads of 3% (w/v) of dry solid at 0, 3.5, 24, 48 and 60 h, with
a total time of 72 h. This hydrolysis was performed in a 2 L bioreactor, with mechanical
stirring at 350 rpm and 50 ◦C, pH was maintained at 5.0 using NaOH.

An enzymatic cocktail was developed based on previous studies [25,26]. Its compo-
sition was: Biogazyme 2x: 18 mg/gdry solid, Xylanase 2x: 12 mg/gdry solid, β-glucosidase
1000: 9 µL/gdry solid and Pektinase L40: 9 µL/gdry solid. Due to the high solid load over
time, there were two different enzymatic cocktail loads during the waste processing: One
at the beginning of the operation (0 h) and another load at 48 h.

2.4. Detoxification

Because of the nature and composition of APH, a decontamination process was needed
to remove antimicrobial compounds [27,28]. Firstly, a precipitation of solids, assisted
by CaCO3 (1 g/L), was performed during 5 min at 80 rpm and at room temperature.
Afterwards, the solids were removed by centrifugation using three cycles of 10 min at
11,733× g (8500 rpm) to ensure a complete clarification of the liquid phase.
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Once all solids were removed, two detoxification stages were performed in series. The
first one was an adsorption operation using 10% (w/v) active carbon in a contact stage of
30 min. This stage sought to eliminate phenolic compounds and essential oils [29]. A second
detoxification stage was performed using an ion exchange resin Dowex® 50WX8, using
10% (w/v) of resin for 30 min. This resin is employed to reduce the cation concentration,
such as metals or ammonium [27].

After the use of the resin, it must be washed with water (500 mLwater/100 gresin),
later regenerated with H2SO4 0.125 M (100 mLacid/100 gresin) and, finally, washed with
water again.

At last, two filtrations were performed: An initial filtration with a glass fibre filter, for
removing remaining solids. Finally, a sterilizing filtration (0.22 µm) was applied to have a
stable medium.

2.5. Microorganism and Stock Elaboration

As in previous studies [19,30], Rhizopus arrhizus NRRL 1526 was used for fumaric acid
production. It was cultivated on agar plates with PDA (potato dextrose agar) medium. The
spore stock (2·107 spores/tube) was elaborated after sporulation (5 days). Stock was stored
at −80 ◦C in a saline–glycerol 20% (v/v) solution.

2.6. Media and Culture Conditions

All experiments carried out on this study were performed following one flask–one
sample working protocol, in such a way as to assure reproducibility and traceability [19].
Fermentations were carried out in 100 mL shake flasks, using 20 mL of culture medium at
34 ◦C and 400 rpm.

The process was divided into two different stages: the inoculum stage was firstly
performed, with the purpose of developing correct pellet morphology, with a proper size,
and a metabolic state suitable for an enhanced fumaric acid production.

Inoculum medium was defined by Rhodes in 1959 [31], with some later modifications [19].
It is composed by: Glucose (40 g/L), ammonium sulphate (4 g/L), MgSO4 × 7 H2O (0.4 g/L),
ZnSO4 × 7 H2O (0.044 g/L), KH2PO4 (1.6 g/L), FeCl3 × 6 H2O (0.0075 g/L) and CSL
(0.5 mL/L). This medium is widely employed in the bibliography as it has a proper
composition to obtain an appropriate growth and development of fungal biomass.

The production stage employed a common composition of micronutrients, optimised
for production by Ling and Ng [32]: MgSO4 × 7 H2O (0.4 g/L), ZnSO4 × 7 H2O (0.044 g/L),
KH2PO4 (0.3 g/L), FeCl3 × 6 H2O (0.0075 g/L) and finally CaCO3 (35 g/L), used as pH
controller and CO2 supplier [30]. Sugars concentration has been set to resemble culture
media to APH, after its analysis. There were two synthetic media used: A first medium
only composed by glucose as carbon source with a concentration of 60 g/L. The other
synthetic medium consisted in an analogous of the APH, being composed of glucose and
fructose in the same concentration of 30 g/L.

