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Abstract: Multiple graph and semi-supervision techniques have been successfully introduced into
the nonnegative matrix factorization (NMF) model for taking full advantage of the manifold structure
and priori information of data to capture excellent low-dimensional data representation. However,
the existing methods do not consider the sparse constraint, which can enhance the local learning
ability and improve the performance in practical applications. To overcome this limitation, a novel
NMF-based data representation method, namely, the multiple graph adaptive regularized semi-
supervised nonnegative matrix factorization with sparse constraint (MSNMFSC) is developed in this
paper for obtaining the sparse and discriminative data representation and increasing the quality of
decomposition of NMF. Particularly, based on the standard NMF, the proposed MSNMFSC method
combines the multiple graph adaptive regularization, the limited supervised information and the
sparse constraint together to learn the more discriminative parts-based data representation. Moreover,
the convergence analysis of MSNMFSC is studied. Experiments are conducted on several practical
image datasets in clustering tasks, and the clustering results have shown that MSNMFSC achieves
better performance than several most related NMF-based methods.

Keywords: nonnegative matrix factorization; semi-supervised learning; multiple graph; sparse
constraint; image clustering

1. Introduction

In the era of big data, more and more high-dimensional data have been encountered in
various practical application fields. Generally speaking, most of the original data is noisy,
and many features in the data are not useful in real-world tasks. In this case, how to discover
the low-dimensional data representation in the massive data is critical, since the obtained
data representation used in practical applications can efficiently enhance the performance
of learning algorithm than the original data. In recent decades, the matrix factorization
technique, as one of the popular data representation techniques, has gained much attention
because of its advantages for learning superior data representation. The commonly used
matrix factorization methods include the singular value decomposition [1], nonnegative
matrix factorization [2], independent component analysis (ICA) [3], deterministic column-
based matrix decomposition [4], principal component analysis [5] and so on. Among these
methods, NMF has shown good performances due to its ability of producing a parts-based
representation. Therefore, NMF-based methods have widely used in numerous actual tasks
such as document analysis, bioinformatics, information retrieval and so on [6–11].

The standard NMF decomposes the nonnegative matrix X ∈ RM×N
≥0 into a nonnegative

basis matrix U ∈ RM×K
≥0 and a nonnegative coefficient matrix V ∈ RN×K

≥0 , K � min(N, M),
such that the product of U and VT can approximate the original matrix X as close as possible.
During the decomposing procedure one can observe that the nonnegative constraints
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are enforced into the decomposed factors, NMF often can result in a parts-based data
representation [2]. Usually, the advantages of the parts-based representation in NMF
have been proved in different fields, and they also have significant improvements for the
performance of NMF-based methods in many real-world applications [12,13]. Although
the standard NMF model has obtained much attentions in recent decades [14], it still has
some critical defects. For instance, it entirely ignores the geometrical structure information,
and cannot exploit any supervisory information to increase the quality of decomposition of
NMF [12,15,16]. Furthermore, the basic NMF method lacks some extra constraints such
as sparse constraint to ensure the sparse parts-based representation, which will have an
obvious improvement for the performance of NMF-based algorithms [17].

To enhance the performance of the original NMF method, much new research ap-
proaches have been developed in recent years [18–22]. For example, the graph regularization–
based NMF methods have been proposed [23–25], which consider the intrinsic geometry
structure information of data (or feature) space, and incorporate the single (or dual) graph
regularization for enhancing the performance. Moreover, the limited supervisory infor-
mation is used in semi-supervised NMF (SSNMF) methods for further capturing better
low-dimensional data representation in practical tasks, since the usage of the prior knowl-
edge can effectively improve performance [16,26,27]. In addition, to ensure the decomposed
results are the sparse representation, the sparse and orthogonal NMF methods with dif-
ferent constraints such as sparse constraint and orthogonal constraint, respectively, have
also been proposed in [28–31] for simplifying the computation complexity and ensuring
the sparse parts-based representation. However, up to now, the SSNMF method including
the multiple graph regularization and the sparse constraint has not been studied yet.

