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Abstract: The application of polyetheretherketone (PEEK) in additive manufacturing (AM) can effec-
tively reduce material and energy waste in the manufacturing process and help achieve lightweight
parts. As a result, AM PEEK is considered an emerging technology in line with green manufacturing
concepts. However, 3D-printed PEEK parts often suffer from low mechanical strength and poor sur-
face quality due to the immaturity of the manufacturing process. Therefore, this research investigates
the feasibility of improving the surface quality of 3D-printed parts by dry milling post-processing.
Meanwhile, the mechanical strength of the parts is improved by optimizing the printing process
parameters, and the effects of mechanical strength on milling quality are investigated. The novelty of
this research is to design experiments based on the anisotropy of 3D-printed parts. For the first time,
the delamination of the milling post-processing surface of 3D-printed PEEK parts is investigated. The
results show that the milled surfaces of 3D-printed PEEK parts are prone to delamination problems.
The printing direction has a significant effect on the quality of milling post-processing, whereas the
milling directions have little effect on milling post-processing quality. The delamination problem can
be significantly improved by a side milling process where the specimen is printed at 90◦ and then
milled. Milling surface delamination is caused by the poor mechanical strength (internal bonding)
of 3D-printed PEEK parts. By improving the mechanical strength of 3D-printed PEEK parts, the
delamination of its milled surfaces can be significantly improved.

Keywords: green manufacturing; energy efficiency optimization; lightweight; polyetheretherketone;
post-processing; process optimization

1. Introduction

Polyetheretherketone (PEEK) is a semi-crystalline thermoplastic that has excellent
properties, such as non-toxicity, high-temperature resistance, corrosion resistance, abrasion
resistance, high strength, X-ray penetration, and good biocompatibility [1,2]. As a result,
PEEK has been successfully used in many fields, such as the medical, chemical, and
electronics industries [3]. PEEK is lightweight and has excellent mechanical properties,
in some areas comparable to metals and alloys, such as titanium and aluminum, and has
begun to be used in the aerospace industry [4,5]. PEEK is relatively inexpensive and can
be transformed into unique structures by additive manufacturing [6], which has great
potential in the fields of green manufacturing and lightweight parts.

Additive manufacturing (AM) is considered a green technology that has great poten-
tial to improve material effectiveness, reduce life cycle impacts, and extend engineering
functionality [7]. Firstly, the AM production process has less material loss, and it is easy to
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recycle the scrap and optimize the structure of the parts, which greatly improves the mate-
rial utilization rate [8,9]. Second, AM technology requires fewer processing steps and fewer
auxiliary tools. This effectively facilitates local manufacturing and reduces spare parts and
transport costs [10,11]. Finally, the freedom of design through AM technology allows for
optimized material distribution and light weight, while maintaining the mechanical and
other performance requirements of the parts [12,13]. In addition, AM reduces the cost and
processing time for the production of custom and small-batch components [7]. AM is a
“clean” or “green” process compared to traditional manufacturing processes [14].

AM is now one of the main processing methods for PEEK and is widely used in
various fields [6,15]. The main AM types of PEEK are selective laser sintering (SLS) and
fused deposition modeling (FDM), or fused filament fabrication (FFF) [6]. SLS has high
accuracy, but it consumes much more energy compared to conventional processes, and it is
very expensive compared to FDM [16,17]. FDM offers the advantages of easy set-up, easy
installation, easy maintenance, low initial set-up costs, and low material consumption [18].
However, FDM printing technology cannot avoid the impact of the “staircase effect” on
the surface accuracy of the parts [19,20]. The immaturity of the FDM printing process also
leads to the lack of mechanical strength of parts [21,22]. The issues of resource conservation
and recycling and environmental sustainability are currently of great concern worldwide,
and there is an urgent need to reduce costs and improve the efficiency and sustainability
of manufacturing processes [23,24]. Therefore, it is critical to address the problems of the
poor surface quality and low mechanical strength of FDM-printed PEEK parts, improve
the durability of parts, and reduce material and energy waste. In the currently available
research, the surface quality of 3D-printed parts often needs to be enhanced by machining
post-processing [25,26], and the mechanical strength needs to be improved by optimizing
the printing process or heat treatment [27,28].