The nitrogen content, on different production media, was adapted from literature [30,32]
to obtain nitrogen limiting conditions. Ammonium sulphate concentration was adjusted
to have the same C:N ratio on the different experiments, having an ammonium sulphate
concentration of 0.54 g/L for these media, which means 0.07 g/L of ammonia.

The final AP fermentation medium would be composed mainly of APH, but it was
complemented to ensure the same composition of micronutrients defined before, and
(NH4)2SO4 as nitrogen source added, at a concentration to be determined.

2.7. Biomass and Ammonium Tracing

Ammonium concentration was measured using an ammonia ion selective electrode
Hanna Instruments HI-4101, in an ISE (Ion Selective Electrode) measurer Hanna Instru-
ments HI-5522 (Hanna Instruments. Villafranca Padovana, Italy).

Living biomass have been quantified following the methodology defined in a previous
study [30]. As indicated in this reference, the biomass concentration was related to nitrogen
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consumption by stoichiometry once the average molecular formula of the microorganism
was established (CH1.80O0.68N0.22).

2.8. Sample Analysis

For tracing the concentration of the different compounds, HPLC techniques have been
employed. A modular HPLC device Jasco series 2000 (Jasco. Tokyo, Japan) was used,
having a refractive index detector (RID) and a diode array detector (DAD).

Two different HPLC columns have been employed for different purposes: A BP 800-H
column (Benson. Reno, NV, USA), with H2SO4 0.005 M as mobile phase, at 0.5 mL/min and
60 ◦C was employed for all samples, as this HPLC method is suitable for almost all relevant
compounds. In this analysis, fumaric acid was measured using the DAD at 250 nm. Other
substances (malic acid, ethanol, and glucose) were quantified using the RID. In addition, a
BP 800-PB column thermostatized at 80 ◦C (Benson. Reno, NV, USA), with Milli-Q H2O
as mobile phase flowing at 0.5 mL/min, used for analysing in detail several hexoses and
pentoses present on the hydrolysates, such as xylose, galactose, saccharose, and fructose.

Folin–Ciocalteu and DPPH assays were performed to determine total phenolic content
and antioxidant capacity, respectively, on APH. These characterizations have been applied
to study the effectivity of detoxification process [9] by known protocols obtained from the
bibliography: the Folin–Ciocalteu working protocol was developed by Ribeiro et al., from
Universidade Federal do Paraná, Brazil [33], while the DPPH protocol was established by
Ozturk et al., from the University of Manchester, UK [34].

Finally, a classic Bradford method for soluble protein quantification was employed,
used for characterizing APH. The employed protocol is the same as in previous studies [30].

2.9. Mathematical Methods

Once the different kinetic models on the present study were proposed, they were
fit to all relevant experimental data using the software Aspen Custom Modeller V11®

(ACM). This program applies nonlinear fitting mathematic methods, based on NL2SOL
algorithm coupled to a variable interval Euler method for the numerical integration of the
ordinary differential equations (ODEs) that constitutes each kinetic model. The NL2SOL
algorithm is an algorithm very adequate to solve ODEs systems based on gradient method;
it was developed from the Marquardt–Levenberg algorithm. It ensures a fast and reliable
calculation of the kinetic parameters or constants of the models [35].

The model must be introduced using programming language very similar to Matlab.
Afterwards, experimental data are introduced. Finally, initial iteration values for model
parameters are required to reach an appropriate convergence of the system. For the iteration,
some physical criteria must be applied such as the need for the kinetic parameters to be
positive.

Kinetic parameters are obtained together their standard errors with a 95% confidence
(by Student’s t analysis) which must be as low as possible. To test the goodness of the
proposed kinetic model, some statistical parameters were provided by the software: root
main squared error (RMSE) (Equation (1)) measures the cumulative error between the
experimental data and the fitted model, so it should tend to zero. This parameter is based
on the sum of squared residuals (SSR), represented in Equation (2), that indicates the overall
error present in the model, in respect of experimental data [19,36].