In this paper, a new sparse approach, namely, the multiple graph adaptive regular-
ized SSNMF with sparse constraint (MSNMFSC), is proposed for exploiting good data
representation. In particular, MSNMFSC combines together the multiple graph adaptive
regularization, the limited supervised information and the dual sparse constraints for the
basis and coefficient matrices, to guarantee part-based representation and improve the
clustering performance. The multiplicative update algorithm is used to solve the optimiza-
tion problems of MSNMFSC and obtain the multiplicative update rules of MSNMFSC. The
convergence of MSNMFSC is analyzed. Extensive clustering experiments have shown the
effectiveness of MSNMFSC on seven real-world image datasets, in comparison to several
related NMF methods. The key contributions of our work are:

1. This paper proposes the MSNMFSC method, which incorporates the multiple graph
adaptive regularization, the limited supervisory information and the sparse constraint
into the original NMF model for learning superior low-dimensional data representation.

2. The multiplicative update rules of MSNMFSC are derived by solving the optimization
problem using the multiplicative update algorithm.

3. The convergence of MSNMFSC is analyzed theoretically, and the objective function
will monotonically decrease under the update rules of MSNMFSC.

The rest of this paper is organized as follows. Section 2 introduces the preliminaries.
Section 3 derives the MSNMFSC method in details. Section 4 analyzes the convergence
of the MSNMFSC method. Section 5 gives the clustering experimental results. Finally,
Section 6 draws the conclusion of this paper.

2. Preliminaries
2.1. Notations

Notations in this paper are defined as follows: uppercase boldface letters (e.g., A),
lowercase boldface letters (e.g., a) represent the matrices and vectors, respectively; ai and
ai∗ represent the i-the column and row vector of A, respectively; aij (or Aij) is the (i, j)-th
entry of A. Tr(·) and (·)T are the trace and the transpose operator of a matrix, respectively.
‖ · ‖F denotes the Frobebius norm of the matrix.



Processes 2022, 10, 2623 3 of 13

2.2. Related Works

NMF has become a popular matrix factorization technique, and is widely used in data
mining, pattern recognition and so on. Inspired by previous work (i.e., positive matrix
factorization in [32]), Lee and Seung firstly proposed the NMF model, and then developed
a multiplicative update algorithm to solve the optimization problem of NMF [2]. Owing to
its competitiveness and interpretation, the improved NMF methods from different aspects
have been presented in recent decades. The following will introduce the most related
NMF-based methods.

Cai et al. first proposed the graph regularized nonnegative matrix factorization
(GNMF), which constructed an affinity graph to encode the geometrical information and
got more discriminating power than orginal NMF [15]. Then Sun et al. developed the sparse
dual graph-regularized NMF(SDGNMF) by incorporating the dual graph-regularized and
sparse constraints to discover the geometrical information of the data space and feature
space [17]. In order to improve the robustness of NMF, Peng et al. proposed the correntropy-
based dual graph regularized NMF with local coordinate constraint (LCDNMF) which
was robust to the noisy data contaminated by outliers [12]. After that, Peng et al. further
proposed the correntropy-based orthogonal nonnegative matrix tri-factorization (CNMTF)
algorithm which not only applied correntropy to NMTF to measure the similarity, but also
preserved double orthogonality conditions and dual graph regularization [18]. Usually, it
is difficult to select a suitable graph model for the single graph regularized NMF methods.
Hence, Shu et al. proposed the parameter-less auto-weighted multiple graph regularized
NMF (PAMGNMF), which could automatically obtain an optimal weight for each graph
and is easily to be applied to practical problems [25].

