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Abstract: Developing a model that can accurately predict internal fractured reservoirs in the context
of the ultra‑lowphysical properties of carbonate rocks by only employing conventionalmathematical
methods can be very challenging. This process is challenging because the relationship between basic
fracture parameters and the logging response in carbonate reservoirs has not been studied, and the
traditionalmethod lacks adaptability due to the complex relationship between basic fracture parame‑
ters and the logging response. However, data‑driven approaches supplemented bymachine learning
algorithms based onmulti‑layer perceptrons (MLP) provide amore reliable solution to this challenge.
In this paper, a classical fracture parameter evaluation data set is established using fracture porosity,
fracture density, fracture length, and fracture width data that can be identified by resistivity and
acoustic imaging logging. Another data set can be composed of different types of logs, and it can
be used to identify reservoirs. Two different data sets were validated by regression task evaluation
indicators in machine learning, and the correlation coefficient R2 is greater than 0.82. This means
that the model accuracy of the algorithm can reach 82%. Combined with the comparison results of
eight conventional machine learning algorithms, the reliability and application validity of the MLP
model are verified. This method’s accuracy is also verified by oil test data, which show that the MLP
machine‑learning algorithm can effectively simulate the relationship between lithology and fracture
development. In addition, it can be used to predict key exploration horizons before drilling. The
relationship between lithology and fracture development degree is well‑simulated by the MLP ma‑
chine learning algorithm, which shows that the degree of fracture development is mainly affected by
fractures, indicating that the method can be used to predict key exploration horizons before drilling.

Keywords: fracture parameter prediction; MLP machine learning method; Ordovician carbonate;
Cambrian carbonate

1. Introduction
Fractured reservoirs are an important research field in terms of increasing production

and reserves in the 21st century, and fractured low permeability reservoirs are particu‑
larly important. The production from this type of reservoir accounts for more than half
of the total oil and gas production [1]. For carbonate reservoirs with a matrix porosity of
less than 5%, fractures act as percolation channels for fluid migration, but they are also
favourable for low‑permeability carbonate reservoirs. However, they are difficult to find
because of deep burial, complex tectonic stress, differential diagenesis, and strong hetero‑
geneity [2]. Previous research and exploration into fracture parameter characterization,
identification, and prediction have been conducted [2]. Fracture parameter characteriza‑
tion is a key indicator for evaluating fracture development, including fracture occurrence,
density, penetration depth, opening, length, filling characteristics, fracture porosity, and
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permeability [2]. Because of the high cost of coring, the application of seismic and log‑
ging data in fracture identification and prediction has always been a hot research topic in
this field. At present, there are two primary fracture prediction methods based on logging
curves: (1) Commonly used logging methods that identify fractures include lithology log‑
ging, porosity logging, resistivity logging, acoustic full‑wave logging, formation dip log‑
ging, and imaging logging [3–6], and (2) machine learningmethods including the grey the‑
ory prediction method [7] and the neural network prediction method [8,9]. In short, based
on conventional well log data, a total of approximately 50 kinds of fracture identification
methods have been proposed, including the pore structure index [10], permeability differ‑
ence [11], the resistivity correction difference ratio method [12], the resistivity instruction
method [13], the ultrasonic shear wave splitting method [14], the comprehensive probabil‑
ity density method [15], the well‑logging curve rate method [16], the logging curve recon‑
struction method [17], the maximum entropy prediction error principle method [18], the
R/S analysis method [19], the fracture probability model method [20], the wavelet multi‑
scale transformation method [21], the grey theory for fracture prediction [7], neural net‑
works for fracture prediction [22,23], and the fractal dimension method [24].

Previous research, however, concentrated more on the carbonate reservoir’s fracture
porosity, while cracks in the basic parameters and thewell‑logging response have not been
studied thoroughly in terms of locating carbonate reservoirs [2]. In addition, it is difficult to
determine the relationship between basic fracture parameters and conventional logging re‑
sponses due to the complex pore structure and severe heterogeneity (such as the influence
of bitumen quality on reservoir physical properties [25]) of carbonate reservoirs. However,
machine learning has great adaptability in terms of solving such nonlinear problems and
can realize the transformation of complex functional relationships. In addition, relatively
good results have been achieved in carbonate reservoir filling identification [26], lithology
identification [27], complex reservoir fluid identification [28], horizon interface identifica‑
tion [29], and other aspects. Therefore, machine learning provides us with the possibility
of solving the relationship between fracture parameters and the logging response.

The multi‑layer perceptron (MLP, the relevant abbreviations are summarized in
Schedule 1) algorithmwas developed based on the perceptron model proposed byMcCul‑
loch and Pitts, and it is a supervised machine learning method. Its feedforward structure
consists of one input layer, multiple hidden layers, and one output layer. The hidden layer
is composed of one or more nonlinear neurons, and it has the ability to approximate any
nonlinear relationship between the input layer and the output layer with arbitrary preci‑
sion as well as high fault tolerance and robustness. In addition, it can comprehensively ap‑
ply continuous variables and discrete variables to solve complex nonlinear problems [30].

The Cambrian and Ordovician systems in Nanpu Sag of Bohai Bay Basin have
emerged as key exploration and development blocks in recent years, and they are one
of the most important exploration targets in Bohai Bay Basin as well as the primary target
area in this study. The exploration of weathering crust reservoirs in this area has shown
great commercial value [31–34]. At present, oil and gas shows have also been found below
the weathering crust reservoir, indicating that the internal‑type reservoir also has good oil
and gas development value. Due to the lack of exploration, well coring, and imaging log‑
ging data, research on the characteristics of internal‑type reservoirs is still shallow, and to
a large extent, this lack has hindered oil and gas exploration in the area.