RMSE =

√
SSR

(N−K)
(1)

SSR =
j=K

∑
j=1

i=N

∑
i=1

(
Cij exp −Cij calc

)2
(2)
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The calculation of RMSE, requires the freedom degrees in the model (N-K). Rep-
resenting N, the number of experimental data and K, the number of parameters in the
proposed model.

The F test is based on SSR calculation as well; it points out how good the fitting is. This
test indicates the probability that the model would be represented by a Fisher–Snedecor
distribution with 95% confidence. The parameter F95 (Equation (3)) must be always over a
critical value (tabulated) for the number of data and kinetic parameters used, thus ruling
out the null hypothesis. In any case, it should be as large a value as possible [19,36].

F95 =
∑

j=K
j=1 ∑n=N

n=1

(Cjn calc
K

)2

∑
j=K
j=1 ∑n=N

n=1

(
SSR

N−K

) (3)

Finally, the percentage of variation explained (%VE) (Equation (4)) is a differential
goodness-of-fit parameter: It gives information about how well the model explains the
changes of the measured variables (concentrations) with the independent variable (time, in
this case). A 100% implies a perfect explanation by the model of the experimental change
of the dependent variable(s) contained in the model [19,37].

%VE = 100

(
1− ∑l=L

l=1 SSRl

∑l=L
l=1 SSRmean l

)
(4)

2.10. Kinetic Model

To model the time course of the different compounds in the experiments carried out
in the present study, a non-structured, non-segregated simple kinetic model has been
proposed and applied to these four experiments. The model (Equations (5)–(16)) is based
on another model successfully employed in a previous study [30], but it has been modified
according to the trends appreciated in these experiments. The reaction scheme developed
for this model is:

yGX G + yFrX Fr + yNX N
[X]→ X + yEX Et + yIXI ∴ r1 = µm[X][N] (5)

G + yFrEn Fr
[X]→ Energy ∴ r2 = mS[X] (Only if [G] > 0) (6)

yIF I
[X]→ F + yMF M ∴ r3 = kF[X]·[I] (7)

Et
[X]→ Energy ∴ r4 = kE[X] (Only if [G] = 0) (8)

From this reaction scheme, model equations are the following:
Biomass:

RX =
d[X]
dt

= r1 (9)

Fumaric acid:

RF =
d[F]
dt

= r3 (10)

Malic acid:

RM =
d[M]

dt
= YMFr3 (11)

Ethanol:

RE =
d[Et]

dt
= YEXr1 − r4 (12)

Ammonia:

RN =
d[N]

dt
= −YNXr1 (13)
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Glucose:

RG =
d[G]

dt
= −YGXr1 − r2 (14)

Fructose:

RFr =
d[Fr]

dt
= −YFrXr1 − YFrEn·r2 (15)

Intermediate:

RI =
d[I]
dt

= YIXr1 − YIF·r3 (16)

The proposed kinetic model is based on fungal growth described by the M’Kendrick
and Pai model, considering ammonia as a limiting substrate (Equations (5) and (9)). From
this growth model, associations to growth substances production are described through
yields: ethanol and the intermediate metabolite (Equations (5), (12) and (16)).

A cellular maintenance reaction was introduced too; for this reaction we considered
the consumption of glucose and fructose for respiration to obtain energy (Equations (6),
(14) and (15)).

Additionally, there is a specific reaction to describe the TCA reductive pathway, where
fumaric and malic acids are clearly not associated to growth (Equation (7)). As previously
mentioned, when using APH as substrate, the production of fumaric and malic acids
do not deter even when sugars are totally consumed, suggesting the accumulation of
an intermediate inside the fungal cells (growth associated, as reflected in Equation (5)).
Probably, malate concentration grows inside the cells due to the great sensitivity of the
fumarase to inhibitors [28,38].

