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Highlights:

What are the main findings?

• A computational framework is developed for design of soil and groundwater remediation strategies.
• Machine-learning and process-based models are integrated to expedite computation in

the framework.

What is the implication of the main finding?

• The applicability of the framework is successfully demonstrated at a field site contaminated
with arsenic.

Abstract: Soil and groundwater systems have natural attenuation potential to degrade or detoxify
contaminants due to biogeochemical processes. However, such potential is rarely incorporated
into active remediation strategies, leading to over-remediation at many remediation sites. Here,
we propose a framework for designing and searching optimal remediation strategies that fully
consider the combined effects of active remediation strategies and natural attenuation potentials. The
framework integrates machine-learning and process-based models for expediting the optimization
process with its applicability demonstrated at a field site contaminated with arsenic (As). The
process-based model was employed in the framework to simulate the evolution of As concentrations
by integrating geochemical and biogeochemical processes in soil and groundwater systems under
various scenarios of remedial activities. The simulation results of As concentration evolution, remedial
activities, and associated remediation costs were used to train a machine learning model, random
forest regression, with a goal to establish a relationship between the remediation inputs, outcomes,
and associated cost. The relationship was then used to search for optimal (low cost) remedial
strategies that meet remediation constraints. The strategy was successfully applied at the field site,
and the framework provides an effective way to search for optimal remediation strategies at other
remediation sites.

Keywords: remediation strategy; machine learning; soil and groundwater remediation; optimization;
contaminated site

1. Introduction

Soil and groundwater contamination is still a major environmental problem in many
countries. According to European Environment Agency, soil contaminants exist in almost
250,000 sites in Europe, where heavy metals and metalloids are the most common contam-
inants [1]. In China, a survey found that 16.1% of soil locations exceeded the regulatory
control levels with the average contents of cadmium (Cd), arsenic (As), and mercury (Hg)
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exceeded the regulatory control levels by 7.0%, 2.7%, and 1.6%, respectively [2]. Various
active remediation technologies have been developed and used to restore the contaminated
soils in the contaminated sites. These technologies include soil replacement [3], stabiliza-
tion/solidification [4], soil washing [5], and thermal remediation [6]. However, most of
the active remediation technologies do not consider the natural attenuation potential in
soil and groundwater environment, often leading to over-remediation and a significant
cost burden [7,8]. Remediation technologies that can fully consider the combined effects of
active remediation and natural attenuation are needed to significantly reduce remediation
cost. Remediation cost is a major factor in assessing the feasibility of remediation strategies,
especially in regions with the constraints of financial resources.

The geochemical and biogeochemical processes in soil and groundwater systems
can degrade or attenuate contaminants. Contaminants can undergo dilution, dispersion,
sorption, redox transformation, and degradation that may reduce their concentrations or
toxicity to acceptable levels. Monitored natural attenuation (MNA) is a type of remediation
technology that takes advantage of the geochemical and biogeochemical processes to treat
contaminants in soil and groundwater systems with significant cost saving [9,10]. The
challenge for applying MNA technologies is that it usually takes a long time [11,12]. For
the contaminated lands with plans for near-future re-development, MNA will be difficult
to meet the time constraint. Under such scenarios, active remediation technologies are
often implemented without considering the natural attenuation potentials. The trade-off is
the significant increase of remediation cost.

In this study, a numerical framework was developed that can fully consider the effects
of active remediation technologies and natural attenuation in designing remediation strate-
gies. The geochemical and biogeochemical processes were integrated using process-based
models, which were used to simulate the effects of various remediation strategies with
integrated active remediation technologies and natural attenuation on residual concen-
trations and distributions of contaminants in soil and groundwater systems. Extensive
simulations were, however, required to find an optimal strategy that can minimize the
cost of the remediation and meanwhile meet remediation requirements. To reduce the
computational burden, selective simulations of remediation strategies were performed and
the simulated results were used to train a machine learning (ML) model, random forest
regression (RFR), with a goal to establish the relationships between the outcomes and
costs of remediation strategies. The trained RFR was then used to search for an optimal
remediation strategy within the constraints of the remediation requirements using a global
optimization method. The approach was successfully demonstrated at a remediation site
contaminated with As and can be applied at other contaminated sites for designing and
optimizing remediation strategies.

