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Abstract: The increasing public attention on unceasing food safety incidents prompts the require-
ments of analytical techniques with high sensitivity, reliability, and reproducibility to timely prevent
food safety incidents occurring. Food analysis is critically important for the health of both animals
and human beings. Due to their unique physical and chemical properties, nanomaterials provide
more opportunities for food quality and safety control. To date, nanomaterials have been widely
used in the construction of sensors and biosensors to achieve more accurate, fast, and selective food
safety detection. Here, various nanomaterial-based sensors for food analysis are outlined, including
optical and electrochemical sensors. The discussion mainly involves the basic sensing principles,
current strategies, and novel designs. Additionally, given the trend towards portable devices, various
smartphone sensor-based point-of-care (POC) devices for home care testing are discussed.

Keywords: nanomaterials; sensors; sensor principle; food safety

1. Introduction

With the environmental pollution caused by social and technological development,
the food safety problem has become increasingly serious. In addition, illegal businesses’
blind pursuit of interests has forced food safety problems to occur frequently, which is
closely related to people’s health [1]. For example, clenbuterol, a banned chemical, was
used by farmers in pigs to promote their leanness [2]. In 2008, melamine illegally added to
infant formula caused more than 290,000 infants to suffer from pathological urinary tract
stones [3,4]. All these events have made the public aware of the importance and urgency of
addressing food safety issues.

Food safety issues continue to occur, prompting us to seek more effective food analysis
techniques [5,6]. However, food analysis is a complicated process and a big challenge for
human beings. For example, many potentially dangerous ingredients may occur in different
kinds of food and at every stage in handling food [7]. These dangerous contaminants
include heavy metals, various toxins, residual drugs, pesticides, viruses, illegal additives,
and bacteria [8–10]. In addition, the complications will be increased with food industry
globalization [11]. In view of the requirement of consumers for health, food safety issues
have prompted the public to construct fast, cost-effective, specific, and sensitive analytical
methods and analytical techniques for food analysis.

Sensitivity and specificity are the most important features of sensor sensing appli-
cations, and their sensing performance can be enhanced by proper modification of the
sensing surface [12]. One of the most important ways to increase the sensing performance

Processes 2022, 10, 2576. https://doi.org/10.3390/pr10122576 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr10122576
https://doi.org/10.3390/pr10122576
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0003-3890-5350
https://doi.org/10.3390/pr10122576
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr10122576?type=check_update&version=3


Processes 2022, 10, 2576 2 of 27

is the application of nanomaterials. Nanomaterials, with a size from 1 nm to 100 nm, can be
easily developed into different forms for different detection needs, such as 0 dimension (0D)
of nanoparticles/nanoclusters [13–17], I dimension (1D) of nanowire/nanorod [18–20], II
dimension (2D) of nanosheet [21,22], and III dimension (3D) of nanonet/nanoflower/nano-
bulk [23–25]. Due to their unique light, electrical, and mechanical properties, their large
surface area, good biocompatibility, catalytic activity, and rich bonding sites, nanomaterials
have been widely used in various fields [26–31], especially for the production of sensing
surface elements, that can not only increase the sensitivity but also provide lower limits of
detection (LOD) [32–34].

There are many kinds of nanomaterial-based sensors and biosensors, which could be
classified as optical and electrochemical sensors according to their transduction signals.
Despite the fact that some reviews on the applications of nanomaterials for use in food safety
sensing have been reported [35–38], a comprehensive overview of various nanomaterial-
based sensors for food safety detection needs to be updated. Therefore, in this manuscript,
we review the latest advances in novel sensors based on nanomaterials to detect food
contamination over the past few years, including toxins, heavy metals, pesticides, drug
residues, pathogens, and other hazardous substances (Figure 1). Various sensors in this
manuscript could be divided into diverse optical methods and multiple electrochemical
methods. In addition, the current smartphone-based portable devices have also been
summarized here for the determination of contaminants in household food.
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Figure 1. Novel sensors and biosensors based on nanomaterials for food detection.

2. Current Approaches for Food Safety Sensing

Nowadays, nanomaterial-based sensors and biosensors are being explored to reduce
the occurrence of food safety problems. Generally, a biosensor contains several parts:
sensing elements, recognition elements, and transducer elements. Sensing elements, in-
volving nanomaterials of 0D, 1D, 2D, and 3D nanomaterials. The high conductivity, large
surface area and unique physicochemical properties of nanomaterials mean that they are
characterized by good sensitivity in the detection of food contaminants [39–41].
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Apart from the sensitivity, the selectivity is also one of the most prominent features
for the construction of biosensors. The integration of a recognition element with sensing
element can provide a useful tool to improve the selectivity for monitoring food pollutants.
The recognition elements usually involve aptamers [42], antibodies [43,44], DNA [45],
peptides [46], and cells [47], which can selectively and specifically respond to analysis
targets [48]. The transducer element, which plays crucial roles in the performance of sensor
devices [49], can convert a biological response into detectable signals [50]. According
to different kinds of transducer signals, current approaches based on nanomaterials for
food contaminants’ detection could be classified into optical methods or electrochemical
methods. Optical methods contain colorimetry, chemiluminescence (CL), fluorescence, and
so on. Electrochemical methods contain impedimetric sensors, potentiometric sensors, and
amperometric sensors (Figure 2).
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Figure 2. Schematic of nanomaterial-based sensor and biosensor construction.