Milling is a typical AM post-processing method that eliminates the effect of the
surface staircase effect on the parts, expands the range of applications for 3D-printed parts,
and increases durability [29–31]. The combination of FDM and milling post-processing
technology is an AM method with low energy consumption, low cost, and sustainable
potential. However, research on milling post-processing for AM is in its infancy and is
focused on 3D-printed metallic materials, and there is very little research on FDM-printed
PEEK. Al-Rubaie et al. [32] milled Ti6Al4V parts manufactured by conventional forging,
SLM printing, and post-SLM printing heat treatment, respectively. They found that tool-
side wear when milling SLM-printed parts was slightly higher than for other manufactured
parts and that the surface finish of SLM-printed parts after milling was better than that of
conventional parts. Cococcetta et al. [33] investigated the effects of the printing process and
plane milling process on the post-processing quality of thermoplastic CFRP composites.
The results showed that deep cooling reduced tool wear during milling and was able to
completely eliminate or reduce burrs by 90%. Zimmermann et al. [34] investigated the
effects of printing parameters and tool motion directions on the plane milling performance
of 3D-printed AlSi10Mg parts. The results showed that among the parts manufactured
by several methods, the 3D-printed parts showed a flaky structure on the machined
surface and the worst surface quality. Ni et al. [35] investigated the effects of the laser
scanning strategy and machining surface on the plane milling performance of SLM-printed
Ti6Al4V parts. The results showed that the cutting force, surface morphology, and surface
roughness of different machined surfaces exhibited significant anisotropy. High cutting
speeds could improve the anisotropic characteristics of milling. Guo et al. [31] investigated
the interdependence between printing parameters and plane milling parameters for FDM-
printed uncrystallized PEEK and CF/PEEK samples. The results showed that both the
±45◦ grating angle and the smaller layer thickness improved the surface quality of the
3D-printed polymer after dry milling. However, these researches were carried out through
plane milling and did not investigate the delamination problem of curved surface milling.

To improve the mechanical strength of 3D-printed PEEK parts, several academics
have undertaken research on possible approaches, including annealing post-treatment
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and optimization of the AM process. Basgul et al. [36] investigated the annealing post-
processing method for 3D-printed PEEK mesh frames. They observed that the annealing
effect improved the mechanical properties of the slow-printing mesh, but only increased
the compressive strength by 14%. El Magri et al. [37] enhanced the mechanical strength of
3D-printed PEEK by optimizing the printing parameters and annealing treatment. They
found that the tensile strength of the specimens after optimizing the parameters reached
78.31 MPa. The tensile strength could be improved by 31% by annealing. Sikder et al. [38]
investigated the effect of different FDM parameters on the mechanical properties of 3D-
printed PEEK. They obtained the maximum tensile, compressive, and flexural strengths
of 87.53 MPa, 104.74 MPa, and 99.25 MPa, respectively, for unannealed 3D-printed PEEK
specimens with the optimal parameters combination. Wang et al. [39] explored the effect of
printing parameters on the tensile, flexural, and impact properties of FDM-printed PEEK,
CF/PEEK, and GF/PEEK samples. The results showed that the combined mechanical
properties of CF/PEEK and GF/PEEK were the highest at a nozzle temperature of 440 ◦C, a
platform temperature of 280 ◦C, a printing speed of 5 mm/s, and a layer thickness of 0.1 mm.
It is worth noting that in mechanical strength research, optimizing process parameters to
directly improve mechanical strength is more energy efficient and environmentally friendly
than annealing. Meanwhile, PEEK is often used in bolts or spinal cage constructions that
are primarily subject to shear loads [36,40], but we found that few studies in the existing
literature have been conducted on the shear strength of 3D-printed PEEK parts.