In recent years, several SSNMF methods have been proposed, since the obtained su-
pervised information has great contribution for gaining the performance in clustering tasks.
For instance, Li et al. developed the semi-supervised graph-based discriminative NMF
(GDNMF) method, which incorporated the label information of data into the graph-based
NMF to enhance the discriminative abilities of clustering representations [33]. Meng et al.
proposed the semi-supervised dual graph regularized NMF (SDNMF) method with sparse
and orthogonal constraints which added dual-graph model into semi-supervised NMF to
improve the clustering performance [23]. Different with the above semi-supervised NMF
methods, Wang et al. presented the SSNMF method with pairwise constraints(CPSNMF),
which first propagated the constraints from constrained samples to unconstrained samples
to obtain the constraint information of the entire dataset. Therefore, CPSNMF can fully
utilize the constraint information [26]. After that, Peng et al. proposed the correntropy-
based SSNMF (CSNMF) method, which both used the pointwise and pairwise constraints
simultaneously to improve the effectiveness of NMF, and also adopted a correntropy-based
loss function to improve the robustness [16]. Recently, the MSNMF method was presented
in our previous work, which combined the supervised information with multiple graph
regularization to obtain better clustering results [34].

In addition, various kinds of constraint conditions, especially the sparse constraint,
have been enforced into the standard NMF to improve the performance. For example,
Hoyer et al. first incorporated the sparse constraints into NMF to improve the parts-
based representations [28]; Alberto et al. proposed the nonsmooth nonnegative matrix
factorization (nsNMF), which represented sparseness in the form of nonsmoothness, and
got advantages in reconstructing the original data faithfully [29]; and Yang et al. developed
the fast NsNMF (FNsNMF), which designed a Lipschitz constant-based proximal function
and got a nonlinear convergence rate, which was much faster than the former nonsmooth
nonnegative matrix factorization [35].

2.3. Constraint Propagation Algorithm (CPA)

For most of the existing semi-supervised NMF, it is hard to use the supervised in-
formation completely. In order to make full use of the limited supervised information,
the CPA [26] is presented to obtain a new weight matrix S̃ with the pairwise constraint
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supervisory information of all data points, so the limited supervised information can be
used effectively. In CPA [26,34], assuming that li and lj are the labels of data xi and xj, then
the initial pairwise constraints matrix Z = [zij] ∈ RN×N is defined as follows:

zij =


+1, li = lj
−1, li 6= lj
0, otherwise

(1)

The propagated pairwise constraints matrix is defined as P = [pij] ∈ RN×N , when
pij > 0 then li = lj, if pij < 0, then li 6= lj, |pij| denotes the confidence score of (xi, xj) for a
must-link constraint (li = lj) or a cannot-link constraint (li 6= lj), similarly, Pv is the vertical
propagation of P and Ph is the horizontal propagation, then the constraint propagation
algorithm(CPA) is described as follows [26,34]:

1. Construct the pairwise constraints matrix Z by Formula (1), compute the Laplacian
matrix L = D−1/2SD−1/2, in which D is the diagonal matrix with Dii = ∑N

j=1 Sij and
S is the input weight matrix;

2. Make vertical propagating by repeating Pv(t + 1) = αLPv(t) + (1− α)Z until conver-
gence, α ∈ (0, 1) is the balance parameter;

3. Make horizontal propagating by repeating Ph(t + 1) = αPh(t)L + (1− α)P∗v until
convergence, P∗v is the limit of Pv;

4. Obtain the final propagated pairwise constraints matrix P = P∗h, P∗h is the limit of Ph;
5. Calculate the new weight matrix S̃ by

s̃ij =

{
1− (1− pij)(1− sij), pij ≥ 0
(1 + pij)sij, pij < 0

(2)

Up to now, there is no technique which combines together multiple graph regulariza-
tion, supervised information and sparse constraint to solve clustering problems. Therefore,
we proposal a novel SSNMF method with multiple graph adaptive regularization and
sparse constraint in next section.

3. The Proposed MSNMFSC

Although multiple graph regularization and semi-supervision techniques have been
successfully introduced into the NMF model, the existing methods do not consider the
sparse constraint which can enhance the parts-based representation and obtain better
clustering performance. So in this work, we combine the multiple graph adaptive regular-
ization, the limited supervised information and the sparse constraint together, then propose
the MSNMFSC algorithm accordingly.