Concerning ethanol disappearance (Equation (8)), this is a phenomenon that is not
present in all experiments probably because only when APH is used, glucose and fructose
disappear completely. Ethanol has been proved to be produced in aerobic conditions by
the Crabtree effect [30], shifting the excess of carbohydrate to the production of ethanol to
increase NADH levels in the cells. Afterward, when the microorganism need for energy
increases, ethanol is transported inside the microorganism to face such needs in the absence
of other carbon sources. For this reason, the reaction represented in Equation 8 is only
present with the condition that glucose and fructose concentrations are 0, a fact that happens
at the same time (40 h).

3. Results and Discussion
3.1. Enzymatic Hydrolysis

Enzymatic hydrolysis was performed as commented in the Materials and Methods sec-
tion (Section 2.6). APH was characterized after and before detoxification process, obtaining
the results shown in Table 1. HPLC sugar analysis was carried out using different columns
described on Section 2.8. It is appreciated that the detoxification treatment only slightly
affects the final monosaccharide content, conserving more than 95% original sugar content.
Phenolic and antioxidant activity quantifications were also performed, these substances
are reported to have antifungal effect [28]. As it is shown in Table 1, the detoxification pro-
cess reduced the content in phenolics and antioxidants. Near 43% phenolics are removed,
according to the Folin–Ciocalteu method, but only 20% antioxidant activity disappears.
Therefore, enzyme inhibition due to this type of compound can still be expected. In ad-
dition, a nitrogen quantification has been carried out, and in Table 1 it can be observed
that ammonium content on the detoxified APH is below the quantification limit, so its
value could be considered null. Therefore, the treatment with ionic resins is successful
to remove ammonia. Moreover, protein content, as measured by the Bradford method, is
not significant (0.42 g/L), as this value is below the initial protein concentration added
for hydrolysis (2.87 g/L). This detoxified APH constitutes the carbon source for some
experiments reported in this work.
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Table 1. APH characterization analysis.

Parameter Before Detoxification Detoxified APH Units

[Sugars] 68.12 65.29 g/L
[Glucose] 35.11 32.48 g/L
[Fructose] 33.01 32.81 g/L

Total phenolic content 587.86 336.32 mgeq.gallic acid/L
Antioxidant activity 67.69 53.77 TEAC/L
[NH4

+] 105.17 <10 * mg/L
[Soluble protein] − 0.42 g/L

* Below quantification limit.

3.2. Synthetic Media Experiments

To study the effect of glucose and glucose/fructose mixtures in this bioprocess, two
experiments are carried out using a medium with only glucose at a concentration identical
to that of total sugars in detoxified APH (experiment 1) and another run using a mixture
glucose/fructose 1:1 w/w with the same mass concentration found in detoxified APH
(experiment 2). In Table 2, we have collected diverse key fermentation parameters of these
experiments. It can be noticed that they are very similar for both runs. Figures 1 and 2
show the experimental data (as points) obtained for these experiments. The results for
Experiment 1 (Figure 1) show the same trends reported elsewhere [30]: Fumaric and malic
acids accumulate in parallel in the fermentation broth, having a non-associated increase
relative to biomass production. Glucose and ammonia are totally consumed.

Table 2. Main parameters of the experiments performed in this work.

Experiment Medium [Fumaric Acid] (g/L) Yield (gFumaric

acid/gconsumed sugar)
Specific Productivity

(gFumaric acid/(gBiomass·h))