From the above literature, it is clear that research related to milling post-processing for
additive manufacturing is in its initial stages. Such research is focused on plane milling
for 3D-printed metal. However, very little research has been done on the FDM-printed
PEEK milling post-processing process. The problem of curved surface milling layering of
FDM-printed PEEK parts has not been investigated. Furthermore, there is a lack of research
on the relationship between shear strength and process parameters of 3D-printed PEEK
parts. To address the shortcomings of the existing literature, this research experimentally
verifies the feasibility of 3D-printed PEEK parts for curved surface milling post-processing.
The milling surface delamination problems are investigated and process solutions for
improvement are given. The effects of three main process parameters on the shear strength
of 3D-printed parts are investigated by orthogonal experiment and the optimal process
parameters combination is obtained. Finally, the effects of mechanical strength on the
machining quality of the milling post-processing are investigated.

2. Experimental Procedure
2.1. Specimens Preparation

The printing material used for the experiments is PEEK filament (5600 G, Changzhou,
JS, China), 1.75 mm in diameter. Table 1 shows the typical material properties of PEEK.
The AM machine is a self-designed fused deposition modeling additive manufacturing
machine with a nozzle temperature of 450 ◦C, a bed temperature of 260 ◦C, and a print
table size of 140 × 140 mm. As PEEK is often fabricated into a variety of curved parts in
applications, the milled specimens for this experiment are designed to be 40 × 10 × 15 mm
curved parts. Based on the principle that different AM printing directions affect the internal
properties of the parts [41], here the milling specimens are printed in 2 groups at an angle of
0◦ and 90◦ to the Z direction, as shown in Figure 1. Based on existing studies and material
manufacturers [38,42,43], the AM process parameters of the printing direction comparison
experiment are set as shown in Table 2. Two specimens are prepared for each group (a) and
(b) for milling post-processing in different directions.
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Table 1. Material properties of the tested PEEK.

Item Value

Density (g/cm3) 1.30
Tensile strength (MPa) 85
Shear strength (MPa) 60

Flexural strength (MPa) 150
Compression strength (MPa) 118

Glass transition temperature (◦C) 143
Melting temperature (◦C) 343

Thermal conductivity (W/(m·K)) 0.25
Friction coefficient 0.32
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specimens; (c) shear test specimens.

Table 2. AM process parameters.

Process Parameters Printing Direction Comparison Orthogonal Design Levels

Filaments PEEK 5600 G
Nozzle diameter (mm) 0.4
Printing speed (mm/s) 40

Raster angle ±45◦

Infill pattern Linear
Infill density 100%

Printing direction 0◦, 90◦ 0◦

Nozzle temperature (◦C) 400 360, 390, 420, 450
Layer thickness (mm) 0.3 0.1, 0.2, 0.3, 0.4
Bed temperature (◦C) 200 155, 190, 225, 260

To improve the shear strength of 3D-printed PEEK parts, the effects of three factors on
shear strength, nozzle temperature, layer thickness, and bed temperature are studied by
orthogonal experiment. The setup of orthogonal design levels based on existing studies
is shown in Table 2. Three specimens are printed in each group and the test results are
averaged. The shear strength test specimens are designed as a cylinder 10 mm in diameter
and 30 mm in height, as shown in Figure 1.