3.1. Objective Function

Here we give the object function of MSNMFSC step by step. Firstly, the object function
of original NMF is given, and the square of Euclidean distance (SED) is used as the similarity
measure to calculate the similarity of the original data matrix and the reconstructed matrix.
The SED-based object function of original NMF is expressed as follows [34]:

OBJSED = ‖X−UVT‖2
F =

M

∑
i=1

N

∑
j=1

(
Xij −

(
UVT

)
ij

)2
(3)

where X ∈ RM×N
≥0 , U ∈ RM×K

≥0 , V ∈ RN×K
≥0 , K � min(N, M).
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In order to capture the geometrical structure information of data, the graph regular-
ization [15,34] is given by:

OBJG =
1
2

β
N

∑
i,j=1
‖vT

i∗ − vT
j∗‖2

2(S)ij

= βTr(VTDV)− βTr(VTSV)

= βTr(VTLV) (4)

where S, D and L = D− S are the edge weight matrix, the diagonal matrix with Dii =

∑N
j=1 Sij and the graph Laplacian of the data graph, respectively. β ≥ 0 is the graph regular-

ization parameter. Previous studies have illustrated that the multiple graph regularized
methods usually outperform the single graph regularized method. According to [25],
based on (3) and (4), the object function of the NMF method containing multiple graph
regularization [34] is as follows:

OBJMG = ‖X−UVT‖2
F +

1
2

β
Q

∑
q=1

N

∑
i,j=1

εq‖vT
i∗ − vT

j∗‖2
2(Sq)ij

=
M

∑
i=1

N

∑
j=1

(
Xij −

(
UVT

)
ij

)2
+ β

Q

∑
q=1

εq[Tr(VTDqV)− Tr(VTSqV)]

=
M

∑
i=1

N

∑
j=1

(
Xij −

(
UVT

)
ij

)2
+ β

Q

∑
q=1

εqTr(VTLqV) (5)

where Q is the number of graphs, εq is the weight value of the qth graph, Sq, Dq and
Lq = Dq − Sq have the same meaning as (4). Supervised information including label
information and pairwise constraints is a great help to enhance the performance. Therefore,
the CPA [26] described in Section 2.3 is used in our work to reconstruct the new S̃, so
the object function of the semi-supervised NMF with multiple graph regularization is
as follows [34].

OBJSMG = ‖X−UVT‖2
F +

1
2

β
Q

∑
q=1

N

∑
i,j=1

εq‖vT
i∗ − vT

j∗‖2
2(S̃q)ij

=
M

∑
i=1

N

∑
j=1

(
Xij −

(
UVT

)
ij

)2
+ β

Q

∑
q=1

εq[Tr(VTD̃qV)− Tr(VTS̃qV)]

=
M

∑
i=1

N

∑
j=1

(
Xij −

(
UVT

)
ij

)2
+ β

Q

∑
q=1

εqTr(VTL̃qV) (6)

Here L̃q = D̃q − S̃q, in which S̃q, D̃q and L̃q have the same meaning as that in (5) but
contain supervised information.

Apparently, the object function in (6) fails to consider the sparse constraint which can
increase the clustering performance by enhancing parts learning ability [28]. So, here we
incorporate the sparse constraint into the object function in (6). L0-norm, L1-norm and
Frobenius norm are commonly used to measure the sparseness, however, the optimization
procedure under L0-norm has been proved to be a NP-hard problem [36], and the L1-norm-
based methods require the original signals to be highly sparse and will be ineffective in
some situations [36,37]. In this situation, we choose the Frobenius norm as the measure
method due to its advantages such as simplicity and effectiveness, and impose the sparse
constraints into the object function in (6), then the object function of MSNMFSC can be
derived as follows:
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OBJMSNMFSC = ‖X−UVT‖2
F +

1
2

β
Q

∑
q=1

N

∑
i,j=1

εq‖vT
i∗ − vT

j∗‖2
2(S̃q)ij + η‖U‖2

F + γ‖V‖2
F

=
M

∑
i=1

N

∑
j=1

(
Xij −

(
UVT

)
ij

)2
+ β

Q

∑
q=1

εqTr(VTL̃qV) + η‖U‖2
F + γ‖V‖2

F (7)

where η and γ are the sparseness parameters of U and V, respectively, the ranges of η and
γ are both in (0, 1).