In this paper, the fracture parameters of inner reservoirs are comprehensively studied
by using the limited data related to resistivity and acoustic imaging logging evaluation. At
the same time, theMLPmachine‑learning algorithm is used tomodel the reservoir fracture
parameters in combinationwith conventional logging data. Then, the technical advantages
of the machine learning method are discussed by comparing it with traditional methods.
Finally, the location of a high‑quality reservoir is predicted according to the mineral com‑
position of each layer obtained from the outcrop, which provides a scientific basis for fine
exploration and development of carbonate internal reservoirs.
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2. Geological Background
2.1. Tectonic Characteristics

The Nanpu Depression is a dustpan‑shaped depression that developed at the base of
the North China platform, which experienced two periods of tectonic movement. Among
them, the Nanpu 1, 2 and 3 buried hills are located on the slope belt of Nanpu Sag, and the
Shaletian uplift, the Nanpu 4 buried hill is located on the hanging wall of the Baigezhuang
fault, which is the boundary fault of Nanpu Sag, and the Nanpu 5 buried hill is located
on the hanging wall of the southwest Zhuang Arc fault, which is the Nanpu Sag bound‑
ary fault (Figure 1). The buried hills in the Nanpu Depression are affected by multi‑stage
tectonic movement. Since the deposition of the Middle Neoproterozoic, the Indosinian,
Yanshan, and Himalayan movements have produced multi‑stage unconformity. The basic
morphology of Nanpu’s buried hills formed primarily during the Yanshan Period, while
the fault activity in the controlling mountain began during the Himalayan period. This
activity controlled the basic morphology of buried hills’ structures. The Nanpu 1, 2, 3 and
5 buried hills are the primary exploration targets in the study area, and the pre‑Cambrian–
Ordovician stratigraphic system is the primary target. This system can be divided into
two types of reservoirs: the weathering crust type and the internal type. “Weathering
crust reservoir” refers to the oil and gas pools that gather at the top of a buried hill, and
after years of exploration, most of the weathering crust‑type oil and gas reservoirs have
been gradually identified. An internal reservoir is one that is located approximately below
the top surface of the weathering crust. Compared with weathering crust reservoirs, in‑
ternal reservoirs are more heterogeneous and difficult to discover due to their deep burial,
complex tectonic stress, and differential diagenesis. So far, the development degree of
structural fractures is considered to be one of the primary controlling factors for the devel‑
opment of internal reservoirs.
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2.2. Stratigraphic Characteristics
The buried hill strata in the Nanpu Depression have rapid lateral variation. From

east to west, the stratum changes from old to new. The Nanpu 1 and 2 structures primar‑
ily developed the Ordovician–Cambrian strata (Figure 1b,c), while the Nanpu 3 structures
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primarily developed the Cambrian strata. The lower region of the Cambrian Zhangxia For‑
mation consists of thick, massive oolitic limestone; the middle region is interbedded thin
limestone and yellow‑green shale, and the upper region is interbedded leopard‑spotted
limestone and shale. The lower region of the Gushan Formation is interbedded with yel‑
lowish green shale and light grey thinly bedded limestone, and the upper region is lobed
bamboo limestone and argillaceous striped limestone interbedded with shale. The Chang‑
shan Formation is characterized by bamboo leaf limestone with circular oxidation patterns
and argillaceous striped limestone. The Fengshan Formation is characterized by oolitic
limestone, bamboo leaf limestone, and argillaceous striped limestone, with brownish‑grey
dolomite and algal dolomite at the top.

Other formations include the Ordovician Yeli Formation, which is primarily com‑
posed of brown‑grey medium‑thick bamboo leaf dolomite, micrite dolomite, and powder‑
fine dolomite, and the Liangjiashan Formation, which is composed of brownish‑grey thick
bedded chert‑bearing limestone with nodules and greyish‑white and light‑yellow mar‑
lite dolomite. The Majiagou Formation consists of two distinct sedimentary cycles from
dolomite to limestone: (1) The dolomite is primarily composed of thin to medium‑thick
layers of micritic dolomite, micritic dolomite, and argillaceous dolomite mixed with brec‑
ciated dolomite; and (2) the limestone primarily consists of medium‑thickmicrocrystalline
limestone, micrite limestone, medium‑thick cloud‑spotted limestone, and chert‑banded
limestone (nodular).

2.3. Fractures
Fractures are an important reservoir space and provide migration channels in inner

reservoirs. When the fractures are netted, and the internal channels are not filled by ce‑
mented materials, high‑quality reservoirs can form. In the study area, the inner reservoir
space fractures were affected by dolomitization, recrystallization, and dissolution during
the early stage, and the differential diagenesis during the later stage increased the reservoir
space and improved the reservoir connectivity. In addition, most of the study area includes
tectonic fractures, which were nearly filled by calcite during an early stage of formation,
and therefore, they have poor oil and gas migration and storage capacity. However, after
being cut by hydrothermal calcite during a later stage, new oil and gas storage space and
a migration channel formed (Figure 2).
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Figure 2. Fracture characteristics ofOrdovician andCambrian carbonate rocks. (a)Micritic limestone
(well NP1‑90, 5224.80 m); (b) silty limestone (well NP1‑90, 5224.80 m); (c) dolomite (well NP3‑80,
5682.59 m); (d) dolomite (well NP3‑80, 5224.80 m); (e) micritic limestone (well NP1‑90, 5682.59 m);
and (f) dolomite (Well NP3‑80, 5682.59m). The advantage of cast thin sections over conventional thin
sections is that the pore space is filled with stained resin or liquid glue, and the pore space can be
directly and conveniently observed by a polarizing microscope while avoiding artificially induced
pores and cracks.
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3. Data Collection
In fractured reservoirs, the extension of a single fracture is insignificant, while the