2. Methods
2.1. Model Framework

The model framework for designing remediation strategies at a target site consists
of a process-based simulation module, ML module, and optimization module (Figure 1).
The process-based module was used to simulate reactive transport of contaminants under
natural and remedial conditions to obtain various types of simulated data such as spatial
and temporal changes of contaminant concentrations, contaminant migration paths and
discharges to nearby sensitive locations such as river, and remediation costs for different
remedial strategies. The obtained data were used to train an ML model in the ML module
to establish the relationship between input and output variables in a target remediation
site. In this study, the input variables (xi in Figure 1) are those related to hydrological
and biogeochemical boundary and initial conditions, as well as those related to remedial
activities, such as a set of remediation strategies to be adopted at the site, the locations
and extents for each adopted technology, the locations and amounts of injecting reagents,
etc. The output variables (Yi in Figure 1) are the simulated outcomes obtained from the
process-based model, such as residual contaminant concentrations and their spatiotemporal
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distributions in groundwater and soil, contaminant flux and its spatiotemporal distribu-
tions, etc. These variables were used in both the process-based and ML modules. The
trained ML model was then used by the optimization module to find a suite of optimal
strategies that meet the remediation requirements for site decision makers to select a final
strategy to be implemented. In the framework, the remediation requirements are often the
time constraints and the regulatory control levels. For example, for a site contaminated
with As, the remediation requirement for groundwater concentration is <10 ug/L.
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Figure 1. The framework for designing and optimizing remediation strategies for a contaminated site.

2.1.1. Process-Based Simulation Module

PFLOTRAN, an open-source, massively parallel simulator of subsurface flow and reac-
tive transport [13,14] was used in this study to simulate contaminant transport under both
natural and remedial conditions. The simulator solves Richards equation for subsurface
flow [15].

∂

∂t
(nsρ) +∇ · (ρq) = Ωω (1)

q = − kkr(s)
u

(∇P−Wwρgz) (2)

where n is the porosity (−), s is the saturation degree (m3/m3), ρ is the water density
(kmol/m3), q is the Darcy velocity (m/s), k is the intrinsic permeability (m2), kr is the
relative permeability (−), µ is the viscosity (Pa·s), P is the pressure (Pa), Ww is the molecular
weight of water (kg/kmol), g is the gravity (m/s2), and z is the vertical component of the
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position vector (m). Water density and viscosity are functions of temperature and pressure.
The source/sink term Ωω (kmol/m3·s) has the form:

Ωω =
qM
Wω

δ(r− rss) (3)

where qM denotes a mass rate in kg/m3/s, and rss denotes the location of the source/sink.
The solute reactive transport in the model was simulated using the following

equations [13]:

∂

∂t

n∑
α

sCα
j

+∇ ·∑
α

Qα
j = −∑

m
vjmRm (4)

for the jth primary species, and
∂θm

∂t
= VmRm (5)

for the mth mineral. In Equations (3) and (4), Cα
j and Qα

j denote the total concentration and
flux, respectively. The Rm is the reaction rate, vjm is the reaction stoichiometric coefficients,
θm is the mineral volume fraction, and Vm is the molar volume.

2.1.2. ML Module

Random forest is one of the ensemble ML methods that has a strong generalization
performance and nonlinear mapping capability with a high accuracy to overcome the
problem of overfitting and instability during training and testing [16,17]. Random forest
is now widely used in various environmental fields, such as soil quality assessment [18],
surface water pollution [19], lake trophic status [20], groundwater pollution [17], and air
quality prediction [21]. There are two types of random forest methods: random forest
regression (RFR) for regression objectives, and random forest classification (RFC) for
classification objectives [22]. In this study, RFR was selected to establish the relationship
between remediation strategy, outcomes, and cost. RFR is an extension of regression trees
that generates many regression trees (typically hundreds or several thousand) to learn
and make predictions independently, and aggregates the predictions by averaging the
predictions obtained from multiple regression trees to get the final predictions [23]. The
overall data were randomly split into learning and testing data, in which 70% of data
was for training and 30% for testing. The predictive performance of the RFR model was
assessed using the coefficient of determination (R2) and Nash–Sutcliffe efficiency (NSE),
both of which denote the model error relative to the total variation in the response variable.
The higher NSE and R2, the higher the predictive accuracy. The equations of R2 and NSE
are given as follows [24]:

R2 =
(∑
(
Oi −O

)(
Ei − E

)
)

2

∑(Oi −O)2 ∑ (Ei − E)2
(6)

NSE = 1− ∑n
i=1 (Oi − Ei)

2

∑n
i=1 (Oi −O)

2 (7)

2.1.3. Optimization Module

After obtaining the ML-based relationship between the remediation strategy, outcomes,
and cost, the optimization algorithm called “the Shuffled Complex Evolution method
developed at the University of Arizona algorithm (SCE-UA)” was used to find an optimal
remediation strategy with a minimum remediation cost. SCE-UA algorithm [25,26] is one
of the widely used global optimization methods that has a strong nonlinear mapping
capability with a good optimization effect and high stability.