3.2. Solving Optimization Problem

Although the objective function in (7) is not convex with respect to U and V at the
same time, it is convex with respect to single U or single V. So, in most cases, one can have
a local minimum of (7). Here, we use the multiplicative update algorithm to obtain the
update rules of U and V for MSNMFSC, the optimization problem of MSNMFSC in (7) is
given as follows:

min
U,V,ε

OBJMSNMFSC

=
M

∑
i=1

N

∑
j=1

(
Xij −

(
UVT

)
ij

)2
+ β

Q

∑
q=1

εqTr(VTL̃qV) + η‖U‖2
F + γ‖V‖2

F

=Tr
(

XTX− 2XUVT + UVTVUT
)
+ β

Q

∑
q=1

εqTr(VTL̃qV) + η‖U‖2
F + γ‖V‖2

F (8)

3.2.1. Updating U

Here, Φ = [Φik] ∈ RM×K
≥0 is the Lagrange multiplier for U = [uik] ∈ RM×K

≥0 , so we
have the Lagrange function LU:

LU =Tr
(

XTX− 2XUVT + UVTVUT
)
+ β

Q

∑
q=1

εqTr(VTL̃qV)+

η‖U‖2
F + γ‖V‖2

F + Tr(ΦUT) (9)

Then we obtain its partial derivative with respect to U:

∂LU

∂U
=− 2XV + 2UVTV + 2ηU + Φ (10)

According to the Karush–Kuhn–Tucker (KKT) conditions [38], i.e., Φikuik = 0, so

−2(XV)ikuik + 2(UVTV)ikuik + 2ηUikuik + Φikuik = 0 (11)

Finally, we derive the update rule of U:

uik ← uik
(XV)ik(

UVTV + ηU
)

ik
(12)

3.2.2. Updating V

Similarly, we can derive the update rule of V. Assuming that Ψ = [Ψjk] ∈ RN×K
≥0 is the

Lagrange multiplier for V = [vik] ∈ RN×K
≥0 , the Lagrange function LV for V is as follows:
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LV =Tr
(

XTX− 2XUVT + UVTVUT
)
+

β
Q

∑
q=1

εqTr(VTL̃qV) + η‖U‖2
F + γ‖V‖2

F + Tr(ΨVT) (13)

Then we obtain its partial derivative with respect to V:

∂LV

∂V
= −2XTU + 2VUTU + 2β

Q

∑
q=1

εqL̃qV + 2γV + Ψ (14)

According to the KKT conditions, i.e., Ψjkvjk = 0, so

−2(XTU)jkvjk + 2(VUTU)jkvjk + 2β(
Q

∑
q=1

εqL̃qV)jkvjk + 2γVjkvjk + Ψjkvjk = 0 (15)

At last, we derive the update rule for V as follows:

vjk ← vjk

(XTU + β
Q
∑

q=1
εqS̃qV)jk

(VUTU + β
Q
∑

q=1
εqD̃qV + γV)jk

(16)

3.2.3. Computing the Weight Value εq

Inspired by [25,39], in this work, we use the same method in [34] to calculate weight
value εq of the qth graph, which is:

εq =
1

2
√

Tr(VTL̃qV)
(17)

Finally, the proposed MSNMFSC algorithm is summarized in Algorithm 1.

Algorithm 1 MSNMFSC Algorithm.

Input: Data matrix X, label information li, parameters α, p, β, η and γ.
Output: V.

1: Initialize matrices U and V;
2: Calculate the weight matrix Sq, where q = [1, . . . , Q];
3: Calculate the weight matrix S̃q by CPA, where q has the same value as step 2;
4: repeat
5: Update U by Formula (12);
6: Update V by Formula (16);
7: Update εq by Formula (17);
8: until Convergence
9: return V.