1 Glucose: 60 g/L
NH3: 0.14 g/L 22.20 0.37 0.32

2
Glucose: 30 g/L
Fructose: 30 g/L
NH3: 0.14 g/L

22.70 0.38 0.33

3 APH
NH3: 0.14 g/L 14.67 0.23 0.17

4 APH
NH3: 0.25 g/L 20.82 0.32 0.14

Ethanol evolution is of notable interest. In the bibliography it is widely reported how
its production is linked to fungal growth, and when it stops, ethanol concentration starts
decreasing, as a consequence of evaporation [30,39] and/or due to its consumption by the
fungus after having produced it via the Crabtree effect [40]. This effect is reported to take
place in different processes performed by certain species of fungi and yeasts. It consists of
ethanol generation with a double purpose. Firstly, it generates an energy reserve that they
can consume when required (in particular, fumaric acid transport through the membrane
needs a notable amount of ATP). At the same time, its presence prevents or hinders the
growth of other microorganism, reducing the competence for resources. Ethanol production
takes place over a threshold concentration of glucose and in an excess of oxygen [41,42].
Despite of this, in both experiments with pure sugars (Figures 1 and 2), it can be observed
that ethanol concentration remains constant after being produced, suggesting that the
microorganism has no need of it as an energy source in these cases, while evaporation is
not taking place at an appreciable rate.
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Regarding the experiment 2 (Figure 2), the use of both sugars combined in identical
concentrations at zero time provides very close results to those obtained when we use
only glucose. However, fructose is not totally consumed. In fact, the microorganism
consumes glucose at a much higher rate (glucose is totally consumed at a bioprocess time
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between 30 and 50 h). This effect is not due to carbon catabolite repression, as fructose
is consumed in parallel to glucose, though at a lower rate. However, fructose transport
through the membrane needs a higher amount of energy and the fungus need to use a
different phosphorylation route (and enzymes) to obtain pyruvate out of fructose [25]. Even
in these conditions, fumaric production is very similar to that in Experiment 1, not only in
terms of final yield but also considering its concentration evolution with time. Likewise,
the evolution of the rest of compounds in the fermentation broth is very close to those
shown in Figure 1. Thus, there is an evident possibility of using glucose–fructose mixtures
as substrate, the composition of the detoxified APH.

3.3. APH Application

A second set of runs was devoted to the use of detoxified APH as a carbon source
in fumaric acid production. In a first trial (Experiment 3) to produce fumaric acid, the
same conditions of Experiment 2 were used (Table 2). We can appreciate that both fumaric
acid yield and productivity decreased by 40% and 48%, respectively. These lower values
obtained in APH can be due to the remaining toxicity due to phenolic compounds and
also reflect on the change of morphology: The mycelium in Experiment 3 does not grow
any longer with a pellet morphology, resembling more a clump (Figure 3). This change of
morphology is a symptom from a change in the metabolism. This metabolic alteration is
probably a fungal defense strategy in the presence of phenolics and antioxidant compounds,
because it reduces the inner concentration of these compounds in the biomass due to mass
transfer limitations inside the clump [28,43]. However, this will result also in lower amounts
of oxygen reaching the inner part of the clump and, probably, to the death of inner cells as
the clump grows, with the subsequent reduction of active biomass concentration.
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In view of these results, is clear that detoxification process should be improved, in
a way to reduce the inhibition and reach higher production yields. For this purpose, the
active carbon treatment step could be optimized; on the other hand, other treatments could
be performed, such as adsorption to hydrophobic matrixes, nanofiltration with membranes
or peroxidase treatment [44,45].

In Figure 4, we displayed the time evolution of all the compounds. Some temporal
changes can be easily perceived. For example, even if biomass growth and nitrogen source
consumption follow the same trends as they used to, these processes are taking place
more slowly. Moreover, the change of morphology provokes the decrease on fumaric
acid production. This reduction on the final concentration of fumaric acid is balanced
by a higher production of malic acid. The carbon flux driven to reductive TCA should
be maintained [46]. Thus, the mentioned inhibition must have affected fumarase activity,
preventing malate transformation to fumarate. It have been reported that certain substances
present in essential oils coming from different fruits have an antifungal effect [28,43], also
some components from fruit juices such as phenolics or antioxidant compounds reduce the
activity of several enzymes produced by fungi [43,47]. It is well known and reported in the
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bibliography that enzymes responsible for the reductive TCA pathway are very sensitive
to changes in fermentation conditions and overall fumarase [48,49]. It is possible to switch
reversibility of certain metabolic reactions, changing process conditions [13,50]. So, it is not
strange that the presence of inhibitors could impact on reductive TCA enzymes and, in
particular, on fumarase.
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applied on Experiment 3 (APH, [NH3]0 = 0.14 g/L, 200 rpm, 34 ◦C).