Non-covalent and covalent methods are used for the biofunctionalization of nanomate-
rials [51,52]. Non-covalent bonding forces include electrostatic interaction (Figure 3A), π-π
stacking (Figure 3B), van der Waals forces, etc. The non-covalent method is to simply link
biomolecules with nanomaterials. Compared with non-covalent interaction, covalent binding
has advantages in terms of reproducibility and the stability of the nanomaterials’ surface
functionalization and physisorption. Covalent links could be formed by biomolecular links
(Figure 3C), classic amide coupling reactions (Figure 3D), cross-linking, or click chemistry.
These strategies preserve all specific properties of both the biomolecule and nanomaterial.
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3. Optical Sensors and Biosensors

In optical sensors, quantum dots, gold/silver nanoparticles, upconversion nanoparti-
cles, metal oxide nanomaterials, and organic fluorescent molecular-based nanomaterials
have been widely used to improve sensing performance [53,54]. Depending on the sig-
nal output format, this section focuses on colorimetric, fluorescent, and surface plasmon
resonance (SPR) sensors for food inspection.

3.1. Colorimetric Sensors and Biosensors

Colorimetric assays have attracted more attention because they are the simplest and
easiest sensing strategies among various optical methods. Regarding colorimetric assay,
color changes can be easily detected by visual observation without any complex and
expensive equipment [55]. Compared to traditional detection methods that require high-
pressure input and the presence of inert gases, nanomaterials provide a feasible in-situ
detection solution [56]. Among them, gold nanoparticles (Au NPs), the most preferred
candidate materials, are widely applied to fabricate sensors of colorimetric assays for food
contaminants due to their unique optical features, simple synthesis method, high stability,
and easy modification [57,58].

The typical mechanism of the fabrication of colorimetric sensors based on Au NPs
mainly relies on Au NPs’ distance changes. Au NPs dispersed in solution usually appear
red with the maximum absorption wavelength at ~520 nm. However, when Au NPs
polymerize, the solution color changes to dark blue or purple (surface plasmon band from
visible region to the near-infrared region). Directly prepared gold nanoparticles cannot
meet the needs of sensing detection, and their surfaces need to be modified [59]. As shown
in Figure 4, the aggregation can be both induced by targets on unmodified Au NPs and
functional Au NPs. Additionally, the aggregation of Au NPs can also be induced by salt.
Conversely, when the aggregated Au NPs are redispersed, it causes the solution color to
change from purple or blue to red. The redispersion of Au NPs can be mediated by specific
target molecule interaction (Figure 5). Surface microenvironment and external environment
changes lead to the agglomeration and redispersion of Au NPs, which promotes their
application in the field of colorimetric assays.

Recently, researchers have developed a solid-phase sandwich-type colorimetric im-
munosensor for the rapid detection of Staphylococcus A (SEA) in food. With the help of
covalent affinity with protein A, SEA antibodies are modified on the slides to form a test
region. The same antibody is conjugated to the gold nanoparticles by physical adsorption
as nanoimmune probes. When slides are continuously exposed to SEA and AuNP-antibody
bioconjugates, distinct red spots appear in the detection area due to the aggregation of
gold nanoparticles. The limit of detection of SEA in milk by biosensors is 1.5 ng mL−1 [59].
The sensor does not require any signal amplification strategy, and the detection of various
targets can be achieved by changing the immune probe. The colorimetric properties of gold
nanoparticles also contribute to the detection of food freshness. Li et al. [60] constructed a
detection system composed of polyethylene glycol (PEG)-modified AuNPs and dopamine
to achieve convenient and effective colorimetric detection of food freshness (Figure 6). The
system exhibits a significant burgundy to black color change at amine concentrations of
1–100 µg mL−1 with a detection limit of 2.8 µg mL−1.
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3.2. Fluorescence Sensors and Biosensors

Compared with subjective colorimetric method, fluorescence phenomena are more
attractive due to their low backgrounds, high sensitivity, strong objectivity, low detection
limit, and high repeatability in food detection. Thus, developing sensitive, low cost and
eco-friendly fluorescence materials with desirable fluorescence properties is urgently es-
sential for food analysis. Since carbonate quantum dots (CDs) were firstly discovered by
Xu et al. in 2004 [62], the fluorescence emission property of CD makes them attractive as
sensing probes for food analysis [63,64]. For example, Yue et al. [65] synthesized copper-
modified fluorescent carbon dots (Cu-CDs) with stable double emission by hydrothermal
methods, which were successfully applied to the detection of methyltobutazine (TM) in
fruits according to the linear relationship between the degree of fluorescence quenching of
Cu-CDs and the concentration of the target. Yin et al. [66] prepared a novel N,Cl co-doped
carbon dots (N,Cl-CDs) method based on deep eutectic solvent (DES) to achieve the rapid
and accurate quantification of morphine fluorescence methods in food.

In addition to its excellent fluorescence properties, CDs can be prepared from any
starting material containing carbon, include most food by-products, such as fruits, live-
stock, and vegetables. Based on this property, agricultural products containing a large
amount of natural carbon to form CDs have great potential in bio-environmental sensing
platforms [67–70], and also provide new solutions to the serious problem of food waste in
global production and consumption processes [71–73]. The sensors for food analysis based
on CDs produced from agriculture products are summarized as follows in Table 1.

Table 1. Several sensors for food analysis based on CDs produced from agriculture products.