fracture development system formed by the combination of multiple fractures plays an
important role in the formation of seepage channels. Therefore, it is necessary to evaluate
the influence of fracture parameters and the fracture development system on reservoir
seepage characteristics during reservoir fracture evaluation.

A comprehensive and systematic observation of fractures primarily includes the fol‑
lowing parameters (Table 1): fracture density (FD), fracture length (FL), fracture width
(FW), fracture porosity (FPOR), fracture orientation (FO), the fracture dip angle (FDA), and
fracture filling (FF). Fullbore Formation Microresistivity Scanning Imaging Logging (FMI)
from three wells were selected to determine the fracture parameters. In addition, because
the orientation of fractures or fracture systemdevelopmentmust be obtained bydirectional
coring, conventional logging cannot determine fracture type or fracture filling. Therefore,
this paper focuses on four important parameters: fracture density, length, width, and frac‑
ture porosity.

Table 1. Resistivity imaging logging fracture parameter range.

Reservoir Fracture
Parameters Minimum Value Maximum Value Mean Value

Fracture porosity (%) 0.001 0.47 4.69
Fracture length (m/m2) 0 7.06 28
Fracture width (µm) 2 29 258
Fracture density (1/m) 0 6.15 28

In machine learning, the validity and representativeness of learning samples are two
important factors for determining the prediction effect. Reservoir fractures are controlled
by lithology, and various logging curves can reflect the physical characteristics of under‑
ground rocks from different angles. Therefore, the logging parameters that are sensitive to
fracture parameters can be selected as learning samples for the prediction model based on
the response characteristics of different logging data. The logging practice shows that the
fracture characteristics of carbonate reservoirs show low RLLD, low gamma rays (GRs),
low neutron gamma logging values, and high acoustic time differences. Therefore, GRs,
acoustic curves (ACs), neutron porosity (CNL), neutron density (DEN), and deep lateral
resistivity (RILD) were selected to construct the learning sample data set used in the pre‑
diction model.

For three selected wells (NP1‑5, NP1‑80, and NP1‑85), four parameters were selected
and calculated using FMI imaging logs as samples. The mean values of the GR, AC, CNL,
DEN, and RILD logging data from the FMI imaging fracture sections were used as the
petrophysical and electrical characteristics of the fracture samples for machine learning,
and a total of 99 data points were recorded. The value range of the data points is shown in
Figure 3. Due to the small number of data points obtained and the imbalanced distribution,
the sample data was balanced, and the number of samples after the balancing process
reached 350. Finally, the fracture parameter model was established by using the MLP
algorithm after proper correction and normalization. The data point distribution before
and after balancing is shown in Figure 3
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4. Methods and Workflow
4.1. SMOTE Algorithm

The basic idea of solving unbalanced data sets is to eliminate or reduce the data imbal‑
ance by changing the training data’s distribution. The synthetic minority over‑sampling
technique is an algorithm that starts with minority samples, finds adjacent samples, syn‑
thesizes new minority samples, and maintains the number of minority samples so that
they are consistent with the number of majority samples. However, the random linear in‑
terpolation method is adopted, which is blind, and the newly generated samples may not
be accurate in terms of their appropriate position. The improved algorithm is based on a
limited interpolation range, feature‑weighted interpolation, and clustering interpolation,
among other factors.

The sample collection process based on the SMOTE algorithm was as follows:
(1) The samples were divided into five intervals according to the size of the training

objectives. The interval with the largest number of samples was selected as the majority
category and recorded as a, while the samples in the other intervals were recorded as be‑
longing to the minority category. The minority samples were recorded as b, c, d, and e.
Class a was combined with classes b, c, d, and e in pairs.

(2) In each combination, for each sample in a minority class, the Euclidean distance
was used as the standard for calculating its distance to all of the samples in the sample
set of a minority class, and the minority class’s k nearest neighbour was obtained. Then,
several samples x were randomly selected from the minority class’s k‑nearest neighbours.
For each randomly selected neighbour xi, a new sample ywas constructedwith the original
sample x according to the following formula:

y = x+ rand(0.1)× |x− xi| (1)

(3) The new samples from all of the combinations were constructed and merged. Fi‑
nally, the duplicate samples were deleted to obtain the new sample data set.

The SMOTE algorithm in the imBLearn library (https://github.com/topics/imblearn,
accessed on 1 July 2022) was used to achieve sample balance.

https://github.com/topics/imblearn
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4.2. Multi‑Layer Perceptron Algorithm
Among the many machine learning architectures, the MLP neural network has been

widely used for its simple structure, easy implementation, good fault tolerance, robustness,
and strong nonlinear mapping ability. The data is received by the input layer through one
or more fully connected layers, and the neurons in each fully connected layer can fit the
original data. Finally, the data is output by the output layer. Then, the output value and
the sample label are used to construct the loss function, and the error value of the loss
function is iteratively reduced. Additionally, the model parameters are updated by the
back‑propagation gradient descent algorithm so that the loss function can reach an optimal
value. At this point, the MLP model has the ability to accurately fit the sample features.