As a consequence, fumaric and malic acids evolve in a diverse manner: their produc-
tion is still not associated to growth (such as in previous experiments); however, when sugar
concentration finishes, both acids concentration still rises. This effect could be explained
by the accumulation of an intermediate metabolite, possibly malate, as the result of the
deactivation of fumarase or other enzymes on the TCA reductive pathway[47,51]

Other remarkable difference is the ethanol disappearance once its maximum is reached.
As mentioned before, the Crabtree effect can be activated or not depending on the con-
centration of glucose and fructose, being the threshold concentration dependent on the
sugar [40]. In fact, this effect can also be affected by the presence of inhibitory substances.
Under stress conditions and in need of energy sources, the fungus could activate the ethanol
transport through the membrane, this transport being driven by a concentration gradient
and, thus, diffusive in nature. Ethanol is consumed afterwards in the TCA cycle, creating a
notable amount of energy in terms of ATP [42]. This ethanol consumption takes place after
40 h, once glucose and fructose have disappeared. In fact, carbohydrate consumption when
using APH is faster than with pure sugar solutions, so ethanol could be used as alternative
carbon source for cellular maintenance once sugars are not present. Furthermore, sugars
disappearance with bioprocess time changes when compared to the trend in Experiment 2:
now both sugars are consumed at the same rate. While glucose is consumed at a slightly
higher rate, fructose consumption rate is increased 2–3 fold.

The drop of the fermentation parameters could be caused by an excess of chemical
stress suffered by the fungi, although this stress reflects in a more active metabolism and a
diverse morphology. As carbon consumption is activated, it can be foreseen that nitrogen
needs will be higher. For this reason, and also trying to reduce the classical nitrogen limiting
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conditions [13,21,42], we have tested different ammonia initial concentrations when using
APH (Figure 5), setting them at 0.25 and 0.40 g/L.
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It is to be appreciated (Figure 5) that now, when using APH monosaccharides as the
main carbon source, the fungal need of nitrogen moves quickly towards higher values (even
though nitrogen restrictions are still needed to produce fumaric acid). As a consequence,
an ammonia concentration of 0.25 g/L was selected for a final experiment (Experiment
4). As can be seen on Table 2, production yield is very similar to that obtained with the
analogue medium (experiment 2). Moreover, the productivities (Table 2) show that this
increase in final production is due to the reduction of nitrogen stress, with a concomitant
decrease of fumaric acid productivity. Thus, the higher acid final concentration seems to
be directly related to a higher biomass concentration, consequence of a higher nitrogen
availability. In Figure 6, we appreciate the same trends for all the compounds perceived
in Experiment 3 (in both cases using APH), while final fumaric acid concentration has
been improved and ethanol production increases. As malic acid production is lower than
obtained in Experiment 3, we can conclude that its conversion into fumaric acid is also
activated. The behaviour of ethanol indicates a higher activation of the Crabtree effect [41].

It was proven there is a fall in the value of the production yield when APH is used;
however, this value is similar to those obtained with other wastes hydrolysates (Table 3).
The use of these kind of carbon sources involves inhibition due to the presence of different
substances present in the hydrolyzed biomass, that provoke a lower production respect
that from synthetic media. However, reached production yields are good enough to carry
out the process successfully.
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Table 3. Comparative of fumaric acid production using different wastes hydrolysates.