Carbon Precursor Methods Target Limit of Detection

Wang et al. [74] Papaya flesh Thermal/200 ◦C/5 h Escherichia coil 9.5 × 104 cfu mL−1

Das et al. [75] Gram shells Pyrolysis/315 ◦C/3 h Escherichia coil 107 cfu mL−1

Hu et al. [76] Orange peel Microwave/900 W/1 min Escherichia coil 487 cfu mL−1

Liu et al. [77] Tomato puree Microwave/10 min Vanillin 24.9 mg kg−1

Bao et al. [78] Eleocharis dulcis Hydrothermal/120 ◦C/5 h Fe3+ 560 nM
Bandi et al. [79] Onion waste Hydrothermal/120 ◦C/2 h Fe3+ 310 nM
Shen et al. [80] Sweet potatoes Hydrothermal/180 ◦C/18 h Fe3+ 320 nM
Zhao et al. [81] Corn bract Reflux/100 ◦C/24 h Hg2+ 9.0 nM
Bano et al. [82] Tamarindus indica leaves Hydrothermal/210 ◦C/5 h Hg2+ 6 nM
Tyagi et al. [83] Lemon peels Hydrothermal/200 ◦C/12 h Cr6+ 73 nM

Kumar et al. [84] Tulsi leaves Hydrothermal/180 ◦C/4 h Pb2+ 0.59 nM
Bhatt et al. [85] Tulsi leaves Hydrothermal/200 ◦C/4 h Cr6+ 4.5 ppb
Wen et al. [86] Pigskin Hydrothermal/250 ◦C/2 h Co2+ 680 nM
Liu et al. [87] Chocolate Hydrothermal/200 ◦C/8 h Pb2+ 12.7 nM

Other nanomaterials with non-fluorescent properties can achieve fluorescence effect-
based food detection by combining with fluorescent molecules. The chromophore of most
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conventional fluorescent probes produces strong fluorescence in its separated state, but
the presence of aggregation-caused quenching (ACQ) results in molecules not radiating
energy at high concentrations or in a concentrated state. In fact, the presence of the ACQ
phenomenon limits the application of fluorescent probes to some extent [88–90]. Since the
discovery of aggregation-induced emission effect (AIE) by Tang Group in 2001 [91], the
use of AIE materials as fluorescent probes has gradually become a research hotspot [92–96].
This is because the AIE effect can overcome the shortcomings of the ACQ effect mentioned
above, and thus is able to be used for high concentrations of fluorescence [97–101]. AIE
emission can be clearly explained by the key role of molecular motions [102,103].

Generally, detection strategies for AIE luminescence (AIEgens) include: (1) electrostatic
interaction and hydrogen bond interaction, (2) solubility change of AIEgens, (3) disruption
of AIE luminescence quenching, (4) preparation of nano-sized AIE particles, and (5) target-
induced disaggregation of AIEgens. Based on these sensing mechanisms, a number of
AIEgens have been exploited as sensing probes for food detection. Jia et al. [104] proposed
a novel label-free fluorescent aptamer that was modified on graphene oxide (GO) to detect
AFB1 in food samples by observing the fluorescence of quaternized tetraphenylethene salt
and AFB1 aptamer aggregates (TPE-Z/AFB1) (Figure 7A). The fluorescence of the TPE-Z
aptamer aggregates almost has non-fluorescence emission in the Tris-HCl buffer solution.
In the presence of AFB1, the release of TPE-Z/AFB1 aptamers from the GO surface results
in fluorescence recovery. The sensor has a detection limit of 0.25 ng mL−1. Wang et al. [105]
constructed a tetraphenylethylene derivative functionalized mesoporous silica nanoparticle
for the detection of furazolidone (FZD) and furacillin (NF) antibiotics in water.
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Figure 7. (A) The scheme of the label-free fluorescence aptasensor for AFB1 detection based on
TPE-Z/AFB1 aptamer/GO [104]; (B) the assembling mode of fluorophore with Ag+ [106]; (C) the
mechanism of Cu NCs in histamine detection [107].

In addition, the self-polymerization and disassembly of AIE nanomaterials can also be
used for food inspection. As shown in Figure 7B, Mehta et al. [106] developed fluorescent
peptidyl probes (2,3) with benzimidazolyl-cyanovinylidene (1) fluorophores based on their
AIE effect for the detection of Ag+ and Ag NPs in water samples with detection limits of
0.64 ppb and 1.1 ppb, respectively. As for Figure 6C, Han et al. [107] reported a copper
nanocluster (Cu NCs) with 2,3,5,6-tetrafluorothiophenol as a reducing agent and protective
agent for the detection of histamine in food. When histamine is present, the nanoaggregates
of Cu NCs are destroyed and spherical particles appear, leading to the quenching of their
AIE effect.
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3.3. Surface Plasmon Resonance (SPR) Sensors and Biosensors

Surface plasmon resonance (SPR) technology is a special optical method that detects
changes in the refractive index caused by the interaction between molecules and ligands in
a sample on the sensor surface [108]. When a molecule fixed on the surface of the sensor
binds to a target in solution, it causes a change in the refractive index, resulting in a surface
plasmon at the dielectric interface. Compared with conventional optical techniques, SPR
technique exhibits some advantages, for example, the direct monitoring of the refractive in-
dex changes for food safety without need of specific properties (absorption, fluorescence, or
scattering bands) and without the requirement of radioactive or fluorescent markers [109]
of the analyte. Generally, SPR biosensors consist of a light source, optical system, sensing
system, and detection system. The optical system emits the incident light; the change in res-
onance angle/wavelength can be converted by the sensing system; the magnitude signal of
the resonance angle or wavelength is detected by system measures. SPR biosensors’ design
principles always include fiber-optic surface plasmon resonance (FOSPR) [110], localized
surface plasmon resonance (LSPR) [111], surface plasmon resonance imaging (SPRI), and
transmission surface plasmon resonance (TSPR) [112]. The schematic illustrations with
basic composition and advantages about the four types of SPR biosensors’ platforms have
been provided in Figure 8.
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Nanoparticle-based SPR technology has been widely used for the detection of food-
borne contaminants. Vaisocherová-Lísalová et al. [113] constructed a multichannel SPR
biosensor modified with an antibody-functionalized poly(carboxybetaine acrylamide)