The specific flow of the MLP algorithm is as follows:
(1) During the forward propagation stage, assuming that there are m neural units in

layer k‑1 and n neural units in layer k, the weight matrix of layer k is expressed as Wk ∈
Rn×m, and the bias matrix is expressed as bk ∈ Rn×1. The initialization and calculation
process can be divided into the following three steps:

Step 1: Initialization→ o1 = x, k = 1;
Step 2: Order→ k = k + 1, to calculate→ ok = σ

(
zk
)
= σ(Wkok−1 + bk

)
;

Step 3: Repetition→ Step 2, up to k = K, output oK.
(2) The back‑propagation algorithm updates the weight, and in essence, it adjusts

the weight along the direction of the mean squared error (MSE) decrease. The m training
sample data sets are expressed as follows:

D = {(x1,y1), (x2,y2), · · · (xm,ym)} (2)

The total number of MLP layers is K, the gradient descent method’s iteration step is
α, the maximum iteration number is MaxIter, and the threshold for stopping iteration is �.

Step 1: Initialize the weight matrix W and bias matrix b for each hidden layer and
output layer.

Step 2: For Iter, from 1 to MaxIter:
Step 2.1: For i, from 1 to m:
(1): Initialize the input o1 to xi;
(2): For k = 2 to k, calculate the forward propagation:

oi,k = σ
(

zi,k
)
= σ

(
Wkoi,k−1 + bk

)
(3)

(3): The output layer is calculated by the loss function θi,k:
(4): For k = K − 1 to 2, the backpropagation calculation is performed:

θi,k =
(

Wk−1
)T

θi,k−1 × σ′
(

zi,k
)

(4)

Step 2.2: If all of the changes in W and b are less than ε, then the program exits
the cycle.

Step 3: Output weight matrix W and bias matrix b for each hidden layer and out‑
put layer.

4.3. Workflow
As shown in Figure 4, the prediction model’s workflow for the crack parameters,

which is based on SMOTE and the MLP algorithm, is divided into the following steps:
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(1) The density, width, length, and porosity of reservoir fractures are detected and
calculated using imaging logs and correlated with the conventional log to obtain a sample
data set, where the conventional log includes the FD, FL, FW, and FPOR. This process is
depicted on the left side of Figure 4.

(2) The SMOTE algorithmwas used for sample balance to obtain a reasonable data set.
(3) The standard deviation (Z‑Score) was used to standardize the dataset, including

GR (API), AC (us/m), CNL) (%), DEN (g/cm3), and RILD (Ω•m) logging. This process is
depicted in the centre of Figure 4.

(4) During MLP model construction, a mesh search was used to optimize the hyper‑
parameters, and cross‑validation was also conducted.

(5) The best MLP model for reservoir fracture parameter evaluation in the selected
area was determined and is shown on the right side of Figure 4.

4.4. Machine‑Learning Capability Assessment
In regression tasks, there is a large difference between the performance evaluation

indexes of regression models and classification models. Ytrue represents the true value,
and Ypred represents the predicted value. The four commonly used evaluation indexes
primarily include the explained variance score (EVS), the mean absolute error (MAE), the
MSE, and the R2 score.

(1) EVS: This metric is used to calculate the variance score of the regression model,
and the value range is [0, 1]. The closer it is to 1, the better the independent variable can
explain the variance in the dependent variable:

explained_variance_score = 1 −
var

(
Ytrue − Ypred

)
var(Ytrue)

(5)

MAE: The MAE is used to evaluate the degree of closeness between the predicted
results and the real data set, and the smaller the value, the better the fitting effect:

mean_absolute_error = 1/n ∑|Y_true − Y_pred| (6)

MSE: This metric is calculated as the mean of the sum of the squares of the errors for
the sample points that correspond to the fitted data and the original data. The smaller the
value, the better the fitting effect:

mean_squared_error = 1/n ∑〖(Y_true − Y_pred)〗^2 (7)

http://scikit-learn.org
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R2 score: The R2 score can be understood as the proportion of the variation perfor‑
mance in dependent variable Y that can be explained by the estimated multiple regression
equation, which measures the degree to which each independent variable can explain the
variation of the dependent variable. Its value is between 0 and 1, and the closer its value is
to 1, the better the variable can be explained:

r2_score = 1 − (∑〖(Y_true − Y_pred)〗^2)/(n × var(Y_true)) (8)

5. Results
5.1. Machine‑Learning Capability Assessment

The establishment of the MLP model is divided into the following two steps:
Step 1: The sample set is divided into a training set and a testing set. The train_test_split

module was used to select a subset of the features. The training sample size accounted
for 80% of the total sample size, and the remaining 20% of the samples were used as
test samples.

Step 2: In neural networks, the selection of hidden layers and neurons directly affects
the model’s performance. If the number of hidden layers and neurons is too small, the
network will not have the necessary learning or information‑processing abilities. On the
contrary, if the network structure is too complex, the network learning rate will be low; ad‑
ditionally, over‑fitting may occur, which affects the network’s generalization. In addition,
there is no clear theory or method regarding the selection of the number of hidden layers
and neurons. In general, the number of hidden layer neurons in an MLP neural network
can be determined by the following empirical formula:

N =
Ntraining

a(N0 + N1)
(9)

where N is the number of neurons in the hidden layer, N0 is the number of neurons in the
input layer, N1 is the number of neurons in the output layer, and a is an integer ranging
from 1 to 10. Ntraining is the number of training samples.