Reference Microorganism Medium [Fumaric Acid] (g/L) Production Yield
(gfumaric acid/gsugar)

[52] Rhizopus oryzae NRRL 2582 Silver grass hydrolysate:
Sugars ≈ 55 g/L; Yeast extract: 0.5 g/L 9.26 0.17

[53] Rhizopus oryzae ATCC 20344 Lignocellulosic syrup:
Sugars ≈ 80 g/L; Urea: 0.2 g/L 34.20 0.43

[54] Rhizopus oryzae NRRL 2582
Sugar cane molasses with soybean
cake hydrolysate: Sugars ≈ 25 g/L;

free amino nitrogen: 0.2 g/L
7.90 0.32

Present work Rhizopus arrhizus NRRL 1526 Apple pomace hydrolysate:
Sugars ≈ 60 g/L; (NH4)2SO4: 0.25 g/L 20.82 0.32

3.4. Kinetic Modelling

With the proposed kinetic model, modelling and analysis was performed using Aspen
Custom Modeller V11®. Kinetic parameters obtained are represented in Table 4. At the
same time, statistical parameters related with goodness-of-fitting are represented in Table 5.
The model prediction is represented in Figures 1–3 and 5 as lines, showing the accurate fit
of the model, in lines, to each experiment’s results. As it can be seen, the evolution of the
intermediate compound can be predicted using this model: as expected, this compound
shows a trend passing through a maximum value. The accumulation of this compound
is higher when APH is used as substrate as a consequence of the reduction of fumaric
acid production.



Processes 2022, 10, 2624 14 of 18

Table 4. Kinetic parameters for the proposed kinetic model obtained by statistical fitting.

Parameter Units Experiment 1 Experiment 2 Experiment 3 Experiment 4

µm
L

gNH3
·h 1.20 ± 0.07 1.28 ± 0.08 0.96 ± 0.04 0.76 ± 0.05

kF
L·gFumaric acid

gBiomass·gSugar·h
(2.64 ± 0.40)·10−1 (2.87 ± 0.34)·10−1 (0.74 ± 0.05)·10−1 (0.48 ± 0.05)·10−1

kE
gEthanol

gBiomass·h
− − (8.14 ± 1.42)·10−2 (5.14 ± 2.20)·10−2

mS
gGlucose

gBiomass·h
(5.94 ± 2.67)·10−1 (3.14 ± 0.38)·10−1 (5.36 ± 0.26)·10−1 (3.25 ± 2.81)·10−1

YFrEn
gFructose
gGlucose

− 1.25 ± 0.13 1.93 ± 0.10 1.27 ± 1.06

YMF
gMalic acid

gFumaric acid
(2.11 ± 0.16)·10−1 (2.04 ± 0.16)·10−1 (5.61 ± 0.34)·10−1 (3.45 ± 0.79)·10−1

YEX
gEthanol
gBiomass

7.52 ± 0.36 7.17 ± 0.34 6.88 ± 0.29 5.86 ± 0.39

YGX
gGlucose
gBiomass

30.40 ± 8.85 20.57 ± 2.95 21.95 ± 1.19 10.57 ± 4.47

YFrX
gFructose
gBiomass

− 5.97 ± 2.84 9.47 ± 1.19 8.17 ± 4.41

YIX
gIntermediate

gBiomass
4.86 ± 0.68 3.49 ± 0.46 6.93 ± 0.80 4.19 ± 0.47

YIF
gIntermediate
gFumaric acid

(2.19 ± 0.16)·10−1 (1.31 ± 0.32)·10−1 (3.49 ± 0.88)·10−1 (3.45 ± 0.79)·10−1

Table 5. Statistical parameters of proposed kinetic modelling.

Parameter Experiment 1 Experiment 2 Experiment 3 Experiment 4

RMSE 0.088 0.086 0.089 0.127
F95 195430 95366 114079 37696

%VE 96.28 95.50 96.55 96.93

The value of the parameter YNX is set to a value of 0.135 gAmmonia/gBiomass in all cases
because biomass concentration is calculated from consumed ammonia. From the other
kinetic parameters, contained in Table 4, some observations can be pointed out: the first
observation is the inhibition caused by phenolics and antioxidants containing in APH,
affecting the specific growth rate, µm. Its value is clearly lower in the experiments when
the hydrolysate is used as substrate, this effect can be observed comparing results shown
in Figures 2 and 3, where biomass production is slower in Experiment 3. The value for
Experiment 4 lower than Experiment 3 is perhaps due to an ammonia inhibition.