Processes 2022, 10, 2576 9 of 27

(pCBAA) coating, which enhanced the sensor response with the help of Au NPs for food-
borne E. Coli O157:H7 and Salmonella sp., which were detected with limits of 57 cfu mL−1

and 17 cfu mL−1, respectively. Écija-Arenas et al. [114] modified a single layer of graphene
on the transducer gold surface by chemical vapor deposition (CVD), and then modified
1-pyrenebutyric acid (PBA) to graphene by π stacking to ensure the covalent binding of
subsequent aptamers. The specific capture of kanamycin by aptamers resulted in a change
in SPR signaling with a detection limit of 285 nmol L−1.

4. Electrochemical Sensors and Biosensors

The electrochemical-based detection method for food safety is one of the most pop-
ular methods among detection strategies [115]. Due to their cost-effectiveness, simplic-
ity, inherent sensitivity, high sensing speed, and compatibility with portable devices,
electrochemical-based sensors have become the most rapidly growing sensor class [116].
Traditional electrodes based on mercury [117,118] have gradually been replaced by other
suitable nanomaterials’ modified electrodes, such as biocompatible and excellent conduc-
tive carbon nanomaterials [119–123] or metal nanoparticles [124–126], nanozymes with
high stability and tunable catalytic activity [127], and metal-organic frameworks (MOFs)
with more active sites and high porosity [128].

Electrochemical sensors can be divided into potentiometric sensors, electrochemi-
cal sensors, and impedance sensors, according to the different conduction behavior of
impedance, current, or potential signals caused by the interaction between the target and
the recognition element on the sensor surface. This section focuses on the application of the
above three types of nanomaterial-based electrochemical sensors in food safety detection.

4.1. Impedance Sensors and Biosensors

Electrochemical impedance spectroscopy (EIS) is a method based on electrical impedance
detection at the electrode/electrolyte interface that can effectively detect food contami-
nants [129]. When the target in the electrolyte binds to the recognition element on the
electrode surface, a specific concentration of the detected target is achieved by observing the
impedance change at the electrode/electrolyte interface. This value is obtained by applying
a small sinusoidal voltage at a specific frequency. For example, Mejri-Omrani et al. [130]
reported an electrochemical aptasensor for directly detecting Ochratoxin A (OTA) by EIS
technique. Polypyrrole (PPy) covalently bonded with polyamidoamine dendrimers as sens-
ing elements, were coated on the surface of a gold electrode to reach PAMAM G4. Label-free
OTA aptamers were thereafter covalently bonded to the PAMAM G4 for building an elec-
trochemical aptasensor. When OTA and aptamers bind, the conformation of PAMAM G4
changes, leading to a difference in the electrical signal. The results showed that the method
was able to detect concentrations of OTA in foods below the European regulations allowed,
reaching 2 ng L−1. Miao et al. [131] constructed an electrochemical impedance sensor
based on magnetic molecularly imprinted polymer for the detection of the insecticide
dichlorodiphenyltrichloroethane (DDT) in food. The sensor uses a molecularly imprinted
polymer synthesized from magnetic Fe3O4 and polydopamine (PDA@Fe3O4 MIP MNPs)
as the electrode signal material, which is adsorbed by the identification unit of the PDA
layer when DDT is present, resulting in a change in the electrochemical impedance signal
of the material. The results show that the sensor has a good linear relationship with DDT
concentration in the range of 1 × 10−11 to 1 × 10−3 mol L−1, and the detection limit reaches
6 × 10−12 mol L−1 (Figure 9A).
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Figure 9. (A) Electrochemical impedance sensor scheme for detecting DDT by EIS, including synthesis
of PDA@Fe3O4 MIP MNPs (a) and sensor construction (b); (B) four microelectrode array modes
(A) and platform assembly mode (B) of sensing modules in a label-free miniaturized platform protocol
for the detection of L. monocytogenes by EIS [132].

In addition, EIS is also used in the field of portable, miniaturized platforms for sensing
foodborne bacteria of L. monocytogenes. These antibody-functionalized EIS microelec-
trodes are not only specific for the identification of Listeria monocytogenes, but their
microfluidic devices can also be used for detection in liquid samples, such as milk. This
highly efficient microfluidic device provides a platform for the detection of Listeria mono-
cytogenes with a limit of detection (LOD) of 5.5 cfu mL−1 (Figure 9B) [132].