The SCE-UA algorithm starts by selecting complexes Pcomp and each complex con-
taining m, which results in a sample size of s = Pcomp × m points. Then, these points are
sorted in an order of increasing function value and stored in an array D. The competitive
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complex evolution (CCE) algorithm is used to evolve each complex separately, and then
shuffled and reassigned to new complexes to enable information sharing [27]. The process
of evolution and shuffling are repeated until the convergence criteria are satisfied [25].

2.2. Demonstration of the Framework at a Remediation Site
2.2.1. Remediation Site

The remediation site is located in Guangzhou city, Guangdong Province, China, spread-
ing over an area of approximately 124,000 m2 (Figure 2). It is in the southern subtropical
monsoon climate area, with an average annual temperature of 23 ◦C, and nearby Shabei
River. The average annual precipitation at the site is about 1700 mm, of which 80% occurs
in the rainy season from April to September. Shabei River flows at the western boundary
of the site, which belongs to the tidal section of the Pearl River Estuary in southern China.
The altitude at the site is high in the northeast and low in the southwest. The soil at the
site was contaminated with As at several locations (Figure 2), and will be re-developed to
establish a research campus after remediation.

2.2.2. Model Domain and Properties

Hydrogeological structure of the model domain for the site was constructed by the
high-precision digital elevation model (DEM) from the BIGEMAP software [28] and drilling
data from site investigation report, from which the model domain was mesh-discretized.
After discretization, the model domain was divided into four layers based on the kriging
interpolation using the drilling data and hydrogeological parameters (Table S1). A total
number of 69,069 grid cells were discretized with each horizontal grid cell size in the range
of 5–30 m. There were 21 vertical layers, divided into two parts. Specifically, the depth of
each vertical layer within 8 m underground was 0.5 m, and the depth of remaining vertical
layer was 2 m.

In this study, Shabei river was treated as the time-varying specified head boundary at
the west side of the model domain. Every four-hour tidal water level taken from National
Marine Data and Information Service [29] was used as hydraulic head in the river. The top
boundary (ground surface) was specified as the infiltration boundary with the precipitation
data taken from literature [30]. No flow boundary was assumed for the bottom of the
model domain since the underlying formation is the aquitard. The remaining boundary of
the model domain was placed on the watershed divides as the no flux boundary. Since the
division of the model domain was based on a watershed approach, the model boundary
was larger than site boundary. To determine the initial flow conditions, the model was first
burn-in for 20 years to reach a dynamic steady state. Arsenic was the main contaminant in
the study site.

The measured aqueous chemical compositions, including As concentrations in Shabei
river, were used as the chemical boundary conditions, and the measured aqueous chemical
compositions in groundwater were used as initial chemical conditions for the ground-
water in the model domain. The distribution of soil As in the study site was obtained
from the site investigation report, and spatially interpolated using three-dimensional scat-
ter interpolation software from MATLAB R2019b (Figure 2e). The initial distribution of
As concentration in groundwater was assumed to be in equilibrium with solid phase
(Figure 2d). The initial distributions of DOC, DO, Fe (II), CO2, and pH are shown in
Figure S1. Various geochemical and biogeochemical reactions that affect As reactive trans-
port were considered in the reactive transport model [31,32]. These reactions are described
in supporting information (Text S1). The reaction parameters and boundary conditions as
discussed above were summarized in Tables S2 and S3.



Processes 2022, 10, 2572 6 of 16
Processes 2022, 10, x FOR PEER REVIEW 6 of 17 
 

 

 
Figure 2. The location of the study site including site and modeling boundaries, and contaminated 
locations (a–c). The initial distributions of arsenic concentrations in groundwater (d) and soil (e). Figure 2. The location of the study site including site and modeling boundaries, and contami-

nated locations (a–c). The initial distributions of arsenic concentrations in groundwater (d) and
soil (e). Here, As_aq and As_soil represented groundwater arsenic concentration, soil arsenic con-
centration, respectively. The cross-sections A and B were the cross-section of the contaminated
locations, respectively.