4. Convergence of MSNMFSC

Here we use the auxiliary function method [15,34] to analyze the convergence of
MSNMFSC. Considering the update rules in (12) and (16), we derive Theorem 1 as follows:

Theorem 1. OBJMSNMFSC in (7) is monotonically nonincreasing under (12) and (16).

Here, we just give the proof that OBJMSNMFSC is nonincreasing under the update
rules (16), because the proof procedure of OBJMSNMFSC is nonincreasing under (12) is
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similar; therefore, in this work, we omit it. First, we define the auxiliary function and
Lemma 1:

Definition 1 ([34]). If function G satisfies G(v, v′) ≥ F(v) and G(v, v) = F(v), then G(v, v′) is
an auxiliary function for F(v).

Lemma 1 ([34]). F is nonincreasing under the update steps in (18), here G is an auxiliary function
of F:

vt+1 = arg min
v

G(v, vt) (18)

Proof.

F(vt+1) ≤ G(vt+1, vt) ≤ G(vt, vt) = F(vt)

So, Lemma 1 is proved.

According to Lemma 1, if we can obtain the same update rule as (16) when minimizing
the auxiliary function G of OBJMSNMFSC, we can prove that OBJMSNMFSC is nonincreasing
under (16). Here, vjk is the corresponding entry of V, and Fjk is the part which only involves
the vjk term in OBJMSNMFSC. Then, we derive the following partial derivatives:

F′jk =
(

∂OBJMSNMFSC
∂V

)
jk
= (−2XTU + 2VUTU + 2β

Q

∑
q=1

εqL̃qV + 2γV)jk (19)

F′′jk = 2
(

UTU
)

kk
+ 2β

Q

∑
q=1

εq
(
L̃q
)

jj + 2γ (20)

Next, Fjk is nonincreasing under (16) needs to be proved.

Lemma 2. The function (21) below is an auxiliary function of Fjk.

G(v, vt
jk) =Fjk(vt

jk) + F′jk(v
t
jk)(v− vt

jk)+(
VUTU + β

Q
∑

q=1
εqD̃qV + γV

)
jk

vt
jk

(v− vt
jk)

2 (21)

Proof. Because G(v, v) = Fjk(v), so we just require to prove G(v, vt
jk) ≥ Fjk(v). Then we

give the Taylor series expansion of Fjk(v) as follows:

Fjk(v) =Fjk(vt
jk) + F′jk(v

t
jk)(v− vt

jk) +
1
2

F′′jk(v
t
jk)(v− vt

jk)
2

=Fjk(vt
jk) + F′jk(v

t
jk)(v− vt

jk) + (v− vt
jk)

2×((
UTU

)
kk
+ β

Q

∑
q=1

εq
(
L̃q
)

jj + γ

)
(22)

According to (21) and (22), if we can prove (23), then G(v, vt
jk) ≥ Fjk(v) holds,(

VUTU + β
Q
∑

q=1
εqD̃qV + γV

)
jk

vt
jk

≥
(

UTU
)

kk
+ β

Q

∑
q=1

εq
(
L̃q
)

jj + γ (23)
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Due to β > 0 and εq > 0,

(
VUTU

)
jk
=

K

∑
l=1

Vjl

(
UTU

)
lk
≥ vt

jk

(
UTU

)
kk

(24)

and

(
D̃qV

)
jk =

N

∑
l=1

(
D̃q
)

jlv
t
lk ≥ vt

jk
(
D̃q
)

jj ≥ vt
jk
(
L̃q
)

jj (25)

and

γVt
jk = γvt

jk (26)

So G(v, vt
jk) ≥ Fjk(v) is proved. The function (21) is an auxiliary function of Fjk.

Next we will prove Theorem 1 on the base of Lemmas 1 and 2.