4.2. Voltammetry Sensors and Biosensors

Cyclic voltammetry (CV), linear sweep voltammetry (LSV), differential pulse voltam-
metry (DPV), and square wave voltammetry (SWV) are the most commonly used tech-
niques in building sensors for food safety analysis. CV is one of the most widely used
voltammetric techniques, which is based on the qualitative and quantitative analysis of
targets by determining electrochemical information in the presence of redox intermediates
or reversible reactions. In CV experiments, the potential superimposed on the working
electrode is positively and linearly related to time. When the set ramp potential is reached,
the applied potential returns to the initial potential, and a CV scan signal is obtained by
recording the generated current. For other voltammetry sensors, DPV technique and SWV
is generally applied for quantitative analysis in biosensors, especially for aptasensors, due
to its merits of high sensitivity, short analysis time, and simultaneous multi-component
detection. In addition, these techniques can be used to explore the kinetics, thermodynam-
ics, and mechanisms of chemical reactions and analytical measurements. DPV differs from
ESI technology in that DPV detects by applying a series of regular voltage pulses to the
current immediately after a linear sweep and recording the resulting current difference as a
function of the applied potential. In SWV, an excitation signal is obtained by applying a
symmetrical square wave pulse of the staircase waveform to the working electrode.

Summerson and Prasco [133] report an inexpensive and convenient electrochemical
sensor for the real-time monitoring of ochratoxin A (OTA) (Figure 10). When the target binds
specifically to the aptamer, the conformational change of the aptamer causes MB to approach
the electrode surface and enhance the electron transport ability of the electrode. SWV records
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the signals generated by different concentrations of OTA into the detection system. This is a
simple design without any signal amplification strategy for food safety analysis.
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Figure 10. The scheme of electrochemical aptasensors for monitoring OTA. The sensing interface
consists of methylene blue-modified DNA aptamers (A), and sensor current changes are observed at
higher (B) and lower (C) square wave frequencies [133].

To achieve higher detection goals, designers often introduce enzymes. For example,
Ezhilan et al. [134] reported that a sensitive acetylcholinesterase cyclic voltammetric biosen-
sor based on Pt/ZnO/acetylcholinesterase/chitosan enables the detection of melamine
and urea in adulterated milk. The acetylthiocholine acted as an electrochemical active
substance so that the subsequent redox signal was recorded in CV by acetylcholinesterase
catalysis. Urea and melamine bind to the serine hydroxyl group of acetylcholinesterase as
competitive inhibitors, thus affecting the catalytic activity of acetylcholinease. This biosen-
sor detection mechanism is based on linear regression models for the calculation of binary
mixtures of urea and melamine in adulterated cow milk. The proposed bioelectrode for the
detection of urea and melamine has a limit of detection of 1 pM and 3 pM, respectively.

For signal amplification, Wang et al. [135] constructed an exonuclease III (Exo III)-
driven double-amplified electrochemical aptamer sensor for the detection of chloram-
phenicol (CAP). First, the researchers synthesized Zr-MOF complexes of PtPd@Ni-Co
hollow nanoboxes (PtPd@Ni-Co HNBs) and poly (diallyldimethylammonium chloride)-
functionalized graphene (PDDA-Gr) as electrode modification materials to increase elec-
trode surface area and conductivity. The captured DNA and assistant DNA were then
modified on the surface of Zr-MOF to promote signal amplification. When CAP is present,
it causes the release of a large amount of trigger DNA (Tr DNA) in Cycle I, then Tr DNA
and Exo III initiating Cycle II, causing the exposed capture DNA to further bind to the
signal probe (MB/HP-UiO-66/Signal DNA) and resulting in an electrochemical ‘signal on’.
Under optimal conditions, the aptamer sensor has a good linear range, from 10 fM to 10 nM
with a chloramphenicol detection limit of 0.985 fM. By changing the aptamer sequence, this
sensing strategy can be applied to the detection of a variety of different targets (Figure 11).
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Figure 11. Schematic diagram of exonuclease III-driven dual-amplification electrochemical aptamer
sensor for chloramphenicol detection [135].

Xu and Hou et al. [136] reported a highly sensitive aptamer sensor based on two
electroactive species for the detection of malathion. When malathion is present, its specific
binding to the aptamer causes the thiamine (Tn)-labeled aptamer to detach from the elec-
trode surface while inducing the ferrocene (Fc)-labeled capture probe to form a hairpin
structure, so detection can be achieved by signal shutdown of Tn and signal conduction of
Fc. At the same time, the signal cycle amplification is achieved with the help of exonuclease
I (Exo I). In this work, under the detection conditions, the proposed aptasensor exhib-
ited excellent stability, specificity, and repeatability with a wide linear range from 0.5 to
600 ng L−1 (Figure 12).
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As described above, enzymes play a vital role in food testing and have been used to
detect chemical or biological contaminants such as small molecules, heavy metal ions, and
proteins [137]. However, the disadvantages of natural enzymes are that they are costly,
time-consuming, vulnerable to extreme pH and temperature, and so on, which brings great
challenges to their application. In this regard, nanozymes, the newly emerging artificial
enzyme mimics, could be accepted to surpass these obstacles [138]. Nanozymes, having
both nanomaterial features and natural enzyme-like properties, are attractive substitutes
to natural enzymes [139]. Currently, nanozymes are widely considered to be the next
generation of artificial enzyme stars due to their attractive nanoscale advantages of low
cost, long-term storage, high stability to severe environments, and ease of mass produc-
tion [140,141]. The materials used to synthesize nanoenzymes mainly include metals, metal
oxides, MOFs, covalent organic frameworks (COF), polymers, etc. Various enzyme-like
materials include nanomaterials, polymers, compounds, micelles, metalloproteins, and
coordination complexes. These nanozymes are usually applied to mimic many kinds
of enzymes, for example: oxidase (OXD), catalase (CAT) [142], superoxide dismutase
(SOD) [143], peroxidase (POD) [144], glucose oxidase (GOX) [145], sphosphatase, and so
on (Figure 13).
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Nanozymes still have excellent test performance in complex food matrix environments.
Wu et al. [146] developed a two-dimensional MnO2 nanosheet-mediated electrochemical
sensor with oxidase-like and peroxidase properties for the detection of organophosphate
pesticides. Hu et al. [147] developed a functional 2D MOF nanoenzyme for the detection of
Staphylococcus aureus. The 2D MOF material has peroxidase activity, which can effectively
catalyze o-phenylenediamine to 2,2-diaminoazobenzene to detect the concentration of
Staphylococcus aureus. Under optimal conditions, the sensor has a detection limit of
6 cfu mL−1 (Figure 14).
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4.3. Potentiometric Sensors and Biosensors