2.2. Milling Post-Processing

The milling post-processing is performed on a machining center Carver PMS23_A8.
All milling post-processing in this research is carried out under dry conditions. According
to the previous study, a 2 mm diameter carbide ball end mill is selected for the process and
milling settings are a spindle speed of 4700 r/min, cutting depth of 0.2 mm, feed per tooth
of 0.06 mm/z, and tool lateral sliding of 0.1 mm. To avoid the effects of the staircase effect
on the surface of the 3D-printed parts, a 1 mm deep roughing process is first carried out
on the surface of the parts. The specific milling solution is shown in Figure 2: the ball end
mill mills the curved parts of the 0◦ and 90◦ printed specimens at the X and Y directions,
respectively, for milling post-processing.
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Figure 2. Specimens milling methods: (a) 0◦ printing, milling at the X direction; (b) 0◦ printing,
milling at the Y direction; (c) 90◦ printing, milling at the X direction; (d) 90◦ printing, milling at the
Y direction.

2.3. Testing

The shear strength test is carried out using a microcomputer-controlled electronic uni-
versal testing machine (E45.105, Eden Prairie, MN, USA) with a loading rate of 2 mm/min
in reference to the GJB715.26A-2008 standard. The milled 3D-printed parts are measured
for surface roughness values using a portable stylus-type contact roughness meter (TR200,
Beijing, China). The sampling length is 0.8 mm, the assessment length is 4 mm, and the
results are filtered using a Gaussian filter. Each group of specimens is measured a total
of four times in the location and direction as shown in Figure 3, and the test results are
averaged. Here, the measurement direction is not made all perpendicular to the milling
direction because the delamination burr on the specimen surface is the main factor affecting
the roughness value in this experiment. In addition, because the specimen is curved, a
straight line contour can be measured only in the direction shown in Figure 3, which gives
a more accurate result. Surface morphology is observed using a portable USB microscope
(magnification range of 25× to 200×) with the observation area shown in Figure 3.
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3. Results and Analysis
3.1. The Effects of the Directions on the Milling Quality

As shown in Figure 3, the surface quality of the milled specimens is significantly
improved compared to the 3D-printed specimens. This indicates that it is indeed possible
to improve the surface quality of 3D-printed specimens by the milling post-processing,
thereby improving the durability and surface accuracy of PEEK parts. However, the surface
morphology of the four sets of milling specimens is enlarged and observed, and some
obvious problems and patterns are found between them.