Based on equation (9) and the input data’s dimension in the network’s data set, a
network architecture with two hidden layers and 10 neurons was finally selected to estab‑
lish the model. The other parameters were set as follows: the learning rate was 0.01, the
optimizer was the Quasi‑Newton method (L‑BFGS), and the number of training epochs
was 2000.

5.2. Results of Model Training
The training results of the MLP model proposed in this paper are shown in Table 2.

The explained_variance_score of the training set and the test set for the four fracture pa‑
rameters are greater than 0.98 and 0.83, respectively. In addition, the goodness of fit scores
were greater than 0.97 and 0.82.

Table 2. Training results of the MLP model.

Fracture
Parameters

Evaluation Index of the
MLDModel Test Data Set

Evaluation Index of the
MLDModel Training Data Set

EVS MAE MES R2_score EVS MAE MSE R2_score

FD 0.856 0.197 0.127 0.856 0.980 0.091 0.020 0.980
FL 0.834 0.259 0.212 0.821 0.982 0.078 0.018 0.982
FW 0.837 0.270 0.212 0.826 0.984 0.081 0.016 0.984
FPOR 0.886 0.185 0.102 0.886 0.962 0.119 0.038 0.962

To investigate the accuracy of the model’s prediction in different numerical ranges,
the fracture parameters were divided into two ranges and compared. The comparison
between themeasured values and the predicted values for the test set partitions of theMLP
model shows that (Figure 5) the measured fracture densities were divided by 15 fractures
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per meter, and the goodness of fit was 0.76 and 0.969 for the training set and the test set,
respectively. The fracture lengthwasmeasuredwith 15m per squaremeter as the dividing
line, and the goodness of fitwas 0.804 and 0.963 for the training set and test set, respectively.
These results show that the prediction accuracy for high fracture densities and lengths is
relatively high. However, the measured fracture width was separated by 75 µm, and the
goodness of fit was 0.94 for the training set and 0.792 for the test set; the fracture porosity
is bounded by 0.4%, and the goodness of fit is 0.972 and 0.974 for the training set and
the test set, respectively. Therefore, the prediction accuracy for large fracture widths is
relatively low.
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In addition, Figure 6 shows the comparison between the fracture development degree
shown by the imaging logging and conventional logging predictions for the Laopu South
1 well (not modelled). The density, length, width, and porosity of the fractures were pre‑
dicted to be higher for the first‑order fracture segments. The predicted density, length,
width, and porosity of the fractures are not significantly different between the secondary
and tertiary fracture segments. These results are consistent with the comparison results
between the measured and predicted fracture parameters. In other words, the multi‑layer
perceptron algorithm applied in this paper is very suitable for fracture parameter evalua‑
tion of carbonate reservoirs, and the model has high accuracy and high reliability in terms
of its prediction results.
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6. Discussion
6.1. Results of Model Training

At present, themethods used to calculate the fracture parameters from logging curves
primarily include depth and shallow laterolog calculations and machine learning. The
results of the typical algorithms employed in these two methods are compared with those
of the MLP algorithm proposed in this paper.

Conventional logs (GR, SP, CAL, RLLD, RLLS, DEN, AC, CNL) are difficult, or at least
inaccurate when calculating the fracture density and length. However, the fracture width
and porosity can be calculated using conventional logs [10]. The formula for calculating
fracture porosity and estimating fracture width from dual laterolog depth and shallow
lateral data is as follows:

The PoroDist sonoelectric imaging pore distribution analysis software was used in
this study (www.bjgeotech.com, accessed on 1 July 2022).

If RLLD > RLLS,

FPORCAL =
m

√
(

1
RLLS

− 1
RLLD

)× Rm f /(m − 1) (10)

www.bjgeotech.com
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If RLLD ≤ RLLS,

FPORCAL =
m

√√√√(
1

RLLD − 1
RLLS

)
× Rm f × Rw

Rm f − Rw
(11)

FWCAL =

(
1

RLLD
− 1

RLLS

)
/

1
Rm f

× 4 × 10−4 (12)

where Rmf is the resistivity of the mud filtrate, Rw is the resistivity of the formation water,
and m is the fracture porosity index, which is 1.1 in this study area.

Figure 7 shows the comparison between the fracture width and the porosity calcu‑
lated using the depth and shallow lateral data from dual laterolog and the results of the
MLPmodel proposed in this paper. The fracture porosity (FPOR_CAL) and fracture width
(FW_CAL) calculated by the MLP model are small, and the fracture width (FW_PRE) and
fracture porosity (FPOR_PRE) predicted by the MLP model are in good agreement with
the measured values (FPOR, FW). Therefore, dual laterolog depth and shallow laterolog
data are not suitable for fracture parameter calculation in the study area.
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Machine learning theory and methods have been widely used to solve complex prob‑
lems in engineering applications and scientific fields. The employed methods primarily
include the Random Forest Algorithm (RF), Linear Regression (LR), K‑nearest Neighbour
(KNN), Support Vector Machines (SVM), Boosting (AdaBoost, Gradient Boosting), and
Bagging. These algorithms can be used for classification and regression. As the essence of
classification and regression is the same, the classification model discretizes the regression
model’s output, and regression results in an approximate prediction of the true value.