Potentiometry (PM) is used in quantitative electroanalytical analysis of the target ana-
lyte by measuring the electrochemical potential of charged species between two electrodes
(reference electrode and working electrode) in electrolytic tanks. Typically, PM testing is
used when there is no or very little current in the system. This PM technique can achieve
outstanding sensitivity for detection sensors. For example, Arvand et al. [148] report a
potential sensor based on a mesoporous aluminosilicate-modified poly(vinyl chloride) film
for the determination of Al3+ in food and drug products. However, a highly accurate and
stable reference electrode is required in this system, which will affect the application of PM
in analytical detection [149].

In addition to the above examples, Table 2 (below) lists other nanomaterial-based
(photo)electrochemical sensing food detection schemes.

Table 2. Examples for food analysis by (photo)electrochemical techniques.

Analyte Modified Electrode Food Samples Detection
Techniques LOD

Rapini et al.
[150] Acetamiprid PANI/AuNPs/GPSEs Fruit juice DPV 86 nM

Jiao et al.
[151] Chlorpyrifos Fc@MWCNTs/OMC/GCE Fresh pakchoi, lettuce

and leek CV 0.33 ng mL−1

Liu et al.
[152] Acetamiprid CdTe-MWCNTs/

rGONRs/ITO Apples and tomatoes PEC 0.2 pM

Qiao et al.
[153] BPA Au/ZnO/ITO Milk and drinking

water PEC 0.5 nM

Chen et al.
[154]

β-agonists: RAC,
CLB, PHL, SAL

and PRO
AP-Ago/AuE Pork sample DPV

40 (RAC), 0.35 (CLB),
1.0 (PHL), 0.53 (SAL)

and 1.73 (PRO)
pg mL−1

Li et al.
[155] Acetamiprid Co-doped ZnO/ITO Cucumber PEC 0.18 nM

Prabhakar et al.
[156] Malathion CHIT-IO/FTO Lettuce leaves DPV 0.001 ng/mL

Song et al.
[157] KMY HRP-

AuNPCdna/Aptamer/AuE Milk DPV 0.005 µg L−1

Chen et al.
[158]

KMY
and OTC Dynabead Milk SWV 0.15 and 0.18 pM

Chen et al.
[159] CAP cDNA/GCE Fish samples SWV 0.33 pg mL−1

Wang et al.
[160] KMY AuE Milk DPV 1.3 f M

Yan et al.
[161] CAP and OTC AuNPs/GCE Milk SWV 0.15 and 0.1 ng mL−1

Ge et al.
[162] TTC BiPO4/3DNGH/ITO Milk PEC 0.033 nM

Danesh et al.
[163] SMY Apt-CHIT/SPGE Milk DPV 11.4 nM

Yin et al.
[164] SMY NP-

PtTi/Au@MWCNTsFe3O4/GCE Milk DPV 7.8 pg mL−1

Wang et al.
[165] AMP ITO electrode Milk DPV 4.0 pM

Zhao et al.
[166] Penicillin PEDOT-

AuNPs/GRFe2O3NPs/GCE Milk DPV 0.057 ng mL−1

Li et al.
[167] OTA CDs-BP Wheat and grape

juice EIS 0.03 fg mL−1
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Table 2. Cont.

Analyte Modified Electrode Food Samples Detection
Techniques LOD

Hao et al.
[168] OTA and FB1 BFE Maize SWV 5 (OTA);

20 (FB1) pg mL−1

Zheng et al.
[169] AFB1 TS-AuNPs-cDNA/AuE Animal feed and

food samples SWV 0.6 × 10−4

ppt

Goud et al.
[170] AFB1 SPCE Beer and wine

sample EIS 0.12 (seqA) and
0.25 (seqB) ng mL−1

Istamboulié et al.
[171] AFM1 SPCE Milk EIS 1.15 ng L−1

Mishra et al.
[172] OTA Apt/SPCE Cocoa beans DPV 0.07 ng mL−1

Bagheryan et al.
[173] S. typhimurium Diazonium-grafting layer

modified SPCE Apple juice sample EIS 6 cfu mL−1

Jia et al.
[174] Salmonella rGO-MWCNT/GCE Chicken sample EIS 25 cfu mL−1

Sheikhzadeh er al.
[175] S. typhimurium Poly[pyrrole-co-3-

carboxylpyrrole]copolymer/AuEApple juice sample EIS 3 cfu mL−1

5. Mobile Sensors and Biosensors

Most of the current conventional sensing techniques for food safety are still dependent
on laboratories, which are costly, time-consuming, complicated, labor-intensive, etc. Thus,
the conventional sensing techniques make these sensing platforms unsuitable for point-
of-care (POC) and consumer-oriented detection. These disadvantages could not timely
prevent harmful substances from harming the human body and the environment. Therefore,
there is an intense desire to develop portable sensing devices as homecare test devices [176].
To this end, the detection application of smartphone-based biosensors in food safety has
become a hot spot for researchers [177–180].