Processes 2022, 10, 2572 7 of 16

2.2.3. Implementation of the Model Framework

For the targeted remediation site, numerical simulations under different scenarios of
remedial activities found that the partial excavation and replacement of the contaminated
soils with clean soils are required to meet the constraint of time for the re-development
of the site. However, the amount and locations of the contaminated soils to be excavated
can be optimized with the residual contaminated soil left for natural attenuation. At this
site, full excavation of the contaminated soil would result in immediate clean-up of the
site, but with a significant cost burden. On the other hand, too much contaminated soil left
for natural attenuation might result in the long-term risk of groundwater contamination
and contaminant discharge to the nearby river beyond the regulatory limits. Therefore, the
goal is to find a remediation strategy with a lowest cost that the site can meet regulatory
requirements for the re-development of the site. In this study, the amount of the contami-
nated soil to be excavated was used to calculate the cost for the corresponding remediation
strategy. The simulated risk effects of the residual contaminated soils on groundwater
quality and contaminant discharge to the nearby river were treated as the remediation
outcomes, which were used to establish a relationship between the remediation strategy,
outcomes, and cost, which was then used to find an optimal remediation strategy. In this
study, the risk standard for As was divided into two levels from the local government
(Table 1): level I, the As concentration in groundwater does not exceed 10 ug/L [33]; level
II, the As concentration in groundwater is less than 10 ug/L. Meanwhile, the As content in
the soil is less than 60 mg/kg [34].

Table 1. Optimal contaminant limits in this study.

Standard Contaminant Unit Value Reference

Level I Arsenic ug/L 10 [33]
Level II Arsenic mg/kg 60 [34]

For those complicated cases with multiple contaminants requiring multiple remedia-
tion technologies, extensive simulations will be required to find an optimal remediation
strategy. To reduce the computational cost, one can select some representative scenarios
for simulations, and the results can then be used to train the ML model to establish the
relationship of remediation strategy, outcomes, and cost, which can then be used to find an
optimal strategy using the global optimization module.

In the ML step, hyperparameters are important metrics whose values are set before
starting the learning process. Here, a grid search optimization method is used to adjust
the hyperparameters used in RFR to improve the model prediction accuracy [35,36]. In
this study, the RFR model under water and soil remediation requirements were created
using the Python-based, open-source code Scikit-learn. Table S4 provides the values of
the hyperparameter in this study. The parameters used in the optimization step (SCE-UA
algorithm) include the number of complexes (Pcomp), the maximum number of function
evaluations allowed during optimization (nmax), maximum number of evolution loops
before convergency (kstop), and the percentage change allowed in kstop loops before conver-
gency (Pcento). The specific values of the parameters in the SCE algorithm for this study are
provided in Table S5.

3. Results and Discussion
3.1. Results of Natural Attenuation Simulated from the Process-Based Model

The natural attenuation scenario requires the modeling and evaluation of contaminant
degradation rates and pathways and the prediction of contaminant concentration at down
gradient receptor points, especially when a plume is still expanding/migrating. Figure 3
shows the snapshots of the As concentration distributions, including the contaminated
areas, simulated using the process-based model under the natural attenuation condition
for the entire site. The initial As concentrations in soil at two locations along cross-sections
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A and B exceeded the As screening level value (60 mg/kg) in soil with the highest As con-
centration of 208 mg/kg in cross-section B. All the initial As concentrations in groundwater
were below the groundwater standard of 10 ug/L. The result is consistent with the field
survey report on the Former Site of Guangzhou Huaqiao Sugar Factory [37]. However,
simulation results suggested that the As concentration in groundwater would gradually
increase with time as a result of As release from soil when groundwater redox condition
changes and the reductive dissolution of As-ferrihydrite in the soil. After 10 years, the
highest As concentration in groundwater at cross-section B would exceed 10 ug/L, sug-
gesting that there is a risk of groundwater contamination if the contaminated soil is not
treated. On the other hand, the As concentration in the contaminated soil will gradually
decrease, but it takes long time to reach below 60 mg/kg. Processes that can affect the
natural attenuation of As include adsorption and desorption, as well as site sediment
heterogeneity, affecting the flow velocity. The calculated flux of As from the contaminated
site to the Shabei river is small and would not increase the As concentration in the river as
a result of dilution (Figure 3e). The groundwater mobility in this study site is poor, leading
to a very slow migration process of As which takes a long time to achieve the remediation
goals. Therefore, the longer attenuation and monitoring time were selected for this specific
site. However, this is a site-specific issue, depending on the characteristics of the site and
types of contaminants. The primary objective of site modeling is to demonstrate that natu-
ral processes of contaminant degradation will reduce contaminant concentrations below
regulatory standards or risk-based levels in an appropriate time frame before potential
exposure pathways are completed. If the groundwater mobility of the contaminated site is
large and the degradation rate of contaminants is fast, such a long simulation time may
not be required. In addition, sampling and sample analysis must be conducted during the
process to confirm that clean-up is proceeding at rates consistent with cleanup objectives.
A long-term monitoring program is underway at the site that will monitor groundwater As
concentration. The results can be used to validate approach in future.