In this study, Python and machine‑learning algorithms from the scikit‑learn library
(http://scikit‑learn.org, accessed on 1 July 2022) were used to model and predict the reser‑
voir fracture parameters, and their results were compared with the MLP model. The accu‑
racy of eight machine learning algorithms in terms of fracture parameter prediction was
tested using a validation data set. Figure 8 shows the results of the evaluation, and the
MLP model (red column) demonstrated good performance and robustness when predict‑

http://scikit-learn.org
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ing all four fracture parameters. In conclusion, compared with other popular models, the
established MLP algorithm has higher accuracy and more significant advantages in terms
of fracture parameter evaluation.
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6.2. Evaluation of Reservoir Fracture Development
The fracture parameters for nine drilled wells were predicted using trained optimal

networks (Table 3). The well test results for B1 show a daily oil yield of 664 tons. Although
the reservoir porosity and fracture porosity are small, averaging 1.53% and 0.04%, respec‑
tively, the fracture width, length and density of the well are the largest of the nine wells.
Well A2′s test results show a daily output of 61 tons of water and a small amount of oil.
Not only are the related reservoir porosity and fracture porosity smaller, with an average
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of 1.34% and 0.12%, respectively, but the fracture width and density are also lower. The
influence of multiple fracture parameters on hydrocarbon accumulation is defined as FP:

FP = FD× FW× FL (13)

Table 3. Average values of fracture porosity and fracture parameters in the target layer.

Well Name STRATUM OIL Water POR FPOR FW FL FD Oil Test
Conclusion

A1 Ordovician 0 0 2.42 0.27 16.02 7.99 4.5 No display
A2 Ordovician 0 61 1.34 0.12 15.25 10.21 6.04 Low production flow
A3 Ordovician 57 326 4.21 0.57 26.68 9.34 5.82 Industrial oil flow
A4 Ordovician 0 6.88 2.22 0.01 23.81 7.43 7.11 Low production flow
A5 Cambrian 1.98 15 4.21 0.42 30.04 6.85 6.2 Industrial oil flow
B1 Ordovician 664 13 1.53 0.04 10.31 10.31 10.21 Industrial oil flow
B2 Ordovician 80 0 2.03 0.06 49.69 9.6 8.57 Industrial oil flow
B3 Ordovician 0.66 102 1.53 0.25 25.85 9.35 6.11 Industrial oil flow
B4 Ordovician 64 0 8.18 0.05 58.42 6.07 5.83 Industrial oil flow

Figure 9 shows the cross‑plot of the FPOR and FP. Among them, the black dots rep‑
resent industrial oil flow wells, the blue dots are low‑yield oil flow wells, and the red dots
are well that are not shown. Figure 4 shows that the larger the FP is, the better the oil and
gas display is; additionally, the larger the FPOR, the better the gas display. In addition to
fracture porosity, fracture width, length and density are also important parameters when
determining the availability of reservoir space, as they reflect the complexity of fluid accu‑
mulation in carbonate formations. The application of the MLP fracture parameter predic‑
tion model in the study area is well verified by the oil test data, and the evaluation results
are reliable. In addition, new well predictions can be made based on this chart.

Processes 2022, 10, x FOR PEER REVIEW 15 of 20 
 

 

FP = FD × FW × FL (13) 

Figure 9 shows the cross-plot of the FPOR and FP. Among them, the black dots rep-

resent industrial oil flow wells, the blue dots are low-yield oil flow wells, and the red dots 

are well that are not shown. Figure 4 shows that the larger the FP is, the better the oil and 

gas display is; additionally, the larger the FPOR, the better the gas display. In addition to 

fracture porosity, fracture width, length and density are also important parameters when 

determining the availability of reservoir space, as they reflect the complexity of fluid ac-

cumulation in carbonate formations. The application of the MLP fracture parameter pre-

diction model in the study area is well verified by the oil test data, and the evaluation 

results are reliable. In addition, new well predictions can be made based on this chart. 

Table 3. Average values of fracture porosity and fracture parameters in the target layer. 

Well 

Name 
STRATUM OIL Water POR FPOR FW FL FD 

Oil Test  

Conclusion 

A1 Ordovician 0 0 2.42 0.27 16.02 7.99 4.5 No display 

A2 Ordovician 0 61 1.34 0.12 15.25 10.21 6.04 
Low production 

flow 

A3 Ordovician 57 326 4.21 0.57 26.68 9.34 5.82 Industrial oil flow 

A4 Ordovician 0 6.88 2.22 0.01 23.81 7.43 7.11 
Low production 

flow 

A5 Cambrian 1.98 15 4.21 0.42 30.04 6.85 6.2 Industrial oil flow 

B1 Ordovician 664 13 1.53 0.04 10.31 10.31 10.21 Industrial oil flow 

B2 Ordovician 80 0 2.03 0.06 49.69 9.6 8.57 Industrial oil flow 

B3 Ordovician 0.66 102 1.53 0.25 25.85 9.35 6.11 Industrial oil flow 

B4 Ordovician 64 0 8.18 0.05 58.42 6.07 5.83 Industrial oil flow 

 

Figure 9. Cross-plot of the FPOR and FP. 