With the rapid development of nanomaterials and the widespread use of smartphones
for everyone, the combination of food safety monitoring services and smartphones will have
the potential to offer portable sensing devices as homecare test devices. For example, Man
et al. [181] developed a Au NPs-based microfluidic colorimetric immunoassay device for the
detection of alternariol monomethyl ether (AME) with a detection limit of 200 pg mL−1 and
a recovery rate of 90.63% to 93.9% for smartphone imaging (Figure 15A). Cheng et al. [182]
report a two-dimensional (2D) Pt-Ni(OH)2 nanosheet-based amplified bidirectional lateral
flow immunoassay device for the simultaneous detection of acetochlor and cymethrin,
with detection limits of 0.63 ng/mL and 0.24 ng/mL, respectively (Figure 15B). In order
to apply POC to home life, its devices need to be highly reliable, low cost, and user-
friendly. Based on the above requirements, the rapid development of smartphones, which
contain various embedded sensors, could enable successful application in food safety
monitoring. For example, smartphones’ built-in sensors of audio jacks and cameras and
external sensors (e.g., probe, microfluidic devices and circuit) have been widely used in
POC devices [183,184]. Smartphone-based POC sensors aim to accomplish more timely,
more efficient, and easier testing in resource-limited settings.
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Figure 15. (A) Schematic diagram of a microfluidic colorimetric immunoassay device based on Au
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amplification [182].

5.1. Smartphone-Based Optical Biosensors

Because of the advantages of smartphones, they are commonly applied in building
optical POC biosensing systems, including colorimetry [185,186], surface plasmon reso-
nance [187], fluorescence [188,189], image analysis, etc. The combination of smartphones
and biosensing devices can promote precision and immediacy in food safety analysis.

Zeinhom et al. [190] have established a novel colorimetric biosensor for the detection of
S. Enteritidis in cheese, milk, and water samples through visual and quantitative techniques.
This testing system is based on magnetic beads labeled S. Enteritidis antibodies as a capture
platform, horseradish peroxidase (HRP) as a signal amplification, where HRP enzyme and
capture antibodies are both located on inorganic nanoflowers. The visual signal produced
by nanotechnology at low concentrations is easily recorded by smartphones. The detection
principle of the capture platform form and antibody-enzyme-inorganic nanoflower signal
amplification strategy for S. Enteritidis is shown in Figure 16. This successful application
of smartphones in the detection of S. Enteritidis in cheese and milk indicates the possibility
of its application in various food products.
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Figure 16. The novel smartphone-based colorimetric biosensor for detection of S. Enteritidis [190].

Compared with colorimetric technics, fluorescence technics show more attractive
features of high precision, sensitivity, and accuracy. The same group have developed a
smartphone-based fluorescence biosensors for E. coli O157:H7 detection. This POC biosensor,
based on smartphones, includes a long-pass thin-film interference filter, a laser-diode-based
photosource, a 3D printer, and insert lenses. A commercial blue laser (eBay) was employed
as the excitation light source, powered by two batteries. This process was excited at 405 nm
with output power of ∼5 mW, and the detection fluorescence emission was collected by a
signal-collecting external lens. The proposed biosensor provides a low noise to background
imagine system, with a detection limit of 1 cfu mL−1 and 10 cfu mL−1 for yoghurt and egg,
respectively (Figure 17A) [191]. Typically, actual food samples contain a number of different
substances with similar biochemical/chemical structures and properties. Therefore, the
smartphone-based multiplexing detection equipment has been applied to food [192–195].
Xing et al. [196] report a microfluidic biosensor based on the principle of fluorescence
resonance energy transfer (FRET) between GO and fluorescent molecules, combined with
smartphones, for the simultaneous detection of multiplex foodborne bacterial ssDNA
(Figure 17B).
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5.2. Smartphone-Based Electrochemical Biosensors

Nowadays, different kinds of electrochemical techniques, such as impedimetric [197],
potentiometric [198], and amperometric [199] techniques based on smartphones have
been researched. A number of POC or miniaturized electrochemical devices have been
developed. Generally, electrochemical assay based on smartphone needs to meet the
requirements of an external potentiostat for electrochemical signal acquisition and process-
ing, disposable and low-cost electrodes, data transmission mode, and extra batteries for
power supply.

In view of the above requirements, screen printing technology can be put into con-
sideration to develop POC and low-cost electrochemical biosensors, because it is possible
to easily prepare different kinds of electrodes on paper, plastics, and other flexible sub-
strates [200]. Ji et al. [201] developed an electrochemical detection sensor based on a
combination of screen-printed electrodes and a smartphone. This system was composed of
a simple GO modification electrode, an energy transformation module to provide stimuli
signals, a low-cost potentiostat for CV measurements, a bluetooth module for transmit-
ting electrochemical data, and a smartphone as the controller and displayer. The redox
couples CV signal could perform on smartphone by roughly controlling different scan
rates with test errors less than 3.8% when compared to detection results on commercial
electrochemical workstations (Figure 18A).