The values of µm in Experiments 1 and 2 are difficult to analyse in comparison with
other processes with Rhizopus spp., because in literature there are no kinetic models for this
process. A comparative process is, for example, lactic acid production [55,56], showing the
same magnitude order and similar values for this kinetic parameter in different processes
with diverse growth models. Rhizopus spp. specific growth rate is always very similar.

Regarding the values of YGX and YFrX parameters, we can observe how the sum of
values of parameters YGX and YFrX in Experiments 2 and 3, gives a value very close to YGX
in Experiment 1. This means that the yield of the use of sugars for cell reproduction is equal
for the experiments carried out using the same total sugar and ammonium concentrations
(Table 4).

Considering malic acid production, YMF has a very similar value in Experiments
1 and 2, but in Experiment 3 the highest value of the study is observed. Apparently, this
increase in malic acid production is a consequence of the excessive accumulation of the
intermediate metabolite observed in Figure 3.

Considering the evolution of the intermediate and the behaviours of kF and YMF
parameters, it is most plausible that inhibition caused by compounds present in APH is
affecting fumarase. Therefore, to identify the intermediate metabolite with malate turns
out to be a real possibility.

To generate a deeper understanding of the influence of certain parameters on the
proposed model, a sensibility analysis of certain parameters was performed throughout
the proposal of alternative scenarios (Figures S1–S4). We can appreciate that the model
predicts a higher yield to fumaric acid when a total detoxification of the APH is attained
(Figure S2), while a higher amount of glucose and fructose at the beginning results in
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higher titres for the acid and by-products, but not in higher yields (Figure S4). Evidently,
considering the environmental effects on the biocatalytic capacity of the fungus, these
results are predictions that need to be validated with a thorough experimentation. This
analysis has been included as Supplementary Material.

Regarding statistical parameters in Table 5, it is clearly observed that the fit of the
proposed models to experimental data of the four experiments is accurate from a statistical
perspective: very high F95 values, much higher than the theoretical or threshold value to
reject the null hypothesis at 95% confidence (between 20 and 30 for each experiment data
number and the kinetic model parameter number), a very low value of RMSE (correspond-
ing to similar values for experimental data and data obtained by calculation with the kinetic
model and the parameters retrieved for the relevant experiment). Moreover, the percentage
of variation explained is relatively close to 100%, so experimental and calculated, with the
model, trends of the concentrations with time are very similar.

4. Conclusions

R. arrhizus is proven to be able to produce fumaric acid from pure glucose and glu-
cose:fructose mixtures media, providing relatively high final concentrations that are even
better when glucose:fructose mixtures are used, instead of only glucose.

APH is a suitable substrate for these fermentative processes, with an adequate sugar
concentration to reach appropriate production yields. APH detoxification reduces its high
content in phenolics and antioxidants, but still a high amount remains. It can suppose a
disadvantage and generate inhibitory effects on cellular growth and production. Adding
more nitrogen, reducing the stress due to its relative deficiency, results in relatively low
yields but fumaric acid titers are recovered.

Finally, a proposed kinetic model can describe and predict the behavior of the process
in the four conditions here tested, through an accurate description of the reaction scheme,
providing optimum goodness-of-fit statistical parameters. Kinetic parameters reflect the
effects of the chemical changes in the broth due to the modifications in the type of carbon
source and the amount of nitrogen source.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/pr10122624/s1, Figure S1: Scenario 1 simulation; Figure S2: Scenario 2
simulation; Figure S3: Scenario 3 simulation; Figure S4: Scenario 4 simulation.
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