Proof. Based on (21), replacing G(v, vt
jk) in (18), the update rule for V is:

vt+1
jk =vt

jk − vt
jk

F′jk(v
t
jk)

2(VUTU + β
Q
∑

q=1
εqD̃qV + γV)jk

=vt
jk

(XTU + β
Q
∑

q=1
εqS̃qV)jk

(VUTU + β
Q
∑

q=1
εqD̃qV + γV)jk

(27)

Based on Lemmas 1 and 2, under the update rule (16), Fjk is nonincreasing, so
OBJMSNMFSC is monotonically nonincreasing under (16). Theorem 1 is proved.

5. Experiments Results

Here, we give the experiment results on seven image datasets to illustrate the ad-
vantage of MSNMFSC, in comparison to GDNMF [33], SDNMF [23], CPSNMF [26], LCD-
NMF [12], MGNMF [24], PAMGNMF [25] and MSNMF [34].

5.1. Settings for the Experiments

We choose seven real-world image datasets including two handwritten datasets (Opt-
digits with 10 classes and MNIST with 10 classes), two object datasets (COIL20 with
20 classes and COIL100 with 100 classes ) and three face datasets (CMU PIE with 68 classes,
UMIST with 20 classes and MSRA25 with 12 classes) for the clustering experiments. Partic-
ularly, we format every image dataset as a M by N data matrix, in which N is the number
of samples, M is the number of dimensions of each sample, which is equal to the product
of the sample image’s length and width, so the Optdigits, MNIST, COIL20, COIL100, CMU
PIE, UMIST and MSRA25 datasets are formatted as 64× 5620, 784× 6996, 1024× 1440,
1024× 7200, 1024× 2856, 1024× 575 and 256× 1799 matrices, respectively. Each column of
the data matrix which represents a sample is normalized to have unit Euclidean length. We
also use three typical evaluation metrics including accuracy, normalized mutual informa-
tion (NMI) and purity to evaluate the clustering performance. Here, we omit the detailed
definitions of these used metrics since they are described in [16].

The balance parameter α, the regularization parameter β and the sparseness parameter
η and γ are empirically set to be 0.2, 100, 0.4 and 0.2, respectively. The initial values for U
and V are randomly selected, ranging from 0 to 1. Here, we adopt three single p-nearest
neighbor graphs with p = 5, 7, 9, respectively. Furthermore, we select 10% of the data
points in each image dataset as the labeled data points, which are used as the supervised
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information. Particularly for the compared methods, we use best parameters according to
their reference papers.

5.2. Clustering Results

The clustering results for all methods on seven datasets are shown in Table 1, and
the bold-faced results represent the best result among all the methods. From the table,
one can discover that, compared with other state-of-the-art methods, MSNMFSC has the
best clustering results on all image datasets in terms of accuracy and NMI, and has better
performance on almost all used datasets except CMU PIE and UMIST in term of purity. For
example, compared with the MSNMF method, which usually has the second best clustering
performance, MSNMFSC has 5.8%, 3.25% and 0.52% improvements on the MNIST dataset,
1.18%, 0.55% and 1.13% improvements on the COIL100 dataset, 3.22%, 1.77% and 0.8%
improvements on the MSRA25 dataset, for three evaluation metrics, respectively. The
clustering results illustrate that the proposed MSNMFSC outperforms the compared NMF
methods in clustering tasks, that’s because MSNMFSC can take full advantage of the
multiple graph adaptive regularization, the limited supervised information and the sparse
constraint to obtain more discriminative parts-based data representation and improve the
clustering performance.

Table 1. Clustering results.