These results indicated that active remedial actions, such as the partial excavation
and the replacement of the contaminated soil with clean soil, or the establishment of a
barrier to isolate the source zone to prevent As dispersion in the soil, are required. The
barrier approach would, however, affect groundwater concentration in the isolated area.
Therefore, the choice in the source zone is to partially excavate the contaminated soil and
that partially left for natural attenuation with the goal to minimize the excavation amount
without leading to groundwater contamination.

3.2. Results of Excavation Strategies from the Process-Based Model

Figures 4–6 show the results of three scenarios with partial excavation of the con-
taminated soil and partial left for natural attenuation simulated using the process-based
model. In scenario 1, 3142 m3 of the highly contaminated soil is removed. The residual
contaminated soil still has As concentration as high as 205 mg/kg that can gradually re-
lease As to groundwater (Figure 4). After 10 years, the As concentration in groundwater at
cross-section B would exceed 10 ug/L, posing a risk to groundwater contamination. When
the volume of the excavated soil is increased in scenario 2 to 2.8 times that in scenario 1,
the highest As concentration in soils decreases to 135 mg/kg. The residual contaminated
soil would still release As to groundwater (Figure 5). However, the As concentration in
groundwater is no longer above 10 ug/L. In scenario 3, the contaminated soil is completely
excavated (168,077 m3), and both As concentrations in groundwater and soil meet the
regulatory requirements after the excavation (Figure 6). Other scenarios with variable
volumes of the excavated soil are also simulated (results not shown), generating a set
of data linking the remediation cost (volume of excavated soil) and outcomes (aqueous
As concentrations, As concentration in residual soil, contaminated volumes of water and
soil, and flux discharge to river). These results were used to find an optimal remediation
strategy, as described in the next section.
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3.3. Results of Optimal Remediation Strategy from ML and Optimization Modules

The simulated results from the process-based models (Figure 7a,c) indicated that the
volumes of the contaminated groundwater and the residual contaminated soil decrease with
the increasing volume of excavated soil. However, for the same volume of the excavated
soil, there are multiple of remediation outcomes because there are multiple placement
selections for the same volume of the excavated soil at the site. For each specific volume
of the excavated soil, there should be one strategy that leads to a minimal volume of
contaminated groundwater and residual contaminated soil. For the same volume of the
excavated soil, the excavation strategy leading to the mineral volume of contaminated
groundwater is not necessarily corresponding to the strategy leading to the minimal volume
of the residual contaminated soil. The optimization strategy for this case is then to find the
minimal volumes of contaminated groundwater and the residual contaminated soil as a
function of the excavated volume of the contaminated soil. Such a function can be obtained
from the simulation outcomes using the process-based model and be used by decision
makers to select an optimal remediation strategy. However, extensive simulations would
be required to generate enough data for each excavated volume of the contaminated soil.

Instead of the extensive simulations using the process-based model, the ML method,
RFR, was used in this study to establish the relationship between the excavated volume of
the contaminated soil and the minimal volumes of contaminated groundwater and residual
contaminated soil. To provide enough data for training the ML model, 341 excavation
scenarios were simulated using the process-based model with the data partially shown
in (Figure 7a,c). Specifically, the excavation locations, including vertical and horizontal
distributions of the excavated soil used in the process-based model as the inputs, the
volumes of the contaminated groundwater with As concentration exceeding 10 ug/L, and
the volume of the residual contaminated soil with concentration larger than 60 mg/kg
were used as the outputs to train the RFR model. The trained model has, respectively, R2