The study area consists primarily of limestone, dolomitic limestone, dolomitic lime-

stone, calcareous dolomite, dolomitic limestone, dolomite, marl, and other rock types. The 

results show that the shale content is higher at the fracture height. Previous studies have 

shown that fractures are highly developed in the fault core and damage zone, while frac-

ture density decreases in the direction opposite the main fault zone. Therefore, there may 

be a relationship between a higher-than-average shale content and fracture density in car-

bonate rocks. Previous studies have concluded that the reasons for this phenomenon are 

a shear drag, grinding, pressure dissolution, and dissolution of marl along the fault sec-

tion during fault activity, as well as the addition of supergenetic karst infiltration clay. 

Figure 9. Cross‑plot of the FPOR and FP.

The study area consists primarily of limestone, dolomitic limestone, dolomitic lime‑
stone, calcareous dolomite, dolomitic limestone, dolomite, marl, and other rock types. The
results show that the shale content is higher at the fracture height. Previous studies have
shown that fractures are highly developed in the fault core and damage zone, while frac‑
ture density decreases in the direction opposite the main fault zone. Therefore, there may
be a relationship between a higher‑than‑average shale content and fracture density in car‑
bonate rocks. Previous studies have concluded that the reasons for this phenomenon are a
shear drag, grinding, pressure dissolution, and dissolution of marl along the fault section
during fault activity, as well as the addition of supergenetic karst infiltration clay. There‑
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fore, it is very important to study the fracture development degree of rocks with different
mineral components to further define key exploration targets.

According to the MLP fracture parameter prediction model established in this paper,
the development degree of fractures in different rock types can be predicted by using the
response values of acoustic time differences and neutron density logging in limestone and
dolomite. The specific steps needed to implement this process are as follows:

(1) The average resistivity of the strata in the study area is 500Ω.m. For pure lime‑
stone and pure white dolomite, the log value of the acoustic time difference is 47.5 us/ft
and 43.5 us/ft, respectively. The density logging values were 2.71 g/cm3 and 2.87 g/cm3,
respectively;

(2) The acoustic time difference and density logging values of different shale content
(Vsh) and dolomite content are simulated according to the physical model of rock volume
and its logging response equation;

(3) The MLP model is used to simulate and predict the fracture parameters;
(4) The fracture development degree is evaluated according to the carbonate compo‑

nent classification table.
The prediction results show that: (1) Dolomitic limestone and calcite dolomite show

high fracture porosity, width, density, and lengthwhen the local argillaceous content is be‑
tween 0% and 6% (Figure 10). In other words, high‑quality reservoirs develop in dolomitic
limestone and calcareous dolomite formations. (2) When the argillaceous content is be‑
tween 6% and 10% and the dolomite content is greater than 40%, the fracture porosity,
density, and length are higher, but the fracture width is lower. This observation shows
that in the case of high argillaceous content, a reservoir is developed in terms of dolomitic
limestone, calcareous dolomite, grey dolomite, and dolomite formations. Due to the fill‑
ing of fractures, the formation is a sub‑level high‑quality reservoir (Figure 11). (3) The
shale‑free zone shows low fracture porosity, density, and length but high fracture width,
indicating that fractured reservoirs do not easily develop (Figure 12).

Processes 2022, 10, x FOR PEER REVIEW 16 of 20 
 

 

Therefore, it is very important to study the fracture development degree of rocks with 

different mineral components to further define key exploration targets. 

According to the MLP fracture parameter prediction model established in this paper, 

the development degree of fractures in different rock types can be predicted by using the 

response values of acoustic time differences and neutron density logging in limestone and 

dolomite. The specific steps needed to implement this process are as follows: 

(1) The average resistivity of the strata in the study area is 500Ω.m. For pure lime-

stone and pure white dolomite, the log value of the acoustic time difference is 47.5 us/ft 

and 43.5 us/ft, respectively. The density logging values were 2.71 g/cm3 and 2.87 g/cm3, 

respectively; 

(2) The acoustic time difference and density logging values of different shale content 

(Vsh) and dolomite content are simulated according to the physical model of rock volume 

and its logging response equation; 

(3) The MLP model is used to simulate and predict the fracture parameters; 

(4) The fracture development degree is evaluated according to the carbonate compo-

nent classification table. 

The prediction results show that: (1) Dolomitic limestone and calcite dolomite show 

high fracture porosity, width, density, and length when the local argillaceous content is 

between 0% and 6% (Figure 10). In other words, high-quality reservoirs develop in dolo-

mitic limestone and calcareous dolomite formations. (2) When the argillaceous content is 

between 6% and 10% and the dolomite content is greater than 40%, the fracture porosity, 

density, and length are higher, but the fracture width is lower. This observation shows 

that in the case of high argillaceous content, a reservoir is developed in terms of dolomitic 

limestone, calcareous dolomite, grey dolomite, and dolomite formations. Due to the filling 

of fractures, the formation is a sub-level high-quality reservoir (Figure 11). (3) The shale-

free zone shows low fracture porosity, density, and length but high fracture width, indi-

cating that fractured reservoirs do not easily develop (Figure 12). 

Based on the above research results, it can be predicted that the upper Majiagou For-

mation, Lower Majiagou Formation, Fengshan Formation, and Gushan Formation will 

develop high-quality reservoirs, which will be key exploration horizons in the next step 

(Table 4). In addition, the Changshan Formation, Zhangxia Formation, Lu Tou Formation, 

and Fujunshan Formation developed high-quality secondary reservoirs. 

 

Figure 10. Development of fracture parameters with different dolomite contents under the condition 

of low argillaceous content. 

Figure 10. Development of fracture parameters with different dolomite contents under the condition
of low argillaceous content.