Dataset
Accuracy (%)

LCDNMF MGNMF PAMGNMF GDNMF SDNMF CPSNMF MSNMF MSNMFSC

Optdigits 83.95 80.56 81.32 84.18 91.66 98.21 98.39 98.52
MNIST 63.58 59.62 63.49 70.12 72.91 81.48 85.59 90.55
COIL20 80.15 72.51 75.31 81.01 79.76 81.79 82.71 83.87

COIL100 58.93 52.19 55.31 58.16 66.41 66.22 68.45 69.26
CMU PIE 79.83 68.51 72.26 76.03 79.43 82.18 82.91 85.71

UMIST 56.44 49.33 53.35 54.55 64.81 68.86 69.05 70.2
MSRA25 66.22 68.43 72.28 71.11 85.16 88.35 96.18 99.28

Dataset
NMI (%)

LCDNMF MGNMF PAMGNMF GDNMF SDNMF CPSNMF MSNMF MSNMFSC

Optdigits 86.78 82.29 84.59 87.18 91.13 95.55 96.01 96.19
MNIST 70.26 56.17 62.35 69.75 74.89 79.59 82.16 84.83
COIL20 90.01 84.17 85.29 88.98 88.66 89.21 90.25 91.08

COIL100 81.43 76.65 77.56 79.26 84.59 85.17 85.97 86.44
CMU PIE 89.88 80.58 84.03 88.14 90.18 91.12 91.49 91.98

UMIST 74.91 67.61 70.93 71.11 78.46 80.12 81.31 81.76
MSRA25 76.23 80.33 84.19 77.29 90.55 92.33 96.79 98.5

Dataset
Purity (%)

LCDNMF MGNMF PAMGNMF GDNMF SDNMF CPSNMF MSNMF MSNMFSC

Optdigits 94.57 91.23 92.46 94.69 97.04 98.28 98.46 98.52
MNIST 87.93 66.56 80.86 87.81 90.81 91.57 93.08 93.56
COIL20 90.65 83.91 85.43 90.36 92.34 89.73 92.95 92.99

COIL100 80.05 70.21 73.55 77.68 83.01 84.19 84.75 85.71
CMU PIE 88.86 79.79 84.16 89.38 90.81 90.09 91.66 90.94

UMIST 74.43 66.61 71.51 73.55 80.06 79.57 81.57 79.65
MSRA25 74.18 79.89 84.41 87.39 93.06 98.37 98.49 99.28

5.3. Convergence

In order to validate that OBJMSNMFSC in (7) is monotonically nonincreasing under (12)
and (16), we give the convergence curves of MSNMFSC on seven image datasets in Figure 1,
in which the number of iteration and the value of OBJMSNMFSC are represented by the
x-axis and the y-axis, respectively. According to Figure 1, we observe that the value of
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OBJMSNMFSC is monotonically nonincreasing under (12) and (16) for all the datasets used
in our experiment, which shows Theorem 1 that have been proved in the convergence
analysis section is correct.

0 100 200 300

Number of iteration

10
4

10
5

10
6

10
7

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n
 v

a
lu

e Optdigits

0 100 200 300

Number of iteration

10
5

10
6

10
7

10
8

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n
 v

a
lu

e

MNIST

0 100 200 300

Number of iteration

10
5

10
6

10
7

10
8

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n
 v

a
lu

e

COIL20

0 100 200 300

Number of iteration

10
6

10
7

10
8

10
9

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n
 v

a
lu

e

COIL100

0 100 200 300

Number of iteration

10
6

10
7

10
8

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n
 v

a
lu

e

CMU PIE

0 100 200 300

Number of iteration

10
5

10
6

10
7

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n
 v

a
lu

e
UMIST

0 100 200 300

Number of iteration

10
4

10
5

10
6

10
7

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n
 v

a
lu

e

MSRA25

Figure 1. Convergence curves of MSNMFSC.

6. Conclusions

In this paper, the multiple graph adaptive regularized SSNMF with sparse constraint
(MSNMFSC) is developed, which enforces the multiple graph adaptive regularization, the
limited supervised information and the sparse constraints into the NMF model for learning
the more discriminative parts-based data representation. We derive the multiplicative up-
date rules of MSNMFSC by solving the optimization problem. Moreover, the convergence
of MSNMFSC is also analyzed. The extensive experimental results have shown MSNMFSC
outperforms the compared NMF approaches on seven image datasets for clustering tasks.
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