As shown in Figure 4a,b, the surfaces of specimens (a) and (b) both have a large
number of burrs and delaminations, and the measured Ra is 3.620 µm and 3.546 µm,
respectively, and the surface quality is not much different. Therefore, specimen (a) is
selected for machining surface morphology analysis. As can be seen from Figure 4a1, there
are three main types of surface defects: the smaller burrs are concentrated in the upper part
of the figure, the large burrs and whole strips of material falling off are concentrated in the
middle of the figure, and the fine delaminations are the most numerous and are distributed
over the entire milled surface. A closer look at the directions of these burrs (as indicated by
the dashed lines in the diagram) reveals an overall orientation of ±45◦ and a maximum
width of approximately 0.4 mm. The filling angle in the AM process is ±45◦ and the nozzle
diameter is 0.4 mm, which corresponds to the burrs’ size and orientation. This indicates
that these delaminations, burrs, and material peeling are actually the result of poor internal
bonding of the material. The strips of material extruded from the nozzle are not firmly
bonded to each other sufficiently; thus, under the effects of the milling force, the material is
removed from its original position, which creates delaminations and burrs. These surface
defects reduce the wear resistance and stability of the parts and seriously shorten the parts’
service life. It may even be scrapped outright due to excessive surface roughness values
and dimensional errors, resulting in a waste of energy and material that is not in line with
the green manufacturing concept.
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As can be seen in Figure 5c,d, the surfaces of specimens (c) and (d) are almost free
of burrs and obvious delaminations, and the measured Ra is 1.220 µm and 1.393 µm,
respectively, and the surface quality is not much different. Therefore, specimen (c) is
selected for machining surface morphology analysis. As can be seen from Figure 4c1, the
surface of the specimen (c) is smooth and the machining quality is significantly better
than that of specimens (a) and (b), with increasingly pronounced vertical lines appearing
from left to right on the machined surface (as shown by the dashed lines in the diagram).
These vertical lines are below the translucent PEEK surface layer and do not affect Ra or
gloss. This indicates that only slight delaminations are formed on the machined surface
and that these are eliminated by the smearing effect of milling [31]. These vertical lines
are parallel to the printing direction and the distance between the two lines is 0.3 mm, the
same as the printed layer thickness, which means that these lines are vertical interlayer
bonding lines. The left side of the figure is the direction closest to the printing bed. As
the printing height increases, the materials get further and further away from the printing
bed. The temperature difference between the extruded material and the freshly extruded
material will be even greater. As a result, the bonding strength between the layers gradually
becomes smaller, the delaminations formed become larger and larger, and the vertical line
pattern becomes more and more obvious. It appears that the delaminations of the milling
post-processing may be related to the mechanical strength (material bond strength) of the
3D-printed parts. The difference in the milled surface morphology of the 0◦ and 90◦ printed
specimens may be the result of differences in the mechanical strength of the 3D-printed
parts in all directions.
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As shown in Figure 6, by comparing the above surface morphology and roughness,
it can be seen that the milled surface quality of (a) and (b), the two groups of specimens
printed in 0◦ direction, is similar, and the milled surface quality of (c) and (d), the two
groups printed in 90◦ direction, is similar, no matter the X or Y directions tool used for
milling. This indicates that milling direction is not the main factor affecting the surface
quality of milled 3D-printed PEEK parts, and the surface quality of the specimens with
different printing directions appeared to be significantly different when compared to each
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other. The surface quality of specimens printed in the 90◦ direction is significantly better
than that of specimens printed in the 0◦ direction. This indicates that the printing direction
is the main reason for the machining quality. When milling post-processing 3D-printed
PEEK parts, choosing a reasonable orientation for printing and milling the side of the parts
according to actual needs can effectively improve the impact of parts with delamination
defects. It can improve the success rate and surface quality of parts manufacturing, reduce
the waste of energy and materials, and help to achieve lightweight and green manufacturing
of parts.
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Figure 6. Comparison of surface roughness values of milled specimens.

3.2. Effects of Process Parameters on Shear Strength

The results of the orthogonal experiment and the range analysis are shown in
Tables 3 and 4.

Table 3. Results of the orthogonal experiment.

No.

Factors

Shear Strength
(MPa)

A
Nozzle Temperature

(◦C)

B
Layer Thickness

(mm)

C
Bed Temperature

(◦C)

1 360 0.1 155 6
2 360 0.2 190 9.33
3 360 0.3 225 16.57
4 360 0.4 260 18.04
5 390 0.1 190 13.89
6 390 0.2 155 22.6
7 390 0.3 260 50.17
8 390 0.4 225 29.98
9 420 0.1 225 34.95

10 420 0.2 260 30.54
11 420 0.3 155 45.81
12 420 0.4 190 44.5
13 450 0.1 260 41
14 450 0.2 225 40.38
15 450 0.3 190 48.39
16 450 0.4 155 45.89
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Table 4. Results of the range analysis.