and NSE values of 0.9998 and 0.9995 for contaminated groundwater, and 0.9637 and 0.9965
for the residual contaminated soil (Table S6, Figures S2 and S3), indicating the model was
well trained.
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After training the RFR model, it was then used in the SCE-UA optimization algorithm
to find a set of optimal remediation strategies as a function of excavated soil, i.e., minimal
volumes of contaminated groundwater and residual contaminated soil as a function of the
excavated soil (Figure 7b,d) as well as corresponding horizontal and vertical locations of
the excavated soil. Such a function can be used by decision makers to select an optimal
remediation strategy based on the cost and remediation requirements. For example, the
minimum amount of the contaminated soil that needs to be excavated is 11,068 m3 in order
to avoid groundwater contamination with a corresponding excavation location provided in
Figure 8. Note that for this relatively simple case, the optimal function can also be obtained
from extensive simulations from the process-based model. However, for this case, it took
18 h for each simulation case using the process-based model, while the time cost for a
RFR model training and validation was only about 10 s, indicating the magnitude of the
reduction of computation burden.

The remediation strategy, as shown in Figure 8, was successfully implemented at
the target remediation site. Compared with the complete excavation of the contaminated
soils (168,077 m3), the adopted strategy only excavated 6.6% of the total contaminated soil,
leading to a significant saving of the remediation cost.

The model framework proposed in this study is also applicable to other heavy metals.
In this study, As was the only metallic contaminant in this site while other heavy metal
(such as Cd and Hg) were not observed. However, this is a site-specific issue requiring
a large amount of site survey data to construct simulation model (e.g., drilling data, con-
taminant data, tidal water level, DEM, etc.). If Cd and Hg contamination is to be studied,
it is necessary to re-locate the contaminated site and collect site survey data to build a
new model.
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4. Conclusions

A computational framework was developed in this study for searching optimal soil
and groundwater remediation strategies. The approach relies on the process-based model
that can simulate the integrated effects of various remediation approaches on the remedi-
ation outcomes. Extensive simulations are, however, required if only the process-based
model is used to search for optimal remediation strategies, especially for the sites when
multiple remediation technologies are required to restore soil and groundwater systems.
The framework uses an ML approach in coupling with an optimization algorithm to expe-
dite the searching process and to reduce the computation cost. The framework is especially
useful for searching risk-based remediation approaches that can take the advantage of the
natural attenuation potential in soil and groundwater. In such a case, only some of the
contaminant sources need to be treated, while others can be left for natural attenuation
without generating the risks of groundwater contamination or contaminant discharge to
sensitive locations. The framework can provide various alternative remediation strategies
for decision makers to select.

The framework was successfully applied at a field site contaminated with As. For
this specific site, the framework provided various simulation scenarios of remediation
outcomes, from which only the combination of partial excavation of the contaminated soil
and partial maintenance for natural attenuation is a viable choice of remediation strategy
based on regulatory and site re-development constraints. The optimization problem became
to search for excavation volumes and locations that would generate the minimal volume of
contaminated groundwater and residual contaminated soil after remediation. Under the
constraint that the residual contaminated soil would not cause groundwater contamination
and risk to the nearby river, an optimal excavation strategy, including the volume and
location, was found. The result was successfully demonstrated at the field site. This site is
relatively simple, however, because the field engineering work only involves the excavation
of the contaminated soil and replacement with clean soil. The framework can also be
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applied to other sites with complicated contamination history and multiple contaminants
requiring the combination of various active remediation technologies.
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Abbreviations

As Arsenic
Cd Cadmium
Hg Mercury
BNS Bulletin on Natural Survey
MNA Monitored natural attenuation
RFR Random forest regression
RFC Random forest classification
ML Machine learning
R2 The coefficient of determination
NSE Nash-Sutcliffe Efficiency
SCE-UA The Shuffled Complex Evolution method developed

at the University of Arizona algorithm
CCE The competitive complex evolution algorithm
DEM Digital Elevation Model
Pcomp v The number of complexes
nmax The maximum number of function evaluations allowed during optimization
kstop Maximum number of evolution loops before convergency
Pcento The percentage change allowed in kstop loops before convergency
n Porosity
s, m3/m3 Saturation degree
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ρ, kmol/m3 Water density
q, m/s Darcy velocity
k, m2 Intrinsic permeability
kr Relative permeability
µ, Pa·s Viscosity
P, Pa Pressure
Ww, kg/kmol Molecular weight of water
g, m/s2 Gravity
z, m Vertical component of the position vector
Ωω, kmol/m3·s Source/sink term
qM, kg/m3/s Mass rate
rss The location of the source/sink
Cα

j Total concentration
Qα

j Flux
Rm Reaction rate
vjm Reaction stoichiometric coefficients
θm Mineral volume fraction
Vm Molar volume
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