Processes 2022, 10, 2445 16 of 19Processes 2022, 10, x FOR PEER REVIEW 17 of 20 
 

 

 

Figure 11. Development of fracture parameters with different dolomite contents under the condition 

of relatively high argillaceous content. 

 

Figure 12. Development of fracture parameters with different dolomite contents in the absence of 

argillaceous content. 

  

Figure 11. Development of fracture parameters with different dolomite contents under the condition
of relatively high argillaceous content.

Processes 2022, 10, x FOR PEER REVIEW 17 of 20 
 

 

 

Figure 11. Development of fracture parameters with different dolomite contents under the condition 

of relatively high argillaceous content. 

 

Figure 12. Development of fracture parameters with different dolomite contents in the absence of 

argillaceous content. 
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Based on the above research results, it can be predicted that the upper Majiagou For‑
mation, Lower Majiagou Formation, Fengshan Formation, and Gushan Formation will de‑
velop high‑quality reservoirs, which will be key exploration horizons in the next step (Ta‑
ble 4). In addition, the Changshan Formation, Zhangxia Formation, Lu Tou Formation,
and Fujunshan Formation developed high‑quality secondary reservoirs.
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Table 4. Prediction of fracture development degree based on theMLPmodel of mineral composition
in geological outcrops.

Formation Calcite (%) Dolomite (%) Argillaceous (%) Others (%) Prediction of Fracture Development Degree Reservoir
Classification

FPOR FD FW FL
Fujunshan 0~95% 0~98% 0~34% A little pyrite Good Good Poor Good II
Mantou 0~2% 61~93% 4~34% Pyrite (0~7%) Good Good Good II

Maozhaung 98% 0.5% Pyrite (0~5%)
Xuzhaung 1~6% 78~83%
Zhangxia 83~95% 0~12% Glauconite, Pyrite Poor Good Good Poor II
Gushan 25~95% 3~30% 2~38% Good Good Good Good I

Changshan 87% 10% 3% A little pyrite Poor Good Good Poor II
Fengshan 31~86% 12~65% 2~3% A little pyrite Good Good Good Good I

Liangjiashan 72% 28% Poor Poor Good Poor II
Xiamajiagou 12~99% 25~85% 1~4% Pyrite (<1%) Good Good Good Good I

Shangmajiagou 55~94% 1.5~43.5% 0.3~1% Pyrite (0.5~1%) Good Good Good Good I

7. Conclusions
Artificial intelligence and machine learning have become integrated into various re‑

search fields, and they gradually assumed a key role in practical applications. Therefore,
this paper adopted theMLPalgorithm topredict fracture parameters and established a frac‑
ture parameter evaluationmodel that employs well‑logging data extracted during drilling.
The results show that this algorithm’s accuracy can reach 82%. Compared with other con‑
ventional fracture parameter calculation or prediction methods, the MLP algorithm has a
good application effect in fractured reservoir evaluation. The optimal network model was
used to simulate the control effect of different argillaceous contents and dolomite contents
on the fracture parameters, and it was found that argillaceous content has a considerable
influence on fracture development, not purely dolomite. Future research will include in‑
creasing the data volume, improving the accuracy of the evaluation models, and explor‑
ing fracture permeability prediction methods. The MLP model employed in this paper is
suitable for the prediction of fracture parameters in the target region, and the specific mod‑
elling steps and analysis method can provide a reference for similar research. In addition,
the goodness of fit scores were greater than 0.97 and 0.82.

(1) Comparedwith traditional researchmethods, this paper adopteddata‑drivenmeth‑
ods as the core, which were supplemented by the MLP machine‑learning algorithm, to
achieve the prediction of intra‑type favourable reservoirs based on the fracture origin against
the backdrop of the ultra‑low physical properties of carbonate rocks.

(2) The results show that this algorithm’s accuracy can reach 82%. Compared with
other conventional fracture parameter calculation or prediction methods, the MLP algo‑
rithm has a good application effect in fractured reservoir evaluation. The optimal net‑
work model was used to simulate the control effect of different argillaceous content sand
dolomite contents on the fracture parameters, and it was found that argillaceous content
has a considerable influence on fracture development, not purely dolomite.

(3) The research method in this paper integrated geological principles and computer
and logging technology to realize interdisciplinary advantages, broaden the researchmeth‑
ods used in petroleum geological exploration and development, and provide a reference
for other similar research. In addition, the application of this research method in other oil
fields needs to be combined with the basic data of the corresponding oil fields and make
corresponding adjustments in practical applications.
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Nomenclature

The format in the attached table includes the full name (abbreviation, none or unit).
MLP Multi‑Layer Perceptrons
FPOR, % Fracture Porosity
FMI Fullbore Formation Microresistivity Scanning Imaging Logging
DEN, g/cm3 Neutron Density
RF Random Forest Algorithm
RILD/RLLD, Ω•m Deep/shallow investigation induction log
FD, 1/m Fracture Density
FO Fracture Orientation
GRs, API Gamma Rays
EVS Explained Variance Score
LR Linear Regression
RLLS Deep investigate double lateral resistivity log
FL, m/m2 Fracture Length
FDA Fracture Dip Angle
ACs, us/m Acoustic Curves
AC Acoustic Logging
MAE Mean Absolute Error
KNN K‑nearest Neighbour
SP Spontaneous Potential
FW, µm Fracture Width
FF Fracture Filling
CNL Neutron Porosity Logging
MSE Mean Squared Error
SVM Support Vector Machines
CAL, ln/cm Caliper Log
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