Projects A B C

K1 12.49 23.96 29.26
K2 29.16 25.71 29.03
K3 38.95 40.24 30.47
K4 43.1 33.79 34.94
R 30.61 16.28 5.91

In Table 4, K1, K2, K3, and K4 denote the mean values of shear strength at four levels
for factors A, B, and C. R denotes the range of each factor. The larger the R corresponding
to the factor, the greater the effects on the shear strength represented. The R between
A, B, and C in Table 4 are 30.61, 16.28, and 5.91, respectively. So the effects of the three
factors on shear strength are A > B > C in order of strength, i.e., nozzle temperature > layer
thickness > bed temperature. With the level of each factor as the horizontal coordinate and
its corresponding mean value Ki of shear strength as the vertical coordinate, the plot of
each factor versus shear strength is shown in Figure 7.
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As seen in Figure 7, with the increase of the nozzle temperature, the shear strength of
the specimens shows an increasing trend, reaching a maximum at the nozzle temperature
of 450 ◦C, and the overall change is very significant. With the increase of the layer thickness,
the shear strength shows a trend of first increasing and then decreasing, reaching the
maximum at the layer thickness of 0.3 mm, and the overall change trend is relatively
significant. With the increase in bed temperature, the shear strength shows a trend of first
decreasing and then increasing, and it reaches the maximum at the bed temperature of
260 ◦C. The overall change trend is not significant. Based on the analysis of the above
orthogonal experiment results, the optimal process parameters combination is determined
as a nozzle temperature of 450 ◦C, layer thickness of 0.3 mm, and bed temperature of 260 ◦C.
A set of shear specimens are prepared by AM according to the obtained process parameters
combination, and the average shear strength of 52.13 MPa is tested and calculated. The
predicted shear strength value obtained from the analysis using MINITAB software for the
orthogonal array is 51.35 MPa. The shear strength of the optimized parts is close to that of
injection-molded PEEK parts, greatly improving the mechanical strength and durability of
3D-printed PEEK parts.
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3.3. Effects of Mechanical Strength on Milling Quality

The comparative analysis in Section 3.1 reveals that the surface quality of the milling
post-processing of 3D-printed parts may be related to mechanical strength. Therefore, in this
section, the specimens printed using the optimal parameters combination of shear strength
are subjected to milling post-processing and compared with the surface morphology of the
milled specimens manufactured before optimization, as shown in Figure 8.
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As can be seen from Figure 8, the milling surface of specimen (a) has a large number
of burrs and delaminations on the surface, and there is a large size of material separa-
tion with poor machining surface quality. After shear strength optimization, the surface
delaminations and burrs of specimen (b) are significantly reduced. This suggests that
enhancing the mechanical strength of incremental PEEK by optimizing process parameters
is accompanied by an increase in its corresponding post-processing quality.

However, the surface quality of the 3D-printed PEEK specimens fell short of that of
the injection-molded parts. This may be due to the fact that the process of this research
does not use advanced algorithms [44,45] and the optimization is not yet optimal. From
the perspective of green manufacturing, the research content also lacks consideration
of consumption time, cost, and energy [46]. These will be our next pieces of content
to improve.

4. Conclusions

In this research, the FDM printing and milling post-processing processes are optimized
to improve the surface quality and durability of the parts and to reduce the scrap rate and
material waste of 3D-printed PEEK parts. The main conclusions are as follows:

(1) The feasibility of improving the surface quality and dimensional accuracy of 3D-
printed PEEK parts by milling post-processing is verified, and the application of
3D-printed PEEK parts is expanded.

(2) The effects of two printing directions of 0◦ and 90◦, and two milling directions of X
and Y, on the surface quality of 3D-printed PEEK parts of milling post-processing are
compared. It is found that the printing direction has significant effects on the milled
surface quality of 3D-printed parts. Selecting the printing direction for AM according
to the demand can improve the delaminations caused by milling and significantly
enhance the surface quality of the milling post-processing.

(3) The effects of three main AM process parameters, namely nozzle temperature, layer
thickness, and bed temperature, on shear strength are investigated by orthogonal
experiments and range analysis. The process parameters combination of AM for shear
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strength comparable to injection molded PEEK parts is obtained as follows: nozzle
temperature 450 ◦C, layer thickness 0.3 mm, and bed temperature 260 ◦C.

(4) By comparing the milled surface morphology of 3D-printed specimens before and
after mechanical strength optimization, it is found that increasing the mechanical
strength of 3D-printed parts can significantly improve the defects, such as surface
delaminations and burrs, caused by milling post-processing.

This research successfully improves the durability and surface quality of 3D-printed
PEEK parts by optimizing the machining process. It provides a reference for utilizing AM
PEEK technology to achieve lightweight and green manufacturing.
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