In addition, Mishra et al. [202] have developed a wearable electrochemical platform with
electrodes imprinted on the surface of nitrile experimental gloves, which have the advantages
of low cost and being disposable. Characterization was performed at room temperature by
using a Palmsens handheld potentiostat (EmStat3 Blue with 10.0 × 6.0 × 3.4 cm3 dimensions,
Palmsens, Houten, Netherlands) powered by a rechargeable Li-Po battery. This enzyme-
based, disposable ‘glove lab’ biosensing system transmits data to Android smartphone
devices in real time with a compact electronic interface for electrochemical sensing and
wireless Bluetooth. The electrode system and the wireless electronic interface in the form of
a long snake are modified on the surface of the glove with three layers of stress-resistant
elastic ink. The first layer is a silver layer of Ag/AgCl particles combined with elastic
Ecoflex material, the second layer is an elastic styrene-isoprene copolymer-modified carbon
ink, and the third layer is a transparent flexible insulator. This organophosphorus hydrolase
(OPH)-based biosensor provides a new idea for detecting organophosphate (OP) in food,
and the cost, convenience, and speed advantages of the sensor also open the door to more
applications of flexible wearable sensors in hand multiplexed sensing (Figure 18B).

In order to further reduce external attachments, Near Field Communication (NFC)
technology is gradually entering the field of view. NFC is able to provide wireless power
and data transmission through inductive coupling, thus solving the problem of using addi-
tional battery accessories in smartphone electrochemical sensors. NFC technology shows
great potential in the development of new POC sensing systems due to its characteristics,
such as low cost and possessing no battery to develop. Currently, NFC-based smartphone-
integrated POC biosensors have already been used for biochemical detection [203,204] and
food safety sensing [205]. Figure 18C shows an example of switchable NFC tags to detect
food spoilage with a smartphone [205]. This protocol reports a gas sensor based on iron(III)
p-toluenesulfonate-doped polyaniline (PAni) nanostructures for the detection of biogenic
amines in meat.



Processes 2022, 10, 2576 19 of 27
Processes 2022, 10, 2576 20 of 29 
 

 

 

Figure 18. (A) An electrochemical detections sensor based on combination of screen-printed elec-

trodes and smartphone [201]; (B) a wearable and disposable electrochemical platform based on a 

combination of a nitrile experimental glove surface and smartphone [202]; (C) switchable NFC tech-

nology for the detection of food spoilage with smartphone [205]. 

6. Conclusion and Outlook 

Safety issues in all aspects of food production have always been a global concern, 

and in order to protect people from the threat of food contaminants, more convenient 

detection methods are needed. Compared with traditional methods, nanomaterial-based 

sensors are widely used in food safety testing because of their low cost, high efficiency, 

and reliability. In terms of electrode modification, nanomaterials can improve detection 

sensitivity due to their large specific surface area, good electrical conductivity and good 

catalytic activity. In terms of selectivity, nanomaterials provide excellent selectivity for 

sensing analysis by binding to aptamers, antibodies, cells, etc. This review summarizes 

various nanomaterial-based optical and electrochemical sensing analysis techniques for 

food contaminants, mainly mentioning basic sensing principles, examples of current sens-

ing strategies, and novel designs based on nanomaterials. Through the design of nano-

materials and the construction of sensors, the performance of sensors has been signifi-

cantly improved, providing new topics for food safety testing. 

In addition, given the trend of portable devices and widespread use of mobile 

phones, the new generation of smartphone-based point-of-care devices has significant ad-

vantages (cost-effectiveness, ease of operation, minimal equipment, and ease of data man-

agement) when assembling various sensors for home care testing, which is the direction 

of the future. If these sensors are used in the food industry, they will be beneficial for food 

quality control. In the future, mobile diagnostics will show great potential by combining 

technologies such as portable smartphones, cloud computing, and new sensing designs. 

Author Contributions: Writing—original draft preparation, X.Q. and J.H.; investigation and discus-

sion, R.Y., Y.L., and G.C.; revision and discussion, S.X., B.H. and Y.Y.; revision, discussion, and pro-

ject administration, T.Y. and Q.S. All authors have read and agreed to the published version of the 

manuscript. 

Funding: This work was supported by National Key R&D Program of China (2019YFC1606703) and 

the Natural Science Foundation of Shaanxi Province in China (2020JM-429). 

Figure 18. (A) An electrochemical detections sensor based on combination of screen-printed elec-
trodes and smartphone [201]; (B) a wearable and disposable electrochemical platform based on
a combination of a nitrile experimental glove surface and smartphone [202]; (C) switchable NFC
technology for the detection of food spoilage with smartphone [205].

6. Conclusion and Outlook

Safety issues in all aspects of food production have always been a global concern, and
in order to protect people from the threat of food contaminants, more convenient detection
methods are needed. Compared with traditional methods, nanomaterial-based sensors are
widely used in food safety testing because of their low cost, high efficiency, and reliability.
In terms of electrode modification, nanomaterials can improve detection sensitivity due to
their large specific surface area, good electrical conductivity and good catalytic activity. In
terms of selectivity, nanomaterials provide excellent selectivity for sensing analysis by bind-
ing to aptamers, antibodies, cells, etc. This review summarizes various nanomaterial-based
optical and electrochemical sensing analysis techniques for food contaminants, mainly
mentioning basic sensing principles, examples of current sensing strategies, and novel
designs based on nanomaterials. Through the design of nanomaterials and the construction
of sensors, the performance of sensors has been significantly improved, providing new
topics for food safety testing.

In addition, given the trend of portable devices and widespread use of mobile phones,
the new generation of smartphone-based point-of-care devices has significant advantages
(cost-effectiveness, ease of operation, minimal equipment, and ease of data management)
when assembling various sensors for home care testing, which is the direction of the future.
If these sensors are used in the food industry, they will be beneficial for food quality control.
In the future, mobile diagnostics will show great potential by combining technologies such
as portable smartphones, cloud computing, and new sensing